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ABSTRACT: The ability to build synthetic cellular populations
from the bottom-up provides the groundwork to realize minimal
living tissues comprising single cells which can communicate and
bridge scales into multicellular systems. Engineered systems made
of synthetic micron-sized compartments and integrated reaction
networks coupled with mathematical modeling can facilitate the
design and construction of complex and multiscale chemical
systems from the bottom-up. Toward this goal, we generated
populations of monodisperse liposomes encapsulating cell-free
expression systems (CFESs) using double-emulsion microfluidics
and quantified transcription and translation dynamics within
individual synthetic cells of the population using a fluorescent
Broccoli RNA aptamer and mCherry protein reporter. CFE dynamics in bulk reactions were used to test different coarse-grained
resource-limited gene expression models using model selection to obtain transcription and translation rate parameters by likelihood-
based parameter estimation. The selected model was then applied to quantify cell-free gene expression dynamics in populations of
synthetic cells. In combination, our experimental and theoretical approaches provide a statistically robust analysis of CFE dynamics
in bulk and monodisperse synthetic cell populations. We demonstrate that compartmentalization of CFESs leads to different
transcription and translation rates compared to bulk CFE and show that this is due to the semipermeable lipid membrane that allows
the exchange of materials between the synthetic cells and the external environment.

1. INTRODUCTION

The establishment of synthetic multicellular systems that can
sustain out-of-equilibrium behavior is a major challenge in
bottom-up synthetic biology. This requires the integration of
chemical reaction networks for intercellular communication
between synthetic cells within populations. Recent examples of
bottom-up multicellular systems demonstrate how simple
chemical building blocks can be used to make functional
systems that scale from molecules to cells to synthetic cell
communities1,2 or tissues.3,4 This provides a route for
characterizing how cell−cell communication could lead to
collective behavior in a minimal and multicellular context.
Importantly, relative to biological systems, bottom-up synthetic
cells and cell populations are highly amenable to perturbations
and modifications for experiments and quantitative analysis.
However, transitioning from single synthetic cells to multi-
cellular systems is challenging because of our poor ability to
control molecular assembly beyond a certain number of
modules. Highly engineered systems and controllable method-
ologies coupled with mathematical modeling can facilitate
building more complex and multiscale chemical systems from
the bottom-up. It has already been shown how models of cell-
free expression systems (CFESs) can help unravel the modular
response of highly complex systems responsible for supporting
out-of-equilibrium behavior.5

CFESs encapsulated in lipid vesicles have been established
as one of the most popular and utilized types of synthetic cells
as they encompass both cellular compartmentalization and the
central biological dogma of transcription and translation in a
minimalistic fashion. These minimal synthetic cells have
demonstrated simple transcription and translation pathways,6

gene expression cascades,7 gene expression bursting,8 noise
from macromolecular crowding,9 stochastic gene expression,10

genetic circuits for intercellular communication,11 and CFESs
coupled with other metabolic processes including ATP
production12 and DNA replication,13 demonstrating their
potential as a platform to build communicating populations
of synthetic cells. Despite these successes, compartmentalized
cell-free gene expression dynamics has not yet been fully
quantified and modeled. This can provide a simplified system
that focuses on the effect of compartmentalization on gene
expression dynamics.
Even though CFESs are dramatically reduced in complexity

compared to biological cells, they still contain as many as 37
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enzymes and 32 small-molecule compounds or substrates in
purified reconstituted cell-free systems14,15 and even more for
crude extract-based CFES. This makes it challenging to collect
sufficient data to test existing models or to develop tractable
models that rely on the knowledge of precise chemical species
as a function of time. Fortunately, there is an increasing effort
toward proteomic and metabolic profiling of CFES reactions
that have the potential to provide quantitative molecular
analysis to give details on reaction dynamics and limits on
resources.16−19 Alternatively, coarse-grained CFES models
circumvent the need to measure all molecular species by
focusing on only a few species such as DNA, RNA, proteins,
RNA polymerases, and ribosomes. Several models have already
been demonstrated to faithfully capture quantified cell-free
gene expression dynamics in bulk solutions. For instance,
several coarse-grained models have used first-order and
Michaelis−Menten kinetics to describe cell-free transcription
and translation dynamics20−22 and extended to explicitly
account for RNA polymerase and ribosome species.23,24

Dynamic models that include the initiation, elongation, and
termination steps of translation25,26 or central carbon
metabolism27 have been used to identify bottlenecks in
transcription and translation, which can be experimentally
relieved to improve protein productivity in CFESs. These
examples demonstrate how quantitative coarse-grained models
can provide a better understanding of the CFES building
blocks and will be crucial for further engineering of more
complex synthetic multicellular systems.

