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Abstract

In this study, we screened differentially expressed genes in a multidrug-resistant isolate strain of Clostridium perfringens by RNA
sequencing. We also separated and identified differentially expressed proteins (DEPs) in the isolate strain by two-dimensional
electrophoresis (2-DE) and mass spectrometry (MS). The RNA sequencing results showed that, compared with the control strain,
1128 genes were differentially expressed in the isolate strain, and these included 227 up-regulated genes and 901 down-regulated
genes. Bioinformatics analysis identified the following genes and gene categories that are potentially involved in multidrug resis-
tance (MDR) in the isolate strain: drug transport, drug response, hydrolase activity, transmembrane transporter, transferase activity,
amidase transmembrane transporter, efflux transmembrane transporter, bacterial chemotaxis, ABC transporter, and others. The
results of the 2-DE showed that 70 proteins were differentially expressed in the isolate strain, 45 of which were up-regulated and
25 down-regulated. Twenty-seven DEPs were identified by MS and these included the following protein categories: ribosome,
antimicrobial peptide resistance, and ABC transporter, all of which may be involved in MDR in the isolate strain of C. perfringens.

The results provide reference data for further investigations on the drug resistant molecular mechanisms of C. perfringens.
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Introduction

Clostridium perfringens, an important zoonotic patho-
gen, is capable of causing necrotic enteritis and food
poisoning in humans (1,2). Bacterial drug resistance can
occur through inherent gene mutations and foreign gene
acquisition (3). With inherent gene mutation acquisition,
the resistance gene exists in the bacterial genome, and
the drug resistance is typically species-specific, such as
penicillin resistance in Pneumococcus (4). When bacteria
develop drug resistance through the acquisition of foreign
genes, the resistance gene may be located in the bacterial
genome, or in a plasmid, transposon, or integron; hence,
resistance genes can be spread via plasmids, transpo-
sons and integrons among the various carriers, making
bacterial drug-resistance pattems more complex and diverse.
The inactivating or modifying enzymes produced by bacteria
mainly cause a loss of biological activity in an antibiotic, and
this loss involves bacterial p-lactam-inactivating enzymes,
aminoglycoside-modifying enzymes, and chloramphenicol
acetyltransferases (5).

Under antibiotic pressure, an alteration of the target
bacterial protein can occur in the drug-binding site of the
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intracellular membrane and this reduces the affinity of
the drug for its target, thereby eliminating the efficacy of
the antibiotic. This is a common mechanism of drug resis-
tance in bacteria (6). The efflux pump is another primary
cause of bacteria resistance to many drugs (7), such as
ATP-binding cassette, ABC transporter, and drug-resistant
nodulation division family (8). Due to the efflux pump,
Escherichia coli, Staphylococcus aureus, etc. have multiple
resistance to tetracycline, fluorogquinolones, and B-lactam
among others (9).

The C. perfringens TetA(P) protein is an endometrial
protein that regulates tetracycline active efflux. It consists
of 420 amino acids and 12 transmembrane domains (10).
The resistance mode by reducing membrane permeability
is relatively rare in gram-positive bacteria, but vancomycin-
resistant Staphylococcus aureus can specifically modify
the cell wall to reduce permeability, thereby reducing
the amount of drug entering the cell (11). Streptococcus
pneumoniae can produce VncR-VncS and other cell wall
regulators to change the cell wall permeability and develop
resistance (12).


mailto:qhxjygs@163.com
http://dx.doi.org/10.1590/1414-431X20187044

MDR in C. perfringens by RNA-seq and 2-DE

Bacterial biofilm is an important cause of bacterial
resistance (13); it can reduce the penetration of anti-
bacterials due to the barrier function of extracellular
polysaccharides (14). The growth of bacteria in biofilm is
slow and the sensitivity to antibiotics is reduced (15).
The induced expression of rpoS gene in the biofilm forma-
tion stage of Escherichia coli may be caused by the forma-
tion of drug-resistant subgroups in the deep layer of the
mature biofilm (16). C. perfringens can form biofilms, and
type IV pilus and CcpA protein are necessary for biofilm
formation. The biofilm from C. perfringens resists oxygen
and antibiotics effectively (17).

