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Abstract

Background

Particulate matter (PM) pollutant exposure, which induces oxidative stress and inflamma-

tion, and vitamin D insufficiency, which compromises immune regulation, are detrimental in

asthma.

Objectives

Mechanistic cell culture experiments were undertaken to ascertain whether vitamin D abro-

gates PM-induced inflammatory responses of human bronchial epithelial cells (HBECs)

through enhancement of antioxidant pathways.

Methods

Transcriptome analysis, PCR and ELISA were undertaken to delineate markers of inflamma-

tion and oxidative stress; with comparison of expression in primary HBECs from healthy and

asthmatic donors cultured with reference urban PM in the presence/absence of vitamin D.

Results

Transcriptome analysis identified over 500 genes significantly perturbed by PM-stimulation,

including multiple pro-inflammatory cytokines. Vitamin D altered expression of a subset of

these PM-induced genes, including suppressing IL6. Addition of vitamin D suppressed PM-

stimulated IL-6 production, although to significantly greater extent in healthy versus asth-

matic donor cultures. Vitamin D also differentially affected PM-stimulated GM-CSF, with
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suppression in healthy HBECs and enhancement in asthmatic cultures. Vitamin D increased

HBEC expression of the antioxidant pathway gene G6PD, increased the ratio of reduced to

oxidised glutathione, and in PM-stimulated cultures decreased the formation of 8-isopros-

tane. Pre-treatment with vitamin D decreased CXCL8 and further decreased IL-6 production

in PM-stimulated cultures, an effect abrogated by inhibition of G6PD with DHEA, supporting

a role for this pathway in the anti-inflammatory actions of vitamin D.

Conclusions

In a study using HBECs from 18 donors, vitamin D enhanced HBEC antioxidant responses

and modulated the immune response to PM, suggesting that vitamin D may protect the air-

ways from pathological pollution-induced inflammation.

Introduction

Asthma is the most common chronic lung disease with globally increasing prevalence, imply-

ing the importance of environmental factors in its aetiology [1]. Vitamin D insufficiency/defi-

ciency and ambient air pollution are two major environmental factors that appear to influence

the pathogenesis and stability of asthma [2] [3] [4] [5], as well as other respiratory diseases [6]

[7]. However there remains debate resulting from the heterogeneity of findings relating to the

effects of these environmental factors on airway pathology [5] [8] [9] [10]. For example, Euro-

pean studies have shown heterogeneity between different cities in the magnitude of the effects

of pollution on health outcomes such as hospital admissions for respiratory diseases [9] and

asthma incidence [11], despite using standardised analyses. Environment-environment inter-

actions are a major possible explanation for inconsistent results between different patient

cohorts but have been little studied, particularly at the mechanistic level. In a recent meta-anal-

ysis, latitude of study location influenced associations between air pollutants and severe

asthma exacerbations, and latitude is also known to affect sunlight-derived vitamin D produc-

tion, although this association is complicated by other factors such as hours of daily skin expo-

sure to sunlight [5]. In the urban environment Rosser and colleagues have shown that vitamin

D insufficient children, but not those vitamin D sufficient, living close to major roads show an

elevated risk of severe asthma exacerbations [12], although the mechanisms by which vitamin

D may protect against pollution toxicity remain unclear and the interaction likely complex.

A growing body of research highlights the importance of epithelial immunology in asthma

[13]. Evidence shows that inhaled ambient particulate matter (PM) adversely affects the bron-

chial epithelium through various mechanisms including the imposition of oxidative stress,

which stimulates redox sensitive signalling pathways and drives the transcription of pro-

inflammatory mediators relevant to asthma and other inflammatory lung diseases [14]. There

is evidence that in asthma this pro-oxidant/pro-inflammatory action is superimposed on a

background of oxidative stress. For example, Teng and colleagues have shown concentrations

of H2O2 are elevated in exhaled breath condensate of asthmatics compared with controls, with

concentrations increasing with asthma severity [15]. Mak and colleagues have reported ele-

vated plasma concentrations of 8-isoprostane, a lipid peroxide marker of oxidative stress, dur-

ing asthma exacerbations [16]. Indeed oxidative stress has been implicated in many of the key

pathophysiological features of asthma, including airways hyper-responsiveness and mucus

hypersecretion (reviewed by Zuo et al. [17], and Li et al. [18]).
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There is a large volume of research highlighting the anti-inflammatory effects of vitamin D

on the adaptive immune system [19] [20], but limited research as to the effects of vitamin D on

the human bronchial epithelium. Hansdottir and colleagues have shown vitamin D to decrease

production of pro-inflammatory cytokines by virally infected primary human bronchial epi-

thelial cells (HBECs) [21], but the capacity of vitamin D to affect the epithelial response to

urban particulate matter, consistent with it acting as a modifier of PM-induced respiratory

effects, to our knowledge has never been examined.

In view of this, we set out to examine whether vitamin D could abrogate urban PM-induced

pro-inflammatory responses in primary human bronchial epithelial cells. We elected to com-

mence with an unbiased, transcriptomic analysis with the objective of identifying PM-induced

pro-inflammatory cytokines that show distinct patterns of alteration by vitamin D in vitro. We

studied the epithelial response to both active 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) but

also to vitamin D in its circulating precursor form as 25-hydroxyvitamin D3 (25(OH)D3). To

examine the effects in a broader human context we studied epithelial cells from both patients

with diagnosed asthma and those without. We hypothesised that HBECs from asthmatic, as

compared with healthy control subjects, would display an enhanced pro-inflammatory cyto-

kine response to ambient PM exposure. We further hypothesised that the epithelial response

to PM exposure could be favourably modified by vitamin D through induction of antioxidant

defences.

Materials and methods

Materials

NIST SRM1648a Urban Particulate Matter (National Institute of Standards & Technology,

USA) was suspended at 500μg/ml in 5% methanol vehicle. SRM1648a is an urban total particu-

late matter reference material with mean particle diameter 5.85μm that was collected in the

USA [22]. NIST SRM1648a in methanol vehicle, hereafter referred to as NIST, was prepared as

follows. Appropriate weights of dry powder particulate matter were placed in a 50ml falcon

tube to which 5% methanol (HPLC-grade) in Chelex-100 resin-treated water was added. Fol-

lowing re-suspension and sonication on ice at an amplitude of 15 microns for 30 seconds

using a Soniprep 150 plus probe sonicator (MES (UK) Ltd, UK), the resultant suspension was

then separated into 1ml aliquots with resuspension during the aliquoting procedure to avoid

PM sedimentation. The aliquots were stored at -70˚C. Separate aliquots of the 5% methanol

vehicle alone were also used as a vehicle control (VC). A NIST concentration of 50 μg/ml in

primary HBEC cultures corresponded to a theoretical surface deposition of 11 μg/ cm2.

