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Obesity affects gene expression and metabolism of white adipose tissue (WAT), which results in insulin
resistance (IR) and type 2 diabetes. However, WAT is a heterogeneous organ containing many cell types
that might respond differently to obesity-induced changes. We performed flow cytometry sorting and RNA
expression profiling by microarray of major WAT cell types (adipocytes, CD45 - /CD31 - /CD34+ progenitors,
CD45+/CD14+ monocytes/ macrophages, CD45+/CD14 - leukocytes), which allowed us to identify genes
enriched in specific cell fractions. Additionally, we included adipocytes and adipocyte progenitor cells
obtained from lean and obese individuals. Taken together, we provide a detailed gene expression atlas of
major human adipose tissue resident cell types for clinical/basic research and using this dataset provide lists
of cell-type specific genes that are of interest for metabolic research.
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Background and Summary

Obesity and its comorbidities are major health problems in modern society. Expansion of white adipose
tissue (WAT) is often associated with fat cell hypertrophy (few, but large cells), low-grade chronic
inflammation, changes in WAT-resident immune cell populations and altered secretion of proteins
(adipokines) and lipids, all of which are important for the development of insulin resistance (IR), type 2
diabetes, hyperlipidemia and atherosclerosis' .

WAT is a heterogeneous organ composed of many cell types including adipocytes, adipocyte
progenitor cells, endothelial cells, fibroblasts and various types of immune cells* . Less than 50% of the
cells are the tissue specific fat cells. Obesity has a complex impact on WAT by affecting distinct cell
populations differently. In obese WAT, macrophages acquire a pro-inflammatory phenotype’, the relative
abundance of lymphocyte populations is changed®, and endothelial cells are activated’. In addition, WAT
expansion causes changes in the progenitor cell population, and a change of caloric intake can affect
differentiation/recruitment of new fat cells'®'".

WAT metabolic alterations caused by obesity are also reflected in gene expression, a measurement often
used in clinical studies. mRNA profiling of WAT obtained from lean/obese individuals or before/after
weight reduction is commonplace, e.g. refs 12-15. However, such an approach neither gives insights into the
changes within specific cell types nor enables prediction of intracellular gene regulatory networks as obesity-
affected genes might be differentially expressed in various WAT cell types. Only a few studies have tried to
address these questions comparing gene expression in paired samples of SVF and adipocytes'® or analyzing
expression in one particular cell fraction (magnetic-bead sorted macrophages/monocytes)'’. Systemic
comparison of transcriptomes in WAT cell types is lacking, but is of great interest for the field.

The aims of the current study were to determine transcriptomic profiles of the major cell types in
human WAT and thus enable investigations of previously published obesity-regulated genes'®, or other
WAT-genes of interest, in relevant WAT cell populations. We also aimed to investigate how obesity
affects gene expression and function of human adipocyte progenitor cells. The adipocyte progenitors are
highly relevant for WAT morphology and metabolic phenotype as hyperplastic WAT (many, small fat
cells) reflects efficient recruitment/differentiation of adipocyte progenitors and is associated with a
favourable metabolic profile while hypertrophic WAT (few, large fat cells) is closely linked to a pernicious
metabolic profile and IR'®'”. The adipocytes have direct effects on whole body energy homeostasis by
regulating lipid turnover and secretion of adipokines like adiponectin and leptin.

To address these questions in human WAT, we used flow cytometry sorting of the stroma vascular
fraction (SVF) of WAT, performed transcriptional profiling in four major cell populations, and compared
mRNA expression in adipocyte progenitor cells and adipocytes from lean and obese individuals (Fig. 1).
Here we provide a full transcriptomic dataset for major WAT cell types as well as trancriptome of
adipocyte progenitors and adipocytes obtained from lean and obese individuals. Analysis of fraction-
enriched genes is also provided as an additional useful tool for the researchers in the field.