In this study, we analyzed differentially expressed
genes (DEGs) and differentially expressed proteins (DEPS)
in @ multidrug resistance (MDR) isolate of type A C. perfringens.
The study used RNA sequencing (RNA-Seq), two-dimensional
electrophoresis (2-DE), and mass spectrometry (MS) to
investigate the transcriptome and proteome of the MDR
isolate and a control strain of C. perfringens.

Material and Methods

Strains

An MDR strain of C. perfringens type A was isolated,
identified, and preserved by the Laboratory of Animal
Disease based at the Qinghai-Tibet Plateau in the Depart-
ment of Veterinary Medicine, College of Agriculture and
Animal Husbandry, Qinghai University, China (18). The
standard C. perfringens type A strain, CICC22949, pur-
chased from the China Center of Industrial Culture Col-
lection, was used as the control strain. In the preliminary
experiments on the isolate strain of C. perfringens,
we found that the minimum inhibitory concentrations of
kanamycin sulfate, minocycline hydrochloride, clindamycin
hydrochloride, doxycycline hydrochloride, and novobiocin
were higher than those of the control strain.

Total RNA extraction, cDNA library construction, and
sequencing

C. perfringens were grown overnight at 37°C in liquid
medium of sulfate glycolate after sterilization. The cells
were harvested by centrifugation at 10,625 g for 3 min at
room temperature when C. perfringens were grown with
an initial OD600 of 0.6. Total RNA of the C. perfringens
isolate strain and control strain were extracted using the
RNA Isolater total RNA extraction reagent (Cat#401,
Vazyme, China) according the manufacturer’s instruc-
tions. An RNA integrity number was determined using an
Agilent 2100 bioanalyzer (Agilent Technologies, USA).
After quantification, 10 pg of the extracted RNA was
digested by DNase | at 37°C for 30 min. Ribosomal RNA
was removed using a Ribo-Zero™ magnetic kit (Epicentre,
USA). The cDNA library was constructed using the NEB
Next®™ UltraTM directional RNA library prep kit from
llumina (NEB, USA). Random primers and first strand
synthesis reaction buffer (NEB) were added to the mRNA
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solution to allow cDNA synthesis to occur. Following
purification, end repair and joint connection were con-
ducted to give 300-500 bp ligated cDNA molecules. After
polymerase chain reaction (PCR) amplification and library
construction, sequencing was performed using lllumina
Hiseq™ 2500.

Genome comparison and DEG analysis

The raw sequencing reads were filtered for quality
control to obtain clean reads. These reads were then
mapped to the reference genome using SOAP2 (19). The
distribution and coverage of the reads on the reference
sequence were analyzed. DEGs were screened by analysis
of the significance of digital gene expression profiles (20),
followed by enrichment analysis of gene ontology (GO)
terms by GO TermFinder software (http://smd.stanford.
edu/help/GO-TermFinder/GO_TermFinder_help.shtml) and
KEGG pathways (21).

Two-dimensional electrophoresis

Culture sample (1 g) was decanted and 1 mL of lysis
buffer (9 mol/L UREA, 4% CHAPS, 1% IPG buffer, 1% DTT
was added. The sample was disrupted by ultrasonication
(80—-100 W, 3 min) and centrifuged (10,625 g for 30 min at
4°C) to remove the precipitate. Next, 1 mL of pre-cooled
acetone was added and the sample was kept at —20°C
overnight. The supernatant was removed after centrifuga-
tion (10,625 g for 30 min at 4°C). The precipitate was dried
and 500 plL of protein hydration solution was added. The
extracted protein was quantified and used for 2-DE.
Briefly, 150 ng of the protein sample was removed, dry
strips were prepared (pH 3—10 NL IPG), and run for the
first-dimension isoelectric focusing. The equilibrated strips
were placed in the gel slab for the second-dimensional
sodium dodecyl sulfate-polyacrylamide gel electrophoresis.
After electrophoresis, the gel was stained with Coomassie
blue. Following decolorization, the gel was scanned by
ImageScanner (GE Healthcare, USA).