Ultra-high purity 1,25(OH)2D3 (1α,25-dihydroxyvitamin D3; Enzo Life Sciences, UK) was

aliquoted dissolved in DMSO (Sigma-Aldrich, UK) at 100μM. Ultra-high purity 25(OH)D3

(25-hydroxyvitamin D3; Enzo Life Sciences, UK) was aliquoted dissolved in sterile absolute

ethanol at 1mM. Both were prepared in low light conditions and stored at -80˚C prior to use.

Dehydroepiandrosterone (DHEA; Sigma-Aldrich, UK) was dissolved in absolute ethanol at

100mM. Poly(I:C) (Invivogen, USA) was dissolved in sterile H2O at 1 mg/ml. Sulforaphane

(Sigma-Aldrich, UK) was dissolved in DMSO at 300μM.

Primary human bronchial epithelial cell (HBEC) culture

Primary human bronchial epithelial cells (HBECs) were acquired from Lonza, Switzerland,

and locally from endobronchial brushings / biopsies obtained at fibreoptic bronchoscopy with

written informed consent of volunteers (Guy’s Research Ethics Committee, South London

REC Office 3, REC approval number 09/H0804/108, 16/03/2010) (Table 1).
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For locally collected samples, non-smoking volunteers were phenotyped as atopic or non-

atopic based upon skin-prick test results to a standard panel of aeroallergens, and as healthy or

asthmatic, the latter based on clinical history and confirmation by lung function testing (docu-

mented variability in PEF/FEV1 of 12% or more in past year, or positive metacholine / manni-

tol challenge if diagnosis uncertain).

Cells cultures were incubated in flasks in Bronchial Epithelial Cell Growth Medium (BEGM)–

constituted by Bronchial Epithelial Basal Medium (BEBM; Lonza, Switzerland) with SingleQuot

Supplements (Lonza, Switzerland) of Bovine Pituitary Extract, Insulin, Hydrocortisone, Gentami-

cin and Amphotericin-B, Retinoic Acid, Transferrin, Triiodothyronine, Epinephrine, and human

Epidermal Growth Factor. In later experiments 1% Penicillin-Streptomycin solution (Sigma-

Aldrich, UK) and 1% Nystatin suspension (Sigma-Aldrich, UK) were added to passage 0 and pas-

sage 1 cultures. Medium was changed every 2 to 3 days.

For samples grown from brushings: at bronchoscopy multiple brushings with an endobron-

chial brush were made to collect epithelial cells from 10 areas of the bronchial mucosa of nor-

mal appearance. The detached cells were washed with warmed BEGM and re-suspended in

flasks of warmed BEGM then incubated at 37˚C with 5% CO2. The medium was changed on

the next day and the passage 0 cultures were then subcultured as described.

For samples grown from biopsies: small fragments of endobronchial biopsy with any visible

smooth muscle removed by micro-dissection were placed in a universal tube containing 6ml

warmed BEGM cell culture medium. Samples were treated with Liberase TL Research Grade

(Roche, USA) collagenase (final concentration 62.5 μg/ml) for one hour at 37˚C then centri-

fuged twice in BEGM medium to wash off collagenase before transfer to a cell culture flask and

incubation at 37˚C with 5% CO2. The medium was changed on the next day and the passage 0

cultures were then subcultured as described.

Cell cultures once near-confluent were passaged by detachment of cells using the recom-

mended Trypsin Subculture ReagentPack (Lonza, Switzerland), centrifugation and then re-

suspension in fresh BEGM in flasks for further passage or flat-bottomed cell culture plates for

experiments.

Flasks and culture plates for primary HBECs obtained locally at bronchoscopy were colla-

gen coated before use–collagen solution was added to each flask / well base and incubated for

Table 1. Characteristics of donors of HBECs cultured in this study.

Characteristic Healthy Asthmatic

number of donors 10 8

from Lonza (n) 2 2

from local bronchoscopy (n) 8 6

Gender 6 male, 4 female 3 male, 5 female

Age, Mean in years (Range) 30.4 (19–60) 34.9 (24–52)

% taking ICS � - 83%

% taking LABA � - 50%

% taking LTRA � - 33%

Daily ICS Dose �, Mean (Range) Beclomethasone equivalent - 350 (0–1000) micrograms

Post-BD FEV1% predicted �, Mean (Range) 105% (97% - 113%) 111% (86% - 144%)

BD, bronchodilator. ICS, inhaled corticosteroid. LABA, inhaled long-acting beta-2 agonist. LTRA, leukotriene

receptor antagonist.

� % data only for donors enrolled locally (Lonza HBEC donors, for whom these data are not available, excluded).

https://doi.org/10.1371/journal.pone.0200040.t001
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2 hours before washing 3 times with sterile H2O. Collagen solution comprised of 20μl type 1

calf skin collagen reagent (Sigma-Aldrich, UK) per ml 0.02M acetic acid in sterile H2O.

For experiments, once cultures were near-confluent medium was changed to BEGM con-

taining all SingleQuot Supplements except Bovine Pituitary Extract, Retinoic Acid and in later

experiments also excluding Hydrocortisone. Bovine Pituitary Extract was removed as it has

been found to contain proteins that can provide exogenous protection against oxidative stress

[23]. Bovine Pituitary Extract can also contain low concentrations of vitamin D [24]. Retinoic

acid was removed as there is some evidence that it may compete with / antagonise vitamin D

[25]. For experiments examining effect of vitamin D pre-treatment, 25(OH)D3 was added at

100nM final concentration with/without 100μM DHEA to appropriate wells. After a further

24 hours, cell cultures were stimulated using fresh BEGM (excluding relevant SingleQuot Sup-

plements as above) with stimulation (50μg/ml NIST, 1μg/ml Poly(I:C) with/without 100nM

1,25(OH)D23, 100nM 25(OH)D3 and/or 100μM DHEA) as appropriate. Culture supernatants

and lysed cell monolayers were harvested or other assays conducted 4 hours or 24 hours after

stimulation of cell cultures. Cell culture experiments were conducted with triplicate wells for

each condition in each experiment to allow for variation in plating density with primary cells.

For experiments epithelial cells were used between passage 3 and passage 5.