Methods

Human subjects and metabolic measurements

Subcutaneous (sc)WAT from 10 healthy obese and 10 non-obese healthy individuals undergoing
cosmetic plastic surgery was collected (Table 1). Obesity-regulated genes have been defined in WAT from
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Patient ID Patient group BMI Age Gender Purity of sorted populations (%) Viability of SVF (%)*
Progenitors Macrophag Leukocytes
142-2 lean 25 38 F 97.4 97.2 100 86.3
20 lean 24.7 45 F 97.9 97.5 99.5 81.7
26 lean 24.9 35 F 98.9 92.8 99 82.0
16 lean 25 39 F 95.6 94.9 99.1 86.5
124 lean 21.6 35 F 97.4 94.8 95.6 77.6
129 lean 219 40 F 95 94 93 752
28 lean 239 47 F 98.6 94.4 90.7 81.5
30 lean 234 37 F 97.1 100 98.3 73.7
31 lean 20.3 32 F 95 93.5 99 85.0
27 lean 20.8 30 F 100 93.7 97.2 84.5
98 obese 29.8 27 F 94.1 96.1 97.3 65.1
116 obese 30.1 27 F 96.7 95.7 98.8 76.7
109 obese 30.5 31 F 97.8 96.4 96.2 67.5
117 obese 322 18 F 97.1 97.1 93.7 83.6
100 obese 30.6 29 F 98.2 94.7 98.4 71.8
57 obese 322 31 M 95.3 92.5 80.8 78.0
29 obese 324 52 F 96.7 93 97.1 73.5
144 obese 37 42 M 95.2 93.7 99.2 68.2
74 obese 312 45 F 94 96.5 97.2 71.4

Table 1. Patient characteristics and purity of sorted cell fractions*. *Samples labeled in bold were used
for RNA expression profiling.

56 non-obese/obese women'>. All subjects were given written and oral information about the study
before they provided their written informed consent. The study was approved by the regional committee
on ethics at Karolinska Institutet.

Flow cytometry

SCWAT SVF was isolated and cryopreserved, then stained and analyzed/collected by FACS analysis as
described®. Mature adipocytes were prepared in paralll of SVF preparation as described®’. The
antibodies used are specified in Table 2. Progenitor cells (CD45—/CD34+/CD31—-), endothelial cells
(CD45 - /CD34+/CD31+), monocytes/macrophages (CD45+/CD14+) and leukocytes (CD45+/CD14 —) were
collected for RNA purification. In addition, the occurrence of T-cell population (CD45+/CD3+/CD14 —) was
recorded.

RNA extraction

RNA from FACS-sorted cell fractions and SVF were extracted with RNeasy Micro Kit (Qiagen, Hilden,
Germany) and from adipocytes with RNeasy Lipid tissue kit (Qiagen) in accordance with the
manufacturer’s recommendations.

Microarray analysis

RNA expression was analyzed on Affymetrix GeneChip Human Transcriptome Array 2.0 (Affymetrix
Inc., Santa Clara, CA) in accordance with the manufacturer’s instructions. Arrays were normalized
(RMA, transcript cluster level) in the Expression Console (Affymetrix, Thermo Scientific).

Statistical analysis of microarray data
After RMA normalization in Affymetrix Expression console software all further analysis of microarray
data was carried out in R statistical software (http://CRAN.R-project.org/).

Quality control. After RMA normalization, the array quality was assessed using the ArrayQuality-
Metrics package in R*%.

Enrichment in adipocyte, adipocyte progenitor, macrophage and leukocyte fractions. We
excluded array control transcripts before further analysis (by selecting only transcripts with affymetrix
category ‘main’) from this step onward. Our data set contains adipocyte, adipocyte progenitor,
macrophage and leukocyte microarrays from RNA from 6 non-obese female subjects. To identify genes
enriched in one of the fractions versus all others we used the Bioconductor R-package LIMMA®.
We made paired, pairwise comparisons of all fractions and selected probes for each fraction that had
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Specificity Clone Color Company

anti-CD45 T29/33 Pacific Blue DakoCytomation, Glostrup, Denmark
anti-CD14 M5E2 PE BD biosciences, San Jose, CA, USA
anti-CD34 8GI12 APC BD biosciences, San Jose, CA, USA
anti-CD3 SK7 PerCP-Cy5.5 BD biosciences, San Jose, CA, USA
anti-CD31 WM59 FITC BD biosciences, San Jose, CA, USA

Table 2. Antibodies used for FACS sorting.

significantly (Benjamini-Hochberg corrected P-value < 0.05) higher expression levels in that fraction
compared to all others. We also calculated moderated F-statistics for all genes and filtered out any genes
that were not significant (Benjamini-Hochberg adjusted P-value < 0.05) according to that analysis. The
R-code for this analysis can be found in Data Citation 1.