MS detection and DEP analysis

Selected granules were excised from the gel and
transferred to 1.5-mL tubes for decolorization. The sample
was digested with trypsin and 100 puL of 60% aceto-
nitrile (ACN); 0.1% trifluoroacetic acid (TFA) was added.
The mixture was ultrasonicated for 15 min and then
lyophilized. After lyophilization, 2 mL of the digested
sample was collected and 20% ACN was added. A 1-mL
aliquot of the sample was spotted onto the sample target
and 0.5 pL of supersaturated CHA solution was spotted
onto the corresponding target. The sample was air dried
and the sample target was blown with nitrogen gas before
being placed into the target slot for the MS analysis. The
laser source was Nd:YAG laser with 355 nm wavelength,
and the peptide mass fingerprinting mass scan range was
800—4000 Da. Parent ions with signal-to-noise ratios greater
than 50 were selected for tandem MS (MS/MS) analysis.
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Figure 1. Differentially expressed genes (DEGs) in the multidrug resistance (MDR) isolate strain of C. perfringens. The red color
represents up-regulated tags, the green color represents down-regulated tags (fold change) and the blue color represents no significant

DEGs. FDR: false discovery rate.

The MS/MS was performed with a laser excitation of 2500
times and 2 kV of collision energy, and with the collision-
induced decomposition shut down. The MS data were
analyzed using Mascot (SCIEX, USA). GO and Kyoto
Encyclopedia of Genes and Genomes (KEGG) analyses
(http://www.kegg.jp/) of the DEPs were conducted.

Results

Transcriptome sequencing data and DEG analysis

A total of 28,563,164 reads were obtained from the
MDR isolate strain of C. perfringens by transcriptome
sequencing. Specifically, 83.97% of the reads were mapped
to the C. perfringens genome, 60.71% were mapped to
C. perfringens genes, and the unique matches reached
83.35%. Concurrently, 26,254,552 reads were obtained
from the C. perfringens control strain by transcriptome
sequencing. Specifically, 89.41% of the reads were mapped
to the C. perfringens genome, 72.6% mapped to C. perfringens
genes, and the unique matches reached 88.65%.

For the MDR isolate strain of C. perfringens, the vast
majority of gene coverages were higher than 10%; this
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included 2000 gene coverages between 90 and 100%.
For the control strain, all gene coverages were higher
than 10%; this included 2437 gene coverages between
90 and 100%.

A total of 1128 DEGs (FDR<0.05 and |log2Ratio|>1),
including 227 up-regulated genes and 901 down-regulated
genes, were screened in the MDR isolate strain relative to
the control strain (Figure 1).

We performed GO and KEGG enrichment analyses on
1128 DEGs in the MDR isolate strain of C. perfringens.
The results showed that these DEGs participated in 648
biological processes (Figure S1A) wherein defense responses,
drug transport, drug responses, and lactamase transport
may be related to multidrug resistance in the MDR isolate
strain of C. perfringens. These DEGs are derived from
80 cellular components (Figure S1B) wherein the ABC
transporter, ATP-dependent transmembrane transporter,
transmembrane transporter, protein membrane complex,
and ribosome may be related to multidrug resistance in the
MDR isolate strain of C. perfringens. Moreover, these DEGs
have 399 molecular functions (Figure S1B) wherein hydro-
lase, transport protein, transmembrane transporter activity,
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Figure 2. KEGG enrichment pathway of differentially expressed genes (DEGs) in the multidrug resistance isolate strain of C. perfringens.
The top 20 enriched pathways are shown in the graph, different color means different Q-value, and the size of the bubble represents the

number of DEGs.

transferase activity, amidase transmembrane transporter,
transcription factor activity, and efflux transmembrane trans-
porter activity may be related to multidrug resistance in the
MDR isolate strain of C. perfringens.

The 1128 DEGs are involved in 122 KEGG pathways
(Figure 2) wherein bacterial chemotaxis, ABC transporter,
and B-lactam resistance may be associated with multidrug
resistance in the MDR isolate strain of C. perfringens.

2-DE, MS, and DEP analyses

The 2-DE results (Figure 3) showed clear protein spots
for the MDR isolate strain of C. perfringens and the control
strain. The trend of the proteins was consistent within each
group, with good reproducibility. Next, an image analysis
was conducted using ImageScanner and PDquest 8.0
(Bio-Rad, USA) software, and the DEPs were screened
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using the following criteria: fold changes >2 or <0.5 for the
analytical values, and P-values <0.05 by the t-test. A total
of 70 DEPs, 45 of which were up-regulated and 25 were
down-regulated, were identified in the isolate strain relative
to the control strain.