Gene transcription microarray

Total RNA was extracted from HBECs cultured for 24 hours stimulated with 50 μg/ml NIST

and unstimulated, in the presence and absence of 100nM 1,25(OH)2D3, from four different

donors (two healthy and two asthmatic). Cell culture monolayers were lysed with Qiazol

reagent (QIAGEN, USA) then homogenised with QIAshredder columns before storage at

-80˚C pending extraction of total RNA using a miRNeasy Mini Kit (QIAGEN, USA) according

to an adapted manufacturer’s protocol with an off-column DNA digest with TurboDNase

(Ambion, USA). mRNA was quantified using a Qubit Fluorimeter (Invitrogen, USA) and

quality controlled using an Agilent 2100 Bioanalyser (Agilent Technologies, USA). Samples

were prepared for array analysis using SuperScript III Reverse Transcriptase (Invitrogen,

USA) and TargetAmp Nano-g Biotin-aRNA Labelling Kit (Epicentre, Illumina, USA). The

microarray was conducted on Illumina HT-12v4 Expression BeadChips (Illumina, USA) on

an iScan platform (Illumina, USA). Raw array signal intensities were processed in GenomeStu-

dio (Illumina, USA) with a quantile normalisation before export for analysis in GenomicsSuite

(Partek, USA). ANOVA analysis was conducted of the normalised data in GenomicsSuite

(Partek, USA).

Real-time quantitative polymerase chain reaction (qPCR) for measurement

of gene mRNA expression

Total RNA was extracted as above and quantified using a NanoDrop ND-1000 Spectropho-

tometer (Thermo Scientific, USA) and then reverse transcribed to cDNA using RevertAid

Reverse Transcriptase and complementary reagents (Fermentas, Thermo Scientific, USA). Rel-

ative Quantification (RQ) of target genes relative to 18S rRNA house-keeping gene was con-

ducted in triplicates by real-time quantitative polymerase chain reaction (qPCR) using

Taqman Universal PCR MasterMix (Applied Biosystems, USA), and an Applied Biosystems

Viia 7 real-time thermal cycler. Results were analysed using Viia 7 software (Applied Biosys-

tems, USA). Taqman primers were purchased from Applied Biosystems, USA (S1 Table). Rela-

tive expression of mRNA was corrected for efficiency of amplification using the Pfaffl method

[26]. In experiments comparing different culture stimulations expression of genes was ana-

lysed relative to both 18S and the unstimulated control cultures (RQUnstimulated).
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Cytokine protein measurement

Culture supernatants from individual wells were stored at -20˚C pending measurement of

secreted proteins from individual samples. Concentrations of cytokines were measured in cul-

ture supernatants by Cytometric Bead Array (CBA; BD Biosciences, USA). Supernatants were

incubated for 3 hours with CBA capture beads before beads were washed and then incubated

for 2 hours with CBA detection reagent followed by bead sample analysis as per manufactur-

er’s instructions. Cytokine levels were measured separately for each of the triplicate wells in

primary HBEC cultures and then mean averaged before further analysis.

Oxidative stress assays

8-Isoprostane ELISA: Cell culture supernatant, pooled from triplicate wells, was collected into

tubes containing desferrioxamine (DFO) and butylated hydroxytoluene (BHT) and stored at

-80˚C pending assay. 8-isoprostane was assayed using a commercial ELISA kit (Cayman

Chemical, Michigan, USA) according to the manufacturers protocol.

Glutathione Assay: Intracellular total and oxidized glutathione were assessed using the

GSH-GSSG-Glo Assay Kit (Promega, Wisconsin, USA) using an adapted protocol. The proto-

col was adapted as the un-adapted protocol resulted in readings outside the range of the lumin-

ometer standard curve. Near-confluent HBECs were cultured for 24 hours with 100nM 25

(OH)D3, with 6 wells per condition per experiment, in phenol-red free Airway Epithelial Cell

Medium (Promocell, Germany) with all supplements except bovine pituitary extract, retinoic

acid and hydrocortisone. After removal of supernatant, one triplicate of wells for each condi-

tion was lysed with kit passive lysis buffer (for assay of total glutathione) and the second tripli-

cate for each condition was lysed with kit lysis buffer containing N-ethylmaleimide (for assay

of oxidized glutathione). The 50μl lysate in each well was then diluted by addition of 150μl

dH2O, mixed on an orbital shaker, before 40μl of diluted lysate was transferred to white-sided

(flat transparent-bottom) 96 well assay plates. A glutathione standard curve in lysis buffer was

prepared according to kit protocol and 40μl added to appropriate wells. 10μl of prepared Lucif-

erin-NT reagent was then added to each well and the plate incubated on an orbital shaker for 5

minutes. The assay was then completed according to the manufacturer’s protocol. A solution

of glutathione-S-transferase, dithiothreitol (DTT) and buffer was added to each well and the

plate incubated for 30 minutes. Finally, a luciferase containing reagent solution was then

added to each well and the plate incubated for 20 minutes prior to reading well luminescence

with a GloMax plate luminometer (Promega, Wisconsin, USA). For each condition in each

experiment, the concentration of reduced glutathione was calculated by subtracting the mean

concentration in the oxidized glutathione triplicate from the mean concentration in the total

glutathione triplicate.

Statistical analysis

GraphPad Prism 6.0 (GraphPad Software, USA) was used for all statistical tests except for the

microarray data. Unless otherwise stated in figure legends, data are presented as mean +/-

standard deviation (SD) for normally-distributed data and as box-and-whisker plots showing

median, inter-quartile and absolute ranges for non-parametric data. Unless otherwise stated,

non-parametric data were analysed using Friedman Tests with Dunn’s multiple-comparisons

test and parametric data by repeated-measures ANOVA with Bonferroni corrected post-tests.

Significant results shown in figures as follows: �, p� 0.05; ��, p� 0.01; ���, p� 0.001. In some

experiments results from HBEC cultures from healthy (both atopic and non-atopic) and asth-

matic subjects were combined to better analyse the effects of PM and vitamin D across a larger

and broader population of individuals.
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Results

Effects of vitamin D on expression of pro-inflammatory cytokine genes by

HBECs exposed to particulate matter

In initial studies to investigate vitamin D mediated inhibition of the pro-inflammatory effects

of particulate matter, a gene transcription microarray was conducted on HBECs stimulated

with PM for 24 hours, using cultures from four adult donors. Expression of 510 genes was

altered (fold-change� ± 1.4) upon stimulation with 50 μg/ml NIST SRM1648a, a reference

preparation of urban PM, hereafter referred to as NIST (full microarray data available in S1

Data Appendix). This concentration of NIST had previously been ascertained to induce signif-

icantly increased production of pro-inflammatory cytokines after 24 hour cell culture. Of these

genes, 49 also showed evidence of regulation (fold-change� ± 1.4) in the presence of the active

form of vitamin D, 1,25(OH)2D3, at a concentration of 100nM (Fig 1A, S2 Table). Expression

of the pro-inflammatory cytokine genes IL6, CXCL10 and IL24was induced by NIST, but sup-

pressed by the addition of vitamin D (Fig 1B). Expression of other pro-inflammatory cytokine

genes, for example IL8, was induced by NIST, but not altered by addition of vitamin D. In con-

trast, NIST suppressed and vitamin D increased the expression of TGFB2. As previously

reported [27], vitamin D induced expression of IL1RL1 but interestingly this was also induced

by NIST stimulation.