Differential expression in progenitors and adipocytes

Differential gene expression in progenitors and adipocytes from non-obese and obese patients was also
determined using LIMMA®, Array probes without gene symbol annotation were filtered out before
LIMMA analysis.

Data Records
All microarray data are accessible on GEO (GSE80654) (Data Citation 2) and analysis files are provided
as supplemental tables (Data Citation 3, Data Citation 4, Data Citation 5 and Data Citation 6).

Description of files

File 1: Microarray data are decribed in Data Citation 2.

File 2: Tables of fraction-specific genes (Data Citation 3). RNA from non-obese paired adipocyte,
leukocyte, macrophage/monocyte and adipocyte progenitor fractions (from six non-obese women)
were analyzed and cell-fraction enriched genes were defined as described under methods and R-code
(Data Citation 1 and Data Citation 3).

File 3: Pairwise comparison of adipose cell fractions: RNA from non-obese paired adipocyte,
leukocyte, macrophage/monocyte and adipocyte progenitor were compared to each other and
differentially expressed genes defined as described in methods and R-code (Data Citation 4).

File 4: Table with obesity-regulated genes in progenitors. Effect of obesity on RNA expression in
adipocyte progenitor cells was analyzed using samples from 10 non-obese women, 7 obese women and 2
obese men (Data Citation 5).

File 5: Table with obesity-regulated genes in adipocytes. Effect of obesity on RNA expression in
purified mature adipocytes was analyzed using samples from 8 lean women, 5 obese women and 1 obese
man (Data Citation 6).

Technical Validation

Quality control of FACS sorting

Purity of each FACS-sorted fraction was evaluated by post-sort analysis. Mean purity of adipocyte
progenitor cells was 97.7 + 1.68%; endothelial cells: 77.5 +11.9%; monocytes/macrophages: 95.1 & 2.9%;
leukocytes: 98.8 +0.87%. Individual values of purity for each sample are shown in Table 1. Viability of
cells was generally between 85% and 70% and was determined by 7-aminoactinomycin D (7-AAD)* and
by distribution on SSC/FSC scatters where alive and dead cells constituted distinct populations. Samples
with lower viability than 65% were not used for the analysis. SVF viability for each sample is indicated in
Table 1. Functional validation of FACS sorting quality was performed by inducing adipogenesis in vitro
in all sorted fractions. Only progenitor cells and total SVF had capacity to differentiate. Purity of
adipocyte preparation was examined in an earlier study and was found to be 99%>*. A sorting scheme,
flow cytometry plots, gating strategy and cell fraction frequencies are shown in Fig. 2. Differentiation
ability of progenitor, monocyte/macrophage and leukocyte fractions are shown in Fig. 3.

Quality control of RNA integrity

To determine RNA quality, Agilent 2100 Bioanalyzer (Agilent Technologies Inc., Santa Clara, CA) was
used. The integrity of RNA was calculated using RIN (RNA integrity number) algorithm, where higher
numbers indicate higher quality, a maximum value being 10. Mean RIN value of the samples was 7.9 and
lowest acceptable RIN in this study was 6.6. In adipocyte fraction, RIN values reflected well the amount of
viable cells in the preparation.

Quality control of microarray profiling

RMA normalized data was quality controlled using the ArrayQualityMetrics package®” in R (Fig. 4c-g).
Principal component analysis performed in R showed that samples grouped on cell fraction. The two
immune cell fractions, leukocytes and macrophages/monocytes were separated by PC1/PC3 (Fig. 4b) and
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Figure 2. Flow cytometry analysis of human subcutaneous adipose tissue stroma vascular fraction (SVF).
(a) Representative FACS profiles and gating strategy with marked populations of cells used for analysis.