As studies have shown differences in protein production by
mammalian cell-free expression within water−oil emulsions,28

quantifying and modeling compartmentalized cell-free gene
expression could provide insights into the effect of
encapsulation on gene expression. Methodologies to monitor
mRNA and protein dynamics in bulk and semipermeable
liposomes using cell-free systems have been demonstrated by
utilizing fluorescence resonance energy transfer (FRET)
donor−acceptor pairs for mRNA,22,29 fluorescent proteins
such as GFP and YFP,30,31 and fluorescent Spinach RNA
aptamers simultaneously with YFP32,33 or mCherry.9 However,
expressed mRNA and protein levels in encapsulated CFESs
have only been measured as either relative fluorescence units
within the synthetic cells or quantified concentrations for
mRNA or protein levels separately. To the best of our
knowledge, an absolute and simultaneous quantification of
both transcription and translation dynamics within liposome
synthetic cell populations has not yet been presented. This is
crucial for models of compartmentalized cell-free gene
expression to provide a better understanding of the effects of
physical processes and environments, such as trans-membrane
diffusion and surface effects, on gene expression dynamics and
provides the basis to model increasingly complex compart-
mentalized cell-free gene expression circuits. Notably, studies
on the effects of liposome compartmentalization to CFESs has
revealed that optimization of the outer solution and liposome
permeability can increase expression yield and prolong gene
expression activity;6 CFESs encapsulated in small cell-sized
volumes can result in stochastic gene expression10 and rare

Figure 1. Monitoring transcription and translation dynamics in cell-free expression. (A) Construct of the pEXP5-NT/6xHis mCherry F30-
2xdBroccoli plasmid containing a constitutive T7 RNAP-mediated promoter expressing 6xHis mCherry with an F30-2xdBroccoli RNA aptamer tag.
The small-molecule dye DFHBI becomes fluorescent upon binding with the Broccoli RNA aptamer. (B) mRNA and mCherry protein expression
levels over time from bulk PURExpress CFES titrated with varying concentrations of pEXP5-NT/6xHis mCherry F30-2xdBroccoli DNA plasmid.
(C) mRNA and mCherry protein expression levels over time from bulk PURExpress CFESs titrated with varying concentrations of purified 6xHis
mCherry F30-2xdBroccoli RNA transcripts. Solid lines and shaded areas correspond to mean and standard deviation values from triplicate
experiments, respectively. Dashed lines are resource-limited CFES model fits. (D) Illustration of the resource-limited gene expression model for
CFESs. Parameters are kr: RNA transcription rate, Kr: dissociation constant between RNAP and DNA, δr: RNA degradation rate, kp: protein
translation rate, Kp: dissociation constant between ribosome and RNA, kmat: mCherry maturation rate, δTsR: TsR degradation rate, δTlR: TlR
degradation rate, Kl: Michaelis−Menten constant for TlR degradation, a: scaling factor for consumption of TsR with transcription, b: scaling factor
for consumption of TlR with translation, and τd: time delay for protein translation.
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favorable phenotypes such as high expression,30 and gene
expression resources and macromolecular crowding can affect
gene expression bursting.8,9

Liposome-encapsulated transcription and translation machi-
nery can be generated by lipid swelling30,34 or phase transfer
methods.8,10,33,35 These methods result in synthetic cells with
large variations in cell size and gene expression profiles.8,9,30,31

Bulk methods can be advantageous due to their accessibility
and opportunity in exploring a large random space in terms of
encapsulation and size,30 and populations of vesicles can be
generated without specialized equipment. However, it can also
be advantageous to generate uniform populations of synthetic
cells for reproducibility and predictability. This can be
achieved by leveraging recent developments in micro-
fluidics36−38 and droplet printing technologies39 to generate
populations of synthetic cells with greater throughput, control,
and uniformity compared to standard bulk methods.40,41 Using
microfluidic-generated synthetic cells has already been shown
to be effective in generating monodisperse synthetic cells to
study the effect of macromolecular crowding on gene
expression without the use of synthetic crowding agents42

and to qualitatively monitor Spinach2 RNA aptamer tran-
scription dynamics.43 This is especially important for
quantitative approaches, as it enables the generation of
statistically robust data that is amenable to accurate modeling.
In this study, we monitored and quantified both tran-