The microarray findings were validated by quantitative real-time PCR using HBEC cultures

from a larger number of donors with expression of cytokine genes of interest studied in both 4

hour and 24 hour cultures (Fig 2). Exposure of HBECs to NIST in vitro significantly upregu-

lated expression of mRNA encoding IL6, IL8, IL24 and CXCL10 after 4 hours and 24 hours of

culture. Expression of CSF2was significantly increased by NIST stimulation at 24 hours but

not significantly at 4 hours. Co-culture with 100 nM 1,25(OH)2D3 reduced IL6, IL24 and

CXCL10 expression at both time points although the effect of vitamin D on CXCL10 expression

at 24 hours did not attain statistical significance. NIST-induced IL8 expression was not signifi-

cantly altered by vitamin D at 4 hours but was decreased by 1,25(OH)2D3 at 24 hours.

Comparison of the effects of vitamin D on PM-stimulated epithelial

cytokine production by HBECs from healthy and asthmatic individuals in
vitro
Production by HBECs of the pro-inflammatory cytokines IL-6, CXCL8 and GM-CSF (encoded

by the genes IL6, IL8 and CSF2 respectively) was chosen for further scrutiny given that all three

mediators are featured in asthma pathophysiology and their expression was induced by NIST-

stimulation, but differently affected by the additional presence of vitamin D. Culture of pri-

mary HBECs from 14–17 donors per experiment (approximately equal numbers of healthy

and asthmatic subjects) for 24 hours in the presence of 50 μg/ml NIST significantly increased

the supernatant concentrations of IL-6, CXCL8 and GM-CSF as compared with vehicle con-

trol, consistent with the gene expression data (Fig 3A). In the additional presence of 100nM

1,25(OH)2D3 throughout the 24 hour stimulation, production of IL-6 was significantly inhib-

ited, but that of CXCL8 or GM-CSF not significantly altered (Fig 3A).

Spontaneous production of all three of these cytokines by HBECs from both the non-dis-

eased and asthmatic donors varied considerably between individuals, with no significant dif-

ference between the asthmatic group and healthy group (S1 Fig). To allow for this inter-

individual variation, NIST responses were also examined in terms of fold-changes above spon-

taneous production in unstimulated cultures. Contrary to our hypothesis, NIST-induced fold-

increases in cytokine production were not significantly greater in HBECs from asthmatic
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compared to healthy subjects in the absence of vitamin D (Fig 3B). Nevertheless, 1,25(OH)2D3

exhibited a significantly greater capacity to suppress NIST-stimulated IL-6 production by

HBECs from the non-diseased, compared with the asthmatic donors (Fig 3C). There was also

Fig 1. Transcription microarray of 24 hour primary human bronchial epithelial cell (HBEC) cultures stimulated

with NIST in the presence/absence of vitamin D. (A) Volcano plot of the 510 genes with� 1.4 fold differential

expression comparing 50μg/ml NIST stimulated to unstimulated 24 hour cultures (n = 4), showing fold-change in gene

expression in NIST stimulated cultures in the presence vs absence of 100nM 1,25(OH)2D3 (horizontal axis) plotted

again probability of statistical significance for that fold-change (vertical axis). (B) Plot showing microarray results for

fold-change in expression of all cytokine genes upon stimulation of HBECs with 50μg/ml NIST (horizontal axis) and

fold-change in gene expression upon addition of 100nM 1,25(OH)2D3 to NIST-stimulated cultures (vertical axis).

https://doi.org/10.1371/journal.pone.0200040.g001
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a significant difference in the effect of 1,25(OH)2D3 on NIST-induced GM-CSF production,

with suppression in cell cultures from the non-diseased donors, but enhancement in those

from the asthmatic donors. As a result, in NIST-stimulated vitamin D treated cultures induc-

tion of IL-6 and GM-CSF production was significantly greater in asthmatic than in healthy

HBECs (Fig 3B). There was no significant difference in the effect of vitamin D on CXCL8 pro-

duction by HBECs from the non-diseased and asthmatic donors.

Fig 2. Confirmation by qPCR of the effect of NIST and vitamin D on expression of cytokine genes in HBEC

cultures. (A) Gene mRNA expression at 4 hours relative to 18S and the unstimulated Control condition in HBEC

cultures stimulated with 50μg/ml NIST in the presence/absence of 100nM 1,25(OH)2D3. IL6, n = 7; IL8, n = 7; IL24,
n = 6; CFS2, n = 8; CXCL10, n = 6; TGFB2, n = 6. (B) mRNA expression at 24 hours. IL6, n = 9; IL8, n = 7; IL24, n = 6;

CFS2, n = 8; CXCL10, n = 6 (one outlying replicate excluded); TGFB2, n = 6. All repeated-measures ANOVAs and

post-tests with Bonferroni corrections as shown. VC; vehicle control for NIST. Statistical significance as follows: �,

p� 0.05; ��, p� 0.01; ���, p� 0.001; ����, p� 0.0001.

https://doi.org/10.1371/journal.pone.0200040.g002
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We examined the possibility that these differences in the effects of 1,25(OH)2D3 on IL-6

and GM-CSF protein production reflected differences in early induction of cytokine gene

expression. No significant differences were evident between cultures of HBECs from healthy

and asthmatic donors in NIST-stimulated induction of IL6 or CSF2 at 4 hours and 24 hours,

compared in the presence and absence of 1,25(OH)2D3 (two-way ANOVA analyses, S2 Fig).

Additionally, gene expression was compared with the capacity of vitamin D to suppress cyto-

kine production. A proportion of HBEC donor cultures showed greater induction of CSF2 at 4

Fig 3. Effects of 1,25(OH)2D3 on production of IL-6, CXCL8 and GM-CSF by NIST stimulated HBEC cultures.

(A) Addition of 100nM 1,25(OH)2D3 reduced production of IL-6 by primary HBEC cultures stimulated for 24 hours

with 50μg/ml NIST, but not CXCL8 or GM-CSF. VC: NIST vehicle control. n = 14–17. (B) Fold-increase in production

of IL-6, CXCL8, and GM-CSF above that in unstimulated cultures upon stimulation with 50μg/ml NIST in the

presence/absence of 1,25(OH)2D3, by disease status. Two-way ANOVAs with Bonferroni-corrected post-tests. n = 8–9

healthy, n = 7–8 asthmatic. (C) Percentage suppression by 1,25(OH)2D3 of cytokine production in PM-stimulated

cultures of HBECs from healthy donors compared to asthmatic donors. Un-paired t-tests. n = 8–9 healthy, n = 7–8

asthmatic. Statistical significance as follows: �, p� 0.05; ��, p� 0.01; ���, p� 0.001, ����, p� 0.0001.

https://doi.org/10.1371/journal.pone.0200040.g003
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hours with less suppression of GM-CSF production at 24 hours by vitamin D (S2 Fig), and

notably these were from asthmatic donors. A similar pattern was not evident for IL-6 (S2 Fig).