(b) Relative frequency of cell populations in lean and obese SVF (*P < 0.05, lean n =10, obese n=9). Non-
obese and obese groups were compared by multiple T-test. Means and standard deviations are shown.

formed distinct clusters in array distance distribution pseudo-heat map (Fig. 4d). The array signal
intensity indicated that two adipocyte samples (JL41_M_4 (non-obese) and JL51_M_17 (obese)) as
outliers (Fig. 4c,f) but as neither MA-plots nor array distance analysis identified these samples as outliers
(Fig. 4e,g), nor did the PCA analysis show these samples to be distant from others. Thus, we kept them in
our downstream analyses. Quality of microarray profiling was also verified by RT-qPCR examining
expression of known cell-type-enriched genes in all four major SVF fractions (Fig. 5a) and obesity-
regulation of genes in progenitor cell fraction (Fig. 5b) (primers listed in Table 3).

Usage Notes

Genes enriched in specific WAT cell fractions

In clinical studies, it is often impossible for ethical reasons to obtain enough material to study the effect of
different conditions/treatments in the individual cell types of WAT. However, when moving from gene
associations to functional studies, the cell type that a gene is primarily expressed in is a crucial clue for
designing experiments. Our data set provides a way to assess this, and we provide lists of genes enriched
in each of the four cell types we sorted (Data Citation 3). Besides fraction-enriched gene lists, tables
include mean expression of the gene in a fraction where it is enriched, log fold change (logFC) compared
to each of other fractions and adjusted P values (adj.P.Val). Minimal logFC and maximal adj.P.Val
against other fractions are included as separate columns to enable easy sorting of the data. A table where
100 highest-ranked genes from each fraction (based on highest logFC_min and lowest adj.P.val_max) is
also provided (Data Citation 3). We also provide pairwise comparisons between all fractions so that
researchers can quickly check the magnitude of the differential expression for a specific gene (Data
Citation 4). The results are summarized in Venn diagrams (Fig. 6a-d).
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Figure 3. Differentiation of FACS-sorted fractions. (a) Pictures of the cells one day after FACS-sorting/
plating, before the induction of adipogenic differentiation. (b) Pictures of the cells at day 13 of differentiation.
DNA dye Hoechst was used to visualize nuclei representing total amount of cells and neutral lipid dye Bodipy
493/503 was used to visualize lipid droplets.

Our enrichment analysis is well in line with previously reported data. For example the well known
‘markers’ Adiponectin (ADIPOQ), Leptin (LEP) and Perilipin-1 (PLIN1) were among the top enriched
adipocyte genes, CD3G and CD69 were enriched in leukocytes, MMP2 and COL1A2-in adipocyte
progenitors. In the monocyte/macrophage fraction we found 23 out of 24 earlier reported WAT
macrophage-specific genes'” among the most enriched. Only HLA-DRA from the previous study was not
defined as macrophage/monocyte-enriched, which goes well with it’s reported expression in all types of
antigen-presenting cells, such as B-lympocytes, dendritic cells and others®>. There are also lesser known
fraction-enriched genes, of particular interest may be the non-coding genes, that to date have not been
well characterized.

Splicing and non-coding transcripts

The Human transcriptome 2.0 arrays contain exon level information and can be used to analyze splicing
using e.g., the affymetrix software “Transcriptome analysis console’ that is available for free download on
Affymetrix/ThermoFisher Scientific’s webpage https://www.thermofisher.com/se/en/home/life-science/
microarray-analysis/microarray-data-analysis/genechip-array-annotation-files.html. This analysis can be
useful for determining e.g., differential splicing between cell types, or the expression of a specific splice
variant in a cell type.

Furthermore, the HTA2.0 array contains probes for many non-protein coding transcripts,
which many other older arrays do not. Thus, this data set can be of specific importance for researchers
in e.g., the IncRNA field. Annotation to all included probes can be obtained from Affymetrix/Thermo
Scientific’s webpage as indicated above.