Twenty-seven DEP spots with large fold-changes
for up-regulated expression were selected from the MDR
isolate strain of C. perfringens for enzymatic hydrolysis
and desalination in the gel. The digested samples were
re-dissolved with ACN and spotted onto the sample target
for Maldi-TOF/TOF analysis. The MS data were used for
protein identification using Mascot search software. The
results showed that the 27 protein spots were identified
successfully.

GO and KEGG enrichment analyses were per-
formed on the amino acid sequences of the 27 DEP spots
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Figure 3. Comparative analysis of proteins of C. perfringens by 2D- electrophoresis. The image shows the differential expression of
protein spots from the proteins extracted from (left) multidrug resistance isolate strain of C. perfringens, and (right) control strain.
Proteins whose fold change were higher than 2 or less than 0.5 were selected for further analysis. The arrows refer to the differentially

expressed protein spots.
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Figure 4. KEGG pathway enrichment analysis of differentially expressed proteins in the multidrug resistance isolate strain of C. perfringens.
Differentially expressed proteins were categorized according to their gene ontology terms and in each category the number of proteins and
their P-values are shown in the graph. The X-axis shows the percentage of differentially enriched proteins.

successfully identified by MS. The results showed that the
DEPs found in the MDR isolate strain of C. perfringens
participated in 292 biological processes (Figure S2A),
111 of which were significantly enriched. These DEPs
were related to 44 cellular components (Figure S2B), 18 of
which were significantly enriched. Moreover, these DEPs
were involved in 142 molecular functions (Figure S2C),
37 of which were significantly enriched.

The 27 DEPs participating in 24 KEGG pathways
(Figure 4) include ribosomes, antibiotic biosynthesis, anti-
microbial peptide resistance, and ABC transporters. The
ribosomal pathway, antimicrobial peptide resistance, and
ABC transporters may be related to multidrug resistance
in the MDR isolate strain of C. perfringens.
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Discussion

Bacteria will trigger a variety of mechanisms against
drugs under the sustained pressure of antibiotics. p-lactamase
is a primary cause of resistance to -lactam antibiotics (22);
its encoding gene can spread among bacteria by trans-
formation, transduction, conjugation, and other ways, such
as in ESBLs-producing bacteria (23). Aminoglycoside
modifying enzymes can help bacteria to develop resis-
tance to aminoglycoside antibiotics (24), as the encoding
gene can transfer among bacteria through plasmid con-
jugation, and cause drug resistance (25). Bacteria can
also develop drug resistance by increasing the number of
target proteins (26). Resistance to p-lactam antibiotics can
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be caused by changing the number of penicillin binding
proteins or deleting it. This kind of drug resistance is
common in bacteria, which is dependent on pB-lactam
antibiotics rather than B-lactamases (27). The resistance
of the bacteria to rifampin is due to the change in the
beta subunit of the RNA polymerase in the bacteria, thus
reducing the drug’s binding capacity and developing
resistance (28).

C. perfringens isolated from piglets in Thailand was
reported to have an MDR phenotype (29). This bacterium
has also been reported to be capable of inactivating
antibiotics via production of drug-inactivating or drug-
modifying enzymes (30). In chloramphenicol-resistant
C. perfringens, the product encoded by the catP resistance
gene, which is located on the Tn4453 transposon, can
inactivate chloramphenicol and spread via plasmid con-
jugation (31). In lincomycin-resistant C. perfringens, the
transposon-located tISCpe8 nucleotidyltransferase, which
is encoded by the tlnuP resistance gene and spreads
by plasmid conjugation, can inactivate lincomycin (32).
Additionally, because of gene transfer, tet(M) resistance
gene appeared in C. perfringens type C, carrying tetB
resistance gene (33). C. perfringens can develop quino-
lone resistance by altering the sites of drug action in
the genes encoding DNA gyrase and topoisomerase |V.
Mutated gryA DNA gyrasegenein C. perfringens, and the
mutant bacterium grown in an environment with gatiflox-
acin and ciprofloxacin showed a certain degree of resis-
tance to these antibiotics (34). Additionally, C. perfringens
acquired linezolid resistance via a new mutation in the
highly conserved region of the 50S ribosomal protein L4
gene, rpID (35). When a drug reaches a certain concen-
tration in bacteria, the expression of proteins related to the
active efflux system increases, thereby pumping the drug
out of the cells. By transferring a putative coding gene
of an ABC transporter from a ciprofloxacin-resistant
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