Comparison of capacity for 25(OH)D3 and 1,25(OH)2D3 to modulate

HBEC cytokine responses

Exposure of HBECs to NIST (50 μg/ml, 24 hours) significantly increased the expression of the

gene CYP27B1 (S3 Fig), encoding the cytochrome P450 enzyme that converts 25(OH)D3 to

active 1,25(OH)2D3. However, the magnitude of induction of CYP27B1with NIST exposure

was significantly lower than that observed with the established TLR3 agonist Poly(I:C) (mean

(SD) 1.2 (0.22) fold induction with NIST compared to 5.4 (3.3) fold induction with TLR3 ago-

nist) (S3 Fig). Similarly, exposure to NIST modestly, but significantly, increased expression of

VDR, encoding the vitamin D receptor (S3 Fig). Concordantly, both 25(OH)D3 and 1,25

(OH)2D3 at 100nM concentrations exerted similar effects on cytokine expression by NIST-

stimulated HBECs (S3 Fig).

Given the distinct effects of vitamin D on cytokine gene expression in HBECs from healthy

compared to asthmatic donors, we were interested to investigate whether this reflected differ-

ences in their capacity to respond to vitamin D. We therefore assessed expression of CAMP,

the gene encoding cathelicidin antimicrobial peptide, and CYP24A1; two genes known to be

strongly induced by 1,25(OH)2D3 (Fig 4). No significant differences were apparent between

cells from healthy and asthmatic donors in the capacity of 100nm 1,25(OH)D23, in the pres-

ence of NIST, to induce increased expression of CYP24A1 or CAMP relative to unstimulated

controls (Fig 4A and 4C). Similarly expression of the target genes relative to 18S in the stimu-

lated condition were not significantly different between cultures from healthy and asthmatic

donors (Fig 4B and 4D). Given recent evidence that PM can suppress epithelial expression of

the antimicrobial peptide human β-defensin-2 (hBD-2) [28] [29], it was notable that there was

no significant difference in the capacity of 1,25(OH)2D3 to induce CAMP expression in the

presence or absence of NIST (RQ (SD) for induction CAMP of 11.4 (6.59) for 1,25(OH)2D3

alone compared to 15.2 (13.7) for 1,25(OH)2D3 with NIST; n = 6; p>0.05).

Effects of vitamin D on HBEC oxidative stress and antioxidant responses

We next sought to establish whether the anti-inflammatory effects of vitamin D following PM

challenge were related to its upregulation of antioxidant pathways. Culture of HBECs with

100nM 25(OH)D3 for 24 hours significantly increased the intracellular ratio of reduced to oxi-

dised glutathione concentrations (GSH:GSSG; Fig 5A), and in NIST-stimulated cultures

100nM 25(OH)D3 significantly decreased the production of the lipid oxidation product 8-iso-

prostane (Fig 5B). In further support of an antioxidant action of vitamin D, the antioxidant

enzyme-inducing compound sulforaphane similarly suppressed production of IL-6, but not

CXCL8 or GM-CSF (Fig 6) in NIST-stimulated cultures.

The transcriptomic analysis described above revealed that expression of the gene G6PD,

which encodes the key antioxidant enzyme glucose-6-phosphate dehydrogenase (G6PD) [30],

was significantly upregulated by vitamin D (1.82 fold-increase for NIST + 1,25(OH)2D3 com-

pared to NIST alone; Fig 1). The capacity of 1,25(OH)2D3 to elevate expression of G6PD was

confirmed by qPCR in HBEC cultures treated with 100 nM 1,25(OH)2D3 for 4 hours and 24

hours (both p<0.001; Fig 7A and 7B). 25(OH)D3 similarly enhanced G6PD expression in a

concentration-dependent manner (Fig 7B). There were no significant differences between

asthmatic and healthy donor cultures in spontaneous expression of G6PD in unstimulated cul-

tures at 4 hours and 24 hours (Fig 7C). Additionally there were no significant differences in
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Fig 4. Comparison of expression of vitamin D axis genes between HBECs from healthy and asthmatic donors. (A)

Induction of CYP24A1 by NIST with 100nM 1,25(OH)2D3, relative to the unstimulated control condition, in 4 hour

and 24 hour HBEC cultures. H, Healthy donor HBECs; A, Asthmatic donor HBEC cultures. 4hr healthy, n = 5; 4hr

asthmatic, n = 5; 24hr healthy, n = 7; 24hr asthmatic, n = 6.(B) Expression of CYP24A1 as measured by qPCR relative

to 18S in 4 hour and 24 hour HBEC cultures stimulated with 50μg/ml NIST and 100nM 1,25(OH)2D3. 4hr healthy,

n = 5; 4hr asthmatic, n = 5; 24hr healthy, n = 7–8; 24hr asthmatic, n = 6. (C) Induction of CAMP by NIST with 100nM

1,25(OH)2D3, relative to the unstimulated control condition, in 4 hour and 24 hour HBEC cultures. 4hr healthy, n = 5;

4hr asthmatic, n = 5; 24hr healthy, n = 5; 24hr asthmatic, n = 6. (D) Expression of CAMP as measured by qPCR relative

to 18S in 4 hour and 24 hour HBEC cultures stimulated with 50μg/ml NIST and 100nM 1,25(OH)2D3. 4hr healthy,

n = 5; 4hr asthmatic, n = 5; 24hr healthy, n = 7; 24hr asthmatic, n = 6.

https://doi.org/10.1371/journal.pone.0200040.g004

Fig 5. Effect of 25(OH)D3 on antioxidant responses in primary HBEC cultures. (A) Ratio of reduced (GSH) to

oxidised (GSSG) glutathione in 24 hour cultures of HBECs treated with/without 100nM 25(OH)D3; n = 6. (B) Fold-

increase in 8-isoprostane levels in culture supernatants from primary HBECs cultured with 50μg/ml NIST with/

without 100nM 25(OH)D3 for 24 hours, compared to VC control cultures; ratio paired t-test, n = 8. Statistical

significance as follows: �, p� 0.05.

https://doi.org/10.1371/journal.pone.0200040.g005
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the capacity of NIST with/without 1,25(OH)2D3 to induce expression of G6PD above that in

unstimulated cultures (Fig 7D) in HBECs from asthmatics compared to healthy donors.