Effects of obesity on scWAT adipocyte progenitor cells
To investigate how gene expression in human adipose progenitors is affected by obesity, we performed
microarray analysis on this cell fraction in 10 non-obese and 9 obese individuals. We were primarily
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Figure 4. Quality control of microarray data. (a) Color coding of samples throughout this figure.

(b) Principal component analysis plot with PC1 versus PC2 and PC1 versus PC3 showing separation of the
sorted fractions. (c) Box plot of array distance distributions after RMA normalization. (d) Heatmap of distance
between arrays. Color scale covers the range of distances encountered between the arrays. (ef,g) Outlier
detection in array QualityMetrics based on the specified parameters. Only two possible outliers were detected,
one adipocyte non-obese and one adipocyte obese sample (* in f). As this was based on signal intensity
distribution alone and none of the other two outlier detection method called these (or other) samples, we
decided to keep them in the analysis.

interested in annotated genes so we filtered out all probesets without an associated gene symbol before the
start of the analysis. When global gene expression in non-obese and obese WAT progenitors was
compared, all multiple hypothesis corrected P-values were >0.05, probably due to small cohort size and
the still large amount of transcripts tested. However, even if false discovery rate is rather high in this data
set alone, it may still be used for hypothesis generation, especially when combined with other data and
perhaps also with cut-offs on e.g., gene expression fold change. To see whether such an approach had any
merit we selected genes that had an unadjusted P-value < 0.05 and > 50% up-/downregulation. This gave
35 genes (Data Citation 5), including DKK1%°, CD36%” and BMP2%*, known to be involved in regulation
of adipogenesis and progenitor proliferation. To add more value to biological significance of our findings,
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Figure 5. Technical validation of microarray by RT-qPCR. (a) Relative expression of selected known
fraction-specific genes in four cell fractions from lean individuals (# =3-5). Groups are compared by multiple
T-test and all fraction specific genes are significantly higher in the expected fraction (adjusted P < 0.05). Means
and standard deviations are shown. (b) Relative expression of selected genes in lean (n=8) and obese (n=7)
women. Inclusion of 2 obese men in the obese group (original microarray cohort) does not affect significance
for any of the tested genes. Groups are compared by T-test (**P < 0.01). Mean and standard deviations are
shown. n.d.—not detected.
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Gene name Forward primer Reverse primer
CNTN3 GAGAACTGTCATATGCTTGG CTTAGATATGTAGAGGTGCCC
ENPEP CTACACTCTTGAGCAATACC ACCTTGACAAAAGAGTAACG
HAS2 GATGCATTGTGAGAGGTTTC CCGTTTGGATAAACTGGTAG
PLIN1 CAGAATGAAGACCTAAATGACC ATGCATCGTACCATCTACTG
18S TGACTCAACACGGGAAACC TCGCTCCACCAACTAAGAAC
Table 3. Sybrgreen primer sequences.
a Progenitors b Adipocytes
Macrophages/ ) Macrophages/
monocytes Leukocytes Progenitors monocytes
i @@
1498
Adipocytes 53221 Leukocytes 43051
¢ Macrophage/Monocytes d Leukocytes
. ) Macrophages/
Adipocytes Leukocytes Progenitors monocytes
4983
Progenitors 49920 Adipocytes 46729

Figure 6. Venn Diagrams of differentially expressed genes compared to other cell fractions. Genes

differentially expressed in adipocyte progenitors (a), adipocytes (b), macrophages/monocytes (c), leukocytes

(d). Amount of genes enriched in the indicated fraction compared to the other three is shown in the middle of

the graphs.

we have selected genes that are regulated by obesity in progenitors and highly enriched in this fraction (15
out of 34 genes). We assumed that in intact adipose tissue, most of the expression detected from these
genes is coming from progenitor cells. Therefore, we investigated obesity-regulation of these 15 genes in
the earlier published cohort reporting obesity-regulated genes in intact WAT">. Out of 15 genes, 13 were
found in this dataset and 9 of them were regulated by obesity with 5% FDR. This suggests that even this
small dataset of obesity regulated-progenitor genes can be used for hypothesis generation before deeper
functional studies when combined with other data sets or in larger transcriptomic studies.
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