scription and translation dynamics in bulk and liposome-
encapsulated CFES reactions expressing Broccoli RNA
aptamer and mCherry protein reporters. Using double-
emulsion microfluidics,37 we generated monodisperse pop-
ulations of synthetic cells encapsulating cell-free gene
expression systems. Fluorescent readings were converted into
absolute concentration units by a standard calibration curve to
obtain a simultaneous and quantitative characterization of
transcription and translation. Bulk reaction results were used to
develop and select from several models of resource-limited cell-
free gene expression.22 These models were compared to each
other using the Akaike information criterion (AIC), and profile
likelihood analysis was performed to quantify the kinetic
parameters and their uncertainties. The best-ranking model
was then used to compare rate parameters of gene expression
dynamics between bulk experiments and synthetic cell
populations. Overall, our work combines bottom-up assembly
with robust modeling to provide a quantitative outlook of
liposome-compartmentalized gene expression dynamics in
synthetic cell populations. This has facilitated direct compar-
isons between experiments of bulk and compartmentalized
CFES reactions and provides the basis for the design and
construction of multicellular systems with increased levels of
complexity.

2. RESULTS AND DISCUSSION
2.1. Monitoring Transcription and Translation Dy-

namics in Cell-Free Expression Systems. To monitor both
transcription and translation dynamics in CFESs, we
constructed the pEXP5-NT/6xHis mCherry F30-2xdBroccoli
plasmid. This plasmid consists of a constitutive T7 RNA
polymerase-mediated promoter to express a red fluorescent
mCherry protein and two copies of a dimeric Broccoli RNA
aptamer stabilized by the F30 stem-loop44,45 between the stop
codon of mCherry and the terminator of the gene construct
(Figure 1A). Binding of a small-molecule dye, 3,5-difluoro-4-
hydroxybenzylidene imidazolinone (DFHBI), to the Broccoli

RNA aptamer results in a green fluorescence signal. This allows
simultaneous fluorescence monitoring of transcribed mRNA
and reporter protein levels. PURExpress CFES reactions were
titrated with pEXP5-NT/6xHis mCherry F30-2xdBroccoli
plasmid DNA or purified mRNA transcripts from the same
plasmid. Reaction mixtures were incubated at 30 °C and
monitored for mRNA and protein levels over time in a
fluorescence well plate reader (Figure 1B,C). Relative
fluorescence units were converted into nM concentration
units using calibration curves from serial dilutions of Broccoli
RNA aptamer and mCherry protein in the same reaction mix
composition and acquisition settings (Section 5 in the
Supporting Information). We observed typical profiles of
gene expression in CFESs, where a signal is first detected from
transcription of mRNA followed by translation of the mCherry
protein. The gene expression profiles show a plateau at ∼3 h
for mRNA and ∼5 h for protein. Rates of transcription reach a
maximum at the initial point, while translation rates peak at
1.5−2 h (Figure S14 in the Supporting Information) and then
gradually decrease. Our results also show that the endpoint
protein concentrations increase with increasing plasmid DNA
or mRNA transcript concentrations until a saturation
concentration of 3.75 nM for plasmid DNA and 600 nM for
mRNA transcript (Figure 1B,C). This indicates that gene
expression rates and yield are dependent on both the
consumption and degradation of resources. If gene expression
was dependent solely on the consumption of resources, the
final protein production would be constant regardless of DNA
or mRNA input. This hypothesis is supported by previous
work where the addition of ribosomes to PURExpress after
exhaustion restores gene expression activity22 and a delayed
addition of a DNA template into PURExpress after incubation
results in reduced rates and yield of gene expression.22,26

2.2. Resource-Limited Gene Expression Model for
Cell-Free Expression. To describe the dynamics of cell-free
gene expression, a coarse-grained model based on Stögbauer et
al. (2012)22 was developed to quantitatively compare results
across experiments and literature values. This model accounts
for both transcription and translation dynamics driven by a
limited pool of resources for gene expression. Transcription
(TsR) and translation resources (TlR) are assigned unitless
quantities initialized at 1 and then gradually decreased to 0 as
they are consumed by transcription or translation and
degradation. These species serve as a phenomenological
proxy to account for the cumulative effect of different limiting
factors that fuel transcription and translation processes, such as
RNA polymerase, ribosome concentrations, NTP, amino acids,
and other energy resources. Based on this model, we generated
several candidate CFES models composed of a system of delay
and ordinary differential equations. We used our bulk
experimental results from both transcription and translation
dynamics and mCherry maturation experiments (Section 7 in
the Supporting Information), to guide model selection.
Candidate models were ranked among each other using the
AIC.46 Profile likelihoods were then used to determine the
parameter identifiability and confidence intervals (CIs) for
each of the candidate models.47,48 The best-scoring model
resulting from this analysis is shown in eqs 1−6 (Section 9 in
the Supporting Information) below.