Assessing the capacity of vitamin D pre-treatment to suppress pro-

inflammatory cytokine production by NIST-stimulated HBECs

Since greater induction by vitamin D of G6PDwas evident in the HBECs at 24 hours compared

with 4 hours in the preceding experiments, we finally investigated whether 24 hours pre-treat-

ment of HBEC cultures with vitamin D prior to particulate challenge would further augment

its capacity to decrease production of pro-inflammatory cytokines. Accordingly, we compared

the effects of concurrent treatment with 100 nM 25(OH)D3 (as in the previous experiments

above) with those of additional treatment of the HBECs with 100 nM 25(OH)D3 for 24 hours

prior to exposure to NIST-stimulation (Fig 8A). Additional vitamin D pre-treatment of NIST-

stimulated HBECs significantly increased the percentage suppression of IL-6 production (Fig

8A). Vitamin D pre-treatment also suppressed NIST-induced CXCL8 production, a phenome-

non not observed when vitamin D was added only concurrently with NIST. However, suppres-

sion of IL-6 production (44.78%, 18.45% - 71.10% [mean, 95% confidence interval]) was

greater than that of CXCL8 (22.36%, -1.42% - 46.14%). In contrast, there was no significant

effect on NIST-induced GM-CSF production.

The possible contribution of enhanced expression of G6PD to this phenomenon was

assessed using the G6PD inhibitor dehydroepiandrosterone (DHEA). DHEA at a concen-

tration of 100 μM significantly abrogated the ability of 100nM 25(OH)D3, applied for 24

hours in advance and with NIST stimulation, to suppress CXCL8 production in NIST-stim-

ulated HBEC cultures with evidence of a trend towards decreasing suppression of IL-6 (Fig

8B).

Fig 6. Effect of antioxidant enzyme-inducing sulforaphane on production of IL-6, CXCL8 and GM-CSF by NIST-

stimulation HBECs. Cytokines produced by primary HBECs in submerged cultures for 24 hours stimulated with

NIST at 50μg/ml and/or sulforaphane at 3μM. Friedman’s tests with Dunn’s multiple comparisons tests; n = 4.

Statistical significance as follows: ��, p� 0.01.

https://doi.org/10.1371/journal.pone.0200040.g006
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Discussion

Particulate matter air pollution and vitamin D deficiency are environmental factors that have

both been implicated in the current ‘epidemic’ of asthma [1] [7] [19]. There is increasing

appreciation of the importance of the interaction between multiple environmental factors,

defining an individual’s total exposome, in determining health effects [5] [31] [32], but to date

the interactive effect of vitamin D on responses to air pollution has received relatively little

attention. In the present study we demonstrate that vitamin D abrogates pro-inflammatory

effects of urban PM on primary human bronchial epithelial cells, suppressing production of

key PM-stimulated pro-inflammatory cytokines, such as IL-6, through a mechanism at least in

part dependent on enhancement of antioxidant pathways by vitamin D. Although epithelial

cells from both healthy and asthmatic donors were responsive to vitamin D, the capacity for

vitamin D to suppress PM-induced production of pro-inflammatory cytokines was impaired

in cells from patients with asthma compared to healthy subjects in this study. A microarray

was employed to generate an unbiased depiction of the effects of these environmental factors

Fig 7. Capacity of vitamin D to enhance primary HBEC expression of G6PD. (A) Expression of G6PD in 4 hour

cultures of primary HBECs stimulated with 50μg/ml NIST with/without 100nM 1,25(OH)2D3 (n = 6). (B) Expression

of G6PD in 24 hour cultures of primary HBECs stimulated with 50ug/ml NIST with/without 100nM 1,25(OH)2D3

(n = 6) or a concentration series of 25(OH)D3, n = 5. (C) Expression of G6PD as measured by qPCR relative to 18S in

unstimulated 4 hour and 24 hour HBEC cultures. H, Healthy donor HBECs; A, Asthmatic donor HBEC cultures. 4hr

healthy, n = 5; 4hr asthmatic, n = 5; 24hr healthy, n = 8; 24hr asthmatic, n = 6. (D) Induction of G6PD by 50μg/ml

NIST in the presence / absence of 100nM 1,25(OH)2D3 in 4 hour and 24 hour cultures of HBECs from healthy and

asthmatic donors. 4hr healthy, n = 5; 4hr asthmatic, n = 5; 24hr healthy, n = 6; 24hr asthmatic, n = 6. Statistical

significance as follows: �, p� 0.05; ��, p� 0.01; ���, p� 0.001; ����, p� 0.0001.

https://doi.org/10.1371/journal.pone.0200040.g007
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on epithelial cytokine responses and additionally identified further vitamin D promoted genes

such as G6PD and TGFB2.
Multiple pro-inflammatory cytokines were induced by PM-stimulation, however, the effect

of vitamin D on cytokine responses was not uniform with IL6, CXCL10 and IL24 transcripts

suppressed by vitamin D, whereas others such as IL8 and CSF2were not similarly inhibited.

We subsequently focused on IL-6, CXCL8 and GM-CSF as these cytokines are well-established

to be up-regulated by PM exposure, as well as being implicated in the pathogenesis of asthma,

with elevated concentrations seen in lungs of asthmatic individuals [33] [34] [35] [36]. IL-6 is

implicated in systemic inflammation [37] [38] [39]. CXCL8 (IL-8) has a major role in neutro-

phil chemotaxis and activation, with also evidence for a role in eosinophil chemotaxis [40].

GM-CSF is a known HBEC-derived mediator that enhances the pro-inflammatory effects of

PM on dendritic cells (DCs) [41] and promotes eosinophil responses [42], but may protect

against oxidative injury under a variety of situations [43] [44].

Vitamin D suppressed PM-induced IL-6 production to a greater extent in cultured epithe-

lial cells from healthy as compared with asthmatic donors. In contrast, in cultures from asth-

matic donors vitamin D modestly increased GM-CSF production. Why healthy and asthmatic

HBECs in this study responded differently to vitamin D is unclear, and future research is

Fig 8. Effect of vitamin D pre-treatment of HBEC cultures on suppression of NIST induced IL-6 and CXCL8. (A)

Percentage suppression of cytokine production in 50μg/ml NIST stimulated 24 hour cultures by concurrent and

additional 24 hour pre-treatment with 100nM 25(OH)D3 compared to concurrent only; n = 7–9 (3–4 Healthy, 4–5

Asthmatic). Two-tailed paired t-tests. (B) Percentage suppression of cytokine production by 100nM 25(OH)D3

concurrent and pre-treatment in 50μg/ml NIST stimulated HBEC cultures, in the absence or presence of the G6PD

inhibitor DHEA at 100μM; n = 7–9 (2–3 Healthy, 5–6 Asthmatic). Two-tailed paired t-tests. Statistical significance as

follows: �, p� 0.05; ��, p� 0.01.

https://doi.org/10.1371/journal.pone.0200040.g008
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needed to address this issue and verify findings in a larger cohort. Nevertheless, this novel find-

ing suggests that future research studying the role of vitamin D in disease pathology should be

conducted using primary cells from individuals with those diseases given the important differ-

ences apparent between the vitamin D responses of cells from healthy and diseased donors.

Vitamin D exhibits both inhibitory and inductive effects of importance in chronic airway

diseases and is therefore likely to influence the response of the lung to pollution exposure. For

example, any action of vitamin D to decrease PM-stimulated IL-6 production is likely to be

clinically relevant and beneficial. Higher concentrations of IL-6 have been shown in induced

sputum from asthmatic patients compared to controls [33], in the plasma of asthmatic patients

[45], and a genome-wide association study has previously highlighted the IL-6 receptor gene

locus as a possible risk locus for asthma [46]. In vivo human exposure to PM has been shown

to increase both airway and systemic concentrations of IL-6, with associated acute neutrophilic

inflammation [37] [47]. IL-6 can stimulate proliferation of lymphocytes [48], inhibit the action

of regulatory T lymphocytes (Tregs) [39] and conversely enhance Th17/IL-17 synthesis [49],

which is associated with neutrophilic inflammation and steroid insensitivity in asthma [50].

Elevated IL-17A has been reported with both in vitro and in vivo particulate matter exposure

[51] [52]. Furthermore, the benefit of reducing pollution-induced IL-6 is likely broader than

its effect on airway inflammation, since pollution-induced vascular dysfunction and increased

blood coagulation have been shown to be IL-6 dependent in murine models [37] [38].

In contrast vitamin D up-regulated expression of TGFB2, a cytokine with the capacity to

both inhibit inflammation and promote wound healing/fibrosis, with PM having the recipro-

cal effect. Whilst PM-stimulation creates an immune microenvironment that promotes pro-

inflammatory leukocyte responses, vitamin D appears to have the capacity to regulate the pro-

duction by epithelial cells of multiple mediators that act on the adaptive immune system, such

as the cytokines above and as we recently described sST2 [27], to produce a less inflammatory

microenvironment.

Vitamin D enhanced expression of the gene G6PD encoding glucose-6-phosphate dehydro-

genase, the rate-limiting step in the generation of NADPH, necessary for the action of critical

antioxidant enzymes including those involved in the production of reduced glutathione [30].

In keeping with this action to enhance antioxidant pathways, vitamin D increased the ratio of

intracellular reduced to oxidized glutathione and decreased the production of 8-isoprostane.

This action of vitamin D is consistent with previous evidence that it can protect various other

types of epithelial cell from oxidative stress in vitro, including H2O2-treated prostatic and

breast epithelial cells [53] [54] and CoCl2-treated trophoblasts [55]. Similarly, using immortal-

ised epithelial cell lines, notwithstanding that immortalised cell lines are known to manifest

distinctly different responses to vitamin D [56], it has been shown that vitamin D can abrogate

impairment caused by oxidative stress of nuclear translocation of the ligand bound glucocorti-

coid receptor [57].

This action of vitamin D to enhance antioxidant pathways and mitigate against oxidative

stress likely contributes to its capacity to suppress IL-6 production by PM-stimulated HBECs.

Consistent with this are our observed effects of sulforaphane in cell culture and the findings of

Sienra-Monge et al. that antioxidant supplementation of children significantly decreased nasal

lavage concentrations of IL-6 but not CXCL8 [58]. Oxidative stress has also been shown to

contribute to corticosteroid resistance, a major feature of severe asthma [59], and we have pre-

viously shown that vitamin D exerts a steroid-sensitising action in severe asthma, restoring

dexamethasone-induced IL-10 production by T cells [60].

However the capacity of vitamin D to suppress production of cytokines such as IL-6 is likely

multifactorial since vitamin D also has the propensity to inhibit other signalling pathways,

such as those involving nuclear factor kappa-B (NFκB) [21] and mitogen-activated protein
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kinase (MAPK) [61]. The differing effects of vitamin D on IL-6, CXCL8 and GM-CSF reveals

the complex actions of vitamin D on the multiple intracellular signalling pathways in the

induction of each cytokine. The suppression of IL-6 by vitamin D in our in vitro cultures is

consistent with the previous finding of Codoner-Franch et al. that systemic concentrations of

IL-6 in obese children were significantly higher in those with lower serum vitamin D concen-

trations [62].

A limitation of this research is that the detailed series of mechanistic experiments could

only be conducted with epithelial cell cultures from a limited number of healthy and asthmatic

donors. Furthermore the asthmatic donors were predominantly of mild severity and atopic;

whether cells isolated from more severe and non-atopic asthmatics would respond similarly is

an important consideration that needs further investigation. The impact of asthma medica-

tions on these responses is also an important question but could not be analysed with this sam-

ple population. Donor vitamin D status, prior to bronchoscopy and passage of cells, is another

variable that needs further consideration although any carry-over effect of donor vitamin D

status is likely to be small given the cell passage in defined medium prior to experiments. It is

therefore reassuring that our findings are consistent with in vivo cytokine responses as dis-

cussed above [58] [62]. Furthermore our results are consistent with the epidemiological study

of Rosser and colleagues that showed vitamin D insufficient children living close to major

roads have an increased risk of severe asthma exacerbations [12]. Importantly the concentra-

tions of vitamin D and particulate matter used in this research are representative of the con-

centrations evident in the real world. Li et al. have reconciled theoretical and experimental

particulate airway deposition, allowing for increased deposition at airway bifurcation points

with uneven air flow in disease, and shown PM2.5 deposition concentrations of 0.2–20 μg/cm2

are representative for real-world exposure [18] with higher deposition concentrations for total

particulate matter. Circulating serum levels of 25-hydroxylated vitamin D are in the range

75nmol– 150nmol in sufficient individuals, and therefore an in vitro concentration of

100nmol 25(OH)D3 is representative of real-world vitamin D sufficiency. With respect to 1,25

(OH)2D3 there is greater uncertainty as to in vivo tissue concentrations but the in vitro effects

of 100nm 1,25(OH)2D3 on immunological markers mirror ex vivo correlates supporting this

concentration being representative [19].

A few recent studies have examined a beneficial role for vitamin D in alleviating adverse

effects of pollution in different contexts. Stratford and colleagues have shown vitamin D defi-

ciency to affect the cardiopulmonary response to polluted air in mice [63]. In a diesel exhaust

particle aggravated mouse model of asthma, Bolcas and colleagues have shown vitamin D to

have the capacity to decrease airway hyperresponsiveness and pathological T cell populations

in the lungs [64]. Mann and colleagues have shown vitamin D to suppress pro-inflammatory

effects of PM in DC–memory T cell co-cultures [65].