t
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This model uses Michaelis−Menten-type kinetics for
transcription and translation. Translation is additionally
modeled by a delay differential equation with a time delay
(τd) to account for the time delay of protein expression
observed in our mRNA titration experiments. Transcription
and translation resources (TsR and TlR, respectively) are
consumed by transcription and translation processes and
degraded independently. These are consumed during tran-
scription and translation with a scaling factor, a and b,
respectively. Both resources, also, spontaneously degrade with
first-order and Michaelis−Menten kinetics for TsR and TlR,
respectively. RNA degradation and mCherry protein matura-
tion are assigned first-order reactions (see model derivation in
Section 8 of the Supporting Information). In contrast to the
previously published model,22 TsR degradation was included
to account for the independent exhaustion of transcription
resources. Lastly, we included a time lag (τl) in the fitting
procedure of the model to account for the time between
starting the CFES reaction and acquiring the first data point
(Section 9 in the Supporting Information). This was negligible
for our bulk experiments that took less than 10 min from
adding the DNA or RNA template into the CFE bulk reactions
to acquiring the first data points in the plate reader. However,
it was important for the encapsulated experiments which had a
lag period between sample preparation and measurements of
∼30 min. The model fit and optimized rate parameters and CIs

are shown in Figure 1B,C (dashed lines) and Table 1. All
parameters except for Kl and τl are well-identifiable. The
estimates of Kl and τl turn out to be very low, and varying these
parameters within one order of magnitude does not
significantly affect the model fit. Overall, the model captures
the general behavior of gene expression dynamics across
different initial DNA and RNA conditions. The remaining
quantitative mismatch is likely due to additional chemical
complexity not captured by our coarse-grained model. The
mCherry maturation rate parameter kmat was determined
independently using a protein maturation assay49 at 2.15 ±
0.12 h−1 (Section 7 in the Supporting Information). This
corresponds to a maturation half-time (t0.5) of 19.31 ± 2.24
min, which is also comparable to previous reports of mCherry
maturation at 15 min in Escherichia coli.50 Assuming that a
standard PURExpress reaction contains 100 nM T7 RNA
polymerase14 and 2.4 μM ribosomes (NEB), T7 RNA
polymerase transcription and ribosome translation rates are
approximately 8.2−11.1 NTP/s and 0.20−0.28 amino acid/s,
respectively (calculated from kr = 2728−3674 nM/h for a 1087
bp transcript and kp = 2211−3108 nM/h for a 777 aa protein
in Table 1). These values are lower than the reported in vivo
rates in E. coli bacterial cells (230 ± 20 NTP/s51 and 8-18
amino acid/s52). However, the polymerase transcription rates
and ribosome translation rates are similar to previous work in
PURExpress expressing GFP at 37 °C (2.2 NTP/s and 0.03
amino acid/s, respectively).22 Using a FRET sensor to measure
RNA transcription in PURExpress, initial transcription rates
from 10 nM DNA plasmid template were previously measured
at ∼7 nM/min.29 This is also comparable to our initial
transcription rate measurements at 15.9 nM/min for 10 nM
DNA plasmid (Figure S14 in the Supporting Information).
The differences could be attributed to different reaction
conditions, T7 RNA polymerase concentrations, the encoding
gene, and/or batch-to-batch variability of the expression
system.

2.3. Production of Synthetic Cell Populations with
Low Variability. Having established a quantitative model for
cell-free gene expression in bulk reactions, we next wanted to
test its applicability on populations of compartmentalized
reactions. To this end, we encapsulated PURExpress CFESs in
lipid-based synthetic cell populations using either an inverse

Table 1. Parameter Estimates and Likelihood-Based 95% CI from the Resource-Limited Gene Expression Model Fitting on
Bulk DNA and RNA Titration Experiments (θ̂Bulk) and Synthetic Cell Population DNA Titration Experiments (θ̂Cell)

a

parameter description θ̂bulk 95% CI θ̂cell 95% CI units

kr RNA transcription rate 2894 2728 - 3674 1899 1631 - 3537 nM/h
Kr Dissociation constant between RNAP and DNA 3.67 2.89 - 5.68 8.86 6.97 - 18.66 nM
δr RNA degradation rate 0.0392 0.0361 - 0.0422 0.0081 0.00239 - 0.0143 1/h
kp Protein translation rate 2568 2211 - 3108 1954 1617 - 2696 nM/h
Kp Dissociation constant between ribosome and RNA 703 530 - 1347 1319 819 - 2038 nM
kmat mCherry maturation rate 2.15 (±0.12) 2.15 (±0.12) 1/h
δTsR TsR degradation rate 0.231 0.171 - 0.298 0.154 0.136 - 0.175 1/h
δTlR TlR degradation rate 0.0884 0.0441 - 0.1187 0.244 0.184 - 0.684 1/h
Kl Michaelis−Menten constant for TlR degradation 1.21 × 10−6 −∞ - +∞ 0.232 −∞ - 0.713
A scaling factor for consumption of TsR with

transcription
4.45 × 10−4 4.18 × 10−4 -

4.57 × 10−4
6.60 × 10−4 6.21 × 10−4 -

6.74 × 10−4

b scaling factor for consumption of TlR with
translation

1.78 × 10−4 1.18 × 10−4 -
2.42 × 10−4

4.46 × 10−13 −∞ - +∞

τd time delay for protein translation 0.433 0.254 - 0.560 0.0576 −∞ - 0.279 h
τl time lag between the reaction start and data

collection
2.81 × 10−9 −∞ - +∞ 0.457 0.342 - 0.535 h

aParameters with CIs at −∞ and/or +∞ are non/weakly-identifiable within one order of magnitude from θ̂.
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emulsion/phase transfer method53 or a double-emulsion
microfluidic methodology36,37 (Figure 2A) (Materials and
Methods and Sections 10−12 in the Supporting Information).
The inner solution was composed of the PURExpress CFES
and a plasmid DNA for constitutive T7 RNAP-mediated
expression of a fluorescent protein gene (eGFP or mCherry).
Confocal microscopy images for the inverted emulsion and
microfluidic-generated synthetic cells were segmented to
obtain relative fluorescence units (RFU) of the expressed
protein in single cells in each population. These were then
used to calculate the coefficient of variation (CV) of the
distribution of the expressed protein in each cell population.
The CV allows comparison of the variability of distributions
with different scales of measurement. The inverted emulsion
method generated liposomes with a mean radius of 8.0 μm and
a CV of 0.32 (Figure 2B). In comparison, the microfluidic-
generated synthetic cells were larger with a mean radius of 29.0
μm and exhibited lower size variation with a CV of 0.09
(Figure 2C) as expected. Protein expression in the inverted
emulsion-generated synthetic cells also showed a greater
variation (CV 0.49, Figure 2B) compared to synthetic cells
produced in microfluidics (CV 0.05) (Figure 2C). These
results are in agreement with previous studies of inverse
emulsion-generated cells with expressed protein concentration
CVs ranging from 0.20 to 0.80.10 We further show that
simultaneous encapsulation of two plasmids in a microfluidic-
generated synthetic cell population results in expression of
both eGFP and mCherry proteins in each cell at a consistent
ratio (3.11 ± 0.133 eGFP/mCherry RFU) (Figure 2D). This

demonstrates the robustness of our synthetic cell production
where the inner CFES solution is well-mixed and the
microfluidic method maintains the homogeneity throughout
encapsulation. The increased variance in phase transfer-
generated cells is most likely due to a combined result of
fluctuations in cell size and encapsulation. In contrast, the
synthetic cell populations generated using double-emulsion
microfluidics resulted in larger and more uniform cell
populations, making them highly suitable for our quantitative
analysis. In addition, it was also observed that the fluorescence
from expression of the pEXP5-NT/6xHis eGFP plasmid is
decreased in the two-plasmid synthetic cells (mean RFU 14.1,
Figure 2D) compared to the single-plasmid synthetic cells
(mean RFU 37.0, Figure 2C) (see also Section 15 in the
Supporting Information). This is a result of gene expression
resources being split between the expression of both eGFP and
mCherry proteins in the two-plasmid synthetic cells.

2.4. Quantitative Transcription and Translation
Dynamics in Synthetic Cell Populations. Using our
microfluidic platform, we generated synthetic cell populations
comprising large populations of monodisperse liposome-
encapsulated CFESs and quantified RNA and protein levels
over time to study transcription and translation dynamics using
fluorescence microscopy methods. To alleviate non-identifi-
abilities during model fitting, we prepared three populations of
synthetic cells with different DNA concentrations (1.75, 3.5,
and 7.0 nM pEXP5-NT/6xHis mCherry F30-2xdBroccoli
plasmid DNA) during one microfluidic session from one
batch of CFES master mix and outer feeding buffer solution.

Figure 2. Variability in synthetic cell populations. (A) Schematic of the bulk inverse emulsion phase transfer method and double-emulsion
microfluidics to generate liposomes or synthetic cells. (B) Synthetic cell population expressing eGFP protein from 1.17 nM pEXP5-NT/6xHis
eGFP plasmid DNA generated using the bulk inverse emulsion phase transfer method. (C) Microfluidic-generated synthetic cells expressing eGFP
protein from 4.5 nM pEXP5-NT/6xHis eGFP F30-2xdBroccoli plasmid DNA. (D) Merged image of the synthetic cell population expressing both
eGFP and mCherry protein from two plasmids (4.5 nM pEXP5-NT/6xHis eGFP and 4.5 nM pEXP5-NT/6xHis mCherry plasmid DNA).
Endpoint histograms of radius and protein RFU are plotted alongside each of the synthetic cell populations (B−D). The number of cells analyzed is
206, 106, and 85 for (B−D), respectively. Black lines are Gaussian distributions obtained by fitting mean and variance of the data. These
experiments show the relative levels of expressed protein and do not refer to absolute concentrations. RFU values between the microfluidic-
generated synthetic cells in (C,D), but not the inverse emulsion-made synthetic cells, are comparable, as these images were acquired using the same
microscopy settings. However, CV values can be compared across all populations. All images are taken at the endpoint after 12 h of incubation at
30 °C using confocal microscopy with a 40× objective for (B) and 10× objective for (C,D). Scale bars are all 100 μm. Calibrated units of (C,D) are
shown in Section 15 of the Supporting Information.

ACS Synthetic Biology pubs.acs.org/synthbio Research Article

https://doi.org/10.1021/acssynbio.1c00376
ACS Synth. Biol. 2022, 11, 205−215

209

https://pubs.acs.org/doi/suppl/10.1021/acssynbio.1c00376/suppl_file/sb1c00376_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acssynbio.1c00376/suppl_file/sb1c00376_si_001.pdf
https://pubs.acs.org/doi/10.1021/acssynbio.1c00376?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.1c00376?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.1c00376?fig=fig2&ref=pdf
https://pubs.acs.org/doi/suppl/10.1021/acssynbio.1c00376/suppl_file/sb1c00376_si_001.pdf
https://pubs.acs.org/doi/10.1021/acssynbio.1c00376?fig=fig2&ref=pdf
pubs.acs.org/synthbio?ref=pdf
https://doi.org/10.1021/acssynbio.1c00376?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


RNA and protein levels in the synthetic cell populations were
then monitored with confocal microscopy at 30 °C for 12 h
(Figure 3A). Similar to the bulk CFES experiments, RFU was
converted into absolute concentrations using a standard
calibration curve, and our image analysis protocols were used
(Sections 5 and 13 in the Supporting Information) to quantify
RNA and protein dynamics in the synthetic cell populations
(Figure 3B). Cell sizes from the three populations containing
different plasmid DNA concentrations were monodisperse at
∼30 μm radius with a CV ranging from 0.04 to 0.065. The
variability of gene expression from mRNA to protein remained
constant with CV values ranging from 0.02 to 0.03 (Figure 3C
and Table 2). This indicates a low degree of variability in
translation across the synthetic cells, as CV values were not
altered between mRNA and protein levels. Based on cell size
and concentration measurements, copy numbers of DNA,
mRNA, and protein molecules in a single synthetic cell are
estimated to be in the order of 105, 107, and 108, respectively.
Other components required for gene expression in the
PURExpress CFES are also present in similar or higher
concentrations,10,54 such that stochastic effects associated with
low copy numbers should be virtually absent. Time scales of
active gene expression were comparable between bulk (Figure
1B) and encapsulated reactions (Figure 3B) (approx. 8 h).
Maximum gene expression rates and endpoint mRNA and

protein concentrations differ between the bulk expression and
compartmentalized expression (Figures S14−S15 and S45−
S46 in the Supporting Information). For example, protein
expression levels in the liposomes are consistently lower than
in bulk reactions. To quantify gene expression dynamics, mean
RNA and protein dynamics from all three synthetic cell
populations were globally fit to the resource-limited CFES
model in eqs 1−6. Sample preparation of the synthetic cells
typically took 0.5−1 h due to the encapsulation of different
plasmid concentrations. As a result, the initial points of gene
expression were not fully captured in the time series data. To
account for sample preparation time, a time lag parameter (τl)

Figure 3. Quantifying transcription and translation dynamics in synthetic cell populations. (A) Timelapse confocal images of a synthetic cell
population containing PURE CFES and 3.5 nM pEXP5-NT/6xHis mCherry F30-2xdBroccoli plasmid DNA. Images are divided into three
channels: DiD dye-tagged lipid membrane (top row), Broccoli mRNA (middle row), and mCherry protein (bottom row). Timelapse images were
taken every 5 min for a total of 12 h incubation at 30 °C using confocal microscopy. Scale bars are all 100 μm. (B) Single-cell traces of mRNA and
protein expression in three synthetic cell populations with 1.75, 3.5, and 7.0 nM pEXP5-NT/6xHis mCherry F30-2xdBroccoli plasmid DNA with
82, 85, and 78 cells, respectively. RFU values are converted into nM concentrations units. (C) Endpoint distributions of radius, mRNA, and protein
concentrations of the synthetic cell populations.

Table 2. Mean and Standard Deviations of the Microfluidic-
Generated Synthetic Cell Populationsa

Population
DNA
(nM) Radius (μm)

Broccoli RNA
(nM) mCherry (nM)

1 1.75 29.8 ± 1.4
(0.048)

759.0 ± 17.3
(0.022)

1240.5 ± 38.4
(0.031)

2 3.5 30.4 ± 1.9
(0.064)

973.8 ± 21.6
(0.022)

1892.7 ± 51.5
(0.028)

3 7.0 32.0 ± 1.4
(0.043)

1093.7 ± 33.5
(0.03)

1973.9 ± 59.1
(0.03)

aThe total number of cells analyzed is 82, 85, and 78 for populations
1, 2, and 3, respectively.
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was included into the fitting procedure of the model for the
time between starting the CFES reaction and acquisition of the
first data point.
The fitted rate parameters and 95% CIs obtained by fitting

the experimental data to the model are shown in Table 1. It is
important to note that the parameter estimation was
performed on only one batch of experiments. This was done
to avoid known batch-to-batch variability in CFESs that is not
accounted for in our parameter estimation methodology.
However, we also observed that different batches of synthetic
cell populations prepared on different days can result in
different endpoint protein concentrations and maximum
translation rates with a batch-wise CV of 0.10 and 0.16,
respectively (Figure S48 in the Supporting Information). This
is comparable to previously reported batch CV values of
expressed eGFP or RFP in bulk PURE systems at 0.05−
0.2.15,55 The identifiable parameters are comparable to the bulk
reaction parameters within one order of magnitude. However,
more parameters were weakly identifiable as only three DNA
concentrations (1.75, 3.5, and 7 nM) were considered for
model fitting in the synthetic cell population experiment
(Section 14 in the Supporting Information). The parameters Kl
and τd were weakly identifiable, and b is non-identifiable.
Additional populations were not prepared, as the time required
to generate the populations of vesicles would have led to less
data being obtained in the initial rates of gene expression,
which are important for the purpose of parameter inference.
We hypothesized that deviations of rate parameters between
bulk and encapsulated formats are due to the different
chemical conditions. Specifically, the composition of the
outer feeding buffer solution can affect the inner CFES
reaction by diffusion of materials across the semipermeable
membrane.6 In preparing inner and outer solutions, we
ensured that inner CFESs and outer solutions were osmotically
balanced by matching freezing-point osmometer measure-
ments. However, the outer feeding buffer and inner
PURExpress CFES had slightly different compositions. To
determine whether the composition of the outer solution
would significantly affect gene expression in the microfluidic-
generated synthetic cells, synthetic cell populations with
identical inner and outer solutions (except for the DNA
plasmid template in the outer solution) were compared with
progressively diluted outer solutions. Diluted outer solutions
resulted in a lower expression of RNA and protein in the
synthetic cell populations, which shows that the composition
of the outer solution influences the dynamics of the
encapsulated CFES reaction (Figures S53 and S54 in the
Supporting Information). The higher expression in the
undiluted PURExpress outer solution agrees with previous
experiments, showing that an outer solution that has been
chemically tuned can improve gene expression in liposome-
encapsulated CFES.6,56

3. CONCLUSIONS
In summary, our study tested different variations of a coarse-
grained model of CFES reactions using simultaneously
quantified RNA and protein dynamics with likelihood-based
methods for model selection and parameter identification.
Using a coarse-grained model, gene expression parameters
were estimated without the knowledge of the full composition
of the CFES. This is particularly useful for crude extract
systems or proprietary CFESs such as the NEB PURExpress
CFES that we used in this study. Several models have been

developed to include more details of CFE reactions such as
initiation and elongation factors26 or multiple translating
ribosomes on an mRNA template.24 These models provide a
more detailed interpretation of the data but require either
additional information on the time-varying states of these gene
expression factors or additional unknown parameters that can
result in overparameterized models and non-identifiability. In
the present study, a coarse-grained model of transcription and
translation was able to recapitulate the full gene expression
dynamics across DNA and RNA titration experiments. While
we focused on a simple constitutively expressed gene in this
model, it can be readily extended to more complex gene
circuitry, CFES characteristics, and protein maturation proper-
ties. We then showed that large populations of highly
monodisperse synthetic cells can be reproducibly generated
using double-emulsion microfluidics. Gene expression in these
synthetic cells is uniform and deterministic. Using our
methodologies, we demonstrated that bulk and encapsulated
CFES reactions result in different gene expression dynamics.
These differences are attributed to the semipermeable lipid
membrane, which allows the exchange of ions and water that
alters the internal composition of the synthetic cells. This
emphasizes the importance of the physical environment to
compartmentalized biochemical reactions. Our results demon-
strate a high degree of control over synthetic cell production
and relative ease of analysis compared to synthetic cells with
high variability generated by bulk encapsulation methods
which will be critical for bottom-up synthetic biology to build
synthetic multicellular systems.

4. MATERIALS AND METHODS
4.1. Plasmid Design. The plasmids pEXP5-NT/6xHis

eGFP57 and pEXP5-NT/6xHis mCherry58 were kindly
provided by J. L. Ross Anderson, University of Bristol. These
plasmids consist of a constitutive T7 RNA polymerase-
mediated promoter with a strong ribosomal binding site to
express 6xHis-tagged eGFP and mCherry fluorescent proteins,
respectively. The pEXP5-NT/6xHis mCherry F30-2xdBroccoli
plasmid was made by inserting the F30-2xdBroccoli fragment
downstream the mCherry stop codon and upstream the
terminator of the mCherry gene. This results in transcribed
mRNA that includes the F30-2xBroccoli sequence but a
translated protein without the F30-2xBroccoli sequence. The
F30 structure acts as a stable RNA scaffold for the two dimeric
Broccoli units (2xdBroccoli).59,60 Broccoli binds and activates
the fluorescence of the small molecule (Z)-4-(3,5-difluoro-4-
hydroxybenzylidene)-1,2-dimethyl-1H-imidazol-5(4H)-one
(DFHBI) (Sigma, USA). Plasmid construction protocols and
sequences are further described in Section 2 of the Supporting
Information. The pEXP5-NT/6xHis mCherry F30-2xdBrocco-
li plasmid was sequenced, confirmed by Sanger sequencing,
and is available in Addgene (www.addgene.org, plasmid ID
169233).

4.2. Bulk CFES Experiments. Bulk CFES expression
experiments were run using a standard half-volume (12.5 μL)
reaction mix of the PURExpress in vitro protein synthesis kit
(NEB, USA). All CFES experiments were supplemented with
sucrose at a final concentration of 80.4 mM. The additional
sucrose was included to balance the osmolarity between inner
and outer buffer solutions in the encapsulated experiments and
was also included in the bulk experiments to maintain the same
reaction conditions. To detect levels of the Broccoli RNA
aptamer, 10 μM DFHBI was added in CFES reactions using
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the pEXP5-NT/6xHis mCherry F30-2xdBroccoli plasmid or its
purified transcripts. All plasmid DNA templates were prepared
and purified by ethanol precipitation using the QIAGEN
plasmid maxi kit (QIAGEN, Germany) and then dissolved in
nuclease-free water. 6xHis mCherry F30-2xdBroccoli mRNA
transcripts were prepared by in vitro transcription of the
pEXP5-NT/6xHis mCherry F30-2xdBroccoli plasmid using
the HiScribe T7 high-yield RNA synthesis kit (NEB, USA),
treated with DNAse I (NEB, USA), purified using the
QIAGEN RNeasy mini kit, and dissolved in nuclease-free
water. Triplicate CFES reactions with the required DNA or
mRNA template concentrations were prepared in 384-well
plates, sealed with a clear film, and incubated in a TECAN
Spark 20M plate reader at 30 °C. Fluorescence measurements
were undertaken for each sample at 10 min intervals for 8 h.
Excitation and emission wavelengths used were 485/535, 570/
620, and 450/510 nm with a bandwidth of ±20 nm each, for
eGFP, mCherry, and Broccoli RNA, respectively. Fluorescence
values were then converted into concentration units using a
linear calibration curve from serial dilutions of purified eGFP
protein, mCherry protein, and Broccoli RNA in the same
CFES reaction mix and plate reader acquisition settings.
Further details for the calibration and bulk CFES experiments
are available in Sections 5−7 of the Supporting Information.
4.3. Encapsulated CFES Experiments. CFES reactions

were encapsulated into liposomes using a