However, there is a much larger volume of evidence examining antioxidant supplementa-

tion as a strategy to reduce the harm to human health from air pollution including many clini-

cal studies. For example multiple studies have investigated the capacity of antioxidant

supplements (such as vitamin C and vitamin E) to abrogate any deleterious effect of air pollu-

tion on lung function and many of these have shown significant benefit [66]. Similarly there is

suggestive evidence that supplementation of vitamin C and E may improve athletic perfor-

mance in ozone-exposed runners [67], and that B vitamin supplementation can alleviate par-

ticulate exposure associated cardiac autonomic dysfunction [68], amongst other outcome

measures studied. The major difference between vitamin D and other antioxidant vitamins

(and minerals) is that the major natural source for vitamin D in humans is through sunlight

exposure not diet. Vitamin D insufficiency / deficiency are extremely common in the devel-

oped world [69] and a healthy diet alone rarely contains adequate vitamin D to achieve
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sufficient status. Although ultraviolet (UV) light supplementation might be an option [70],

population-level oral vitamin D supplementation may be necessary to alleviate the epidemic of

vitamin D deficiency and reduce harm from air pollution.

Our study provides mechanistic evidence to support larger trials of vitamin D supplementa-

tion to alleviate the harmful impact of air pollution, similar to those conducted with other anti-

oxidant vitamins. Our conclusions are based on samples from a limited number of subjects and

next need to be followed up in larger translational studies. In the first instance exposure cham-

ber studies in vitamin D deficient individuals randomised to vitamin D supplementation / pla-

cebo prior to exposure would provide the opportunity to confirm whether in vivo vitamin D

supplementation beneficially impacts on the pulmonary response to ambient pollutants. Clini-

cal endpoints and biomarkers could be studied in a larger sample of participants including

healthy controls, a broader range of asthmatic patients and patients with other respiratory dis-

eases. Although effects of vitamin D on cellular responses to air pollution are selective to certain

pathways, and thereby potentially less than might have been hoped, given the pathways affected

and relatively low cost of vitamin D supplementation this strategy is likely highly cost-effective.

This research focused on the effects of vitamin D on pollution-induced pro-inflammatory

cytokine production by human bronchial epithelial cells, through the upregulation of antioxi-

dant defences. Transcriptomics was used to identify cytokines of interest, with the advantage

of revealing differentially modulated cytokines in an unbiased manner. The array also identi-

fied multiple non-cytokine disease-associated genes regulated by PM-stimulation and vitamin

D—such as CLDN7, SERPINB1, COL1A1, SLPI andMMP9—that were beyond the scope of

this research. Many of these have been implicated in airways pathology and deserve future

research.

Conclusions

In summary, vitamin D decreased oxidative stress and the particulate matter-induced IL-6

response in HBEC cultures; with vitamin D pre-treatment suppressing the IL-6 response consis-

tently in cultures from both healthy and asthmatic donors. Therefore vitamin D sufficiency is

likely beneficial in protecting against pollution-induced inflammation in asthma, as well as in

other pollution-associated diseases related to the induction of airway and systemic inflamma-

tion. Vitamin D supplementation has been shown to be safe and effective in preventing severe

asthma exacerbations and acute respiratory tract infections when given to appropriate target

groups [71] [72]. This research mechanistically supports a strategy of public health intervention

to optimise the body’s own defences against pollution (for example supplementation with vita-

min D [12] or other vitamins [68]) to reduce the burden of pollution-associated disease.
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S1 Fig. Cytokine production by HBEC cultures from healthy and asthmatic donors stimu-

lated by NIST with / without 1,25(OH)2D3. Primary HBECs stimulated for 24 hours with

50μg/ml NIST in the presence/absence of 100nM 1,25(OH)2D3. VC; vehicle control for NIST.

Healthy donor cultures: n = 8 for IL-6, n = 9 for CXCL8, n = 8 for GM-CSF. Asthmatic donor

cultures: n = 7 for IL-6, n = 8 for CXCL8, n = 6 for GM-CSF. Friedman’s tests with Dunn’s

multiple-comparisons tests. Statistical significance: �, p� 0.05.

(TIFF)

S2 Fig. Induction of cytokine gene expression in HBEC cultures from healthy and asth-

matic donors stimulated by NIST PM with / without 1,25(OH)2D3. (A) Induction of IL6
and CSF2 by 50μg/ml NIST PM stimulation in the presence / absence of 100nM 1,25(OH)2D3

in 4 hour and 24 hour cultures of HBECs from healthy and asthmatic donors. H, Healthy

donor HBECs; A, Asthmatic donor HBEC cultures. Tie-bars show paired results from the

same donor cultures. 4hr healthy, n = 5; 4hr asthmatic, n = 5; 24hr healthy, n = 6–7; 24hr asth-

matic, n = 6.

(B) Induction of IL6 and CSF2 by NIST at 4 hours compared to suppression by 100nM 1,25

(OH)2D3 at 24 hours of IL-6 and GM-CSF production respectively in NIST PM stimulated

HBEC cultures. n = 8 (4 healthy and 4 asthmatic).

(TIFF)

S3 Fig. Effect of NIST stimulation on expression of the vitamin D axis genes CYP27B1 and

VDR, and comparison of response to 25(OH)D3 and 1,25(OH)2D3. (A) Expression of

CYP27B1mRNA in 24 hour HBEC cultures stimulated with 50μg/ml NIST PM with/without

100nM 1,25(OH)2D3 (n = 9), or with 1μg/ml Poly(I:C) (paired t-test, n = 6). Gene expression

measured by qPCR relative to the house-keeping gene 18S, and shown relative to the control

condition. Statistical significance as follows: �, p� 0.05; ��, p� 0.01; ���, p� 0.001.

(B) Expression of VDR in 24 hour cultures stimulated with PM with/without 1,25(OH)2D3

(n = 7), or with 1μg/ml Poly(I:C) (paired t-test, n = 4).

(C) Percentage suppression of cytokine-production in 24 hour cultures of PM-stimulated

HBECs upon concurrent addition of 1,25(OH)2D3 or 25(OH)D3. Cultures from healthy

donors shown as open circles and those from asthmatic donors as filled squares. IL-6, n = 7

healthy, 6 asthmatic; CXCL8, n = 8 healthy, 7 asthmatic; GM-CSF, n = 6–7 healthy, 6 asth-

matic.
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S1 Data Appendix. Transcription microarray results after quantile normalisation and

ANOVA analysis (full gene list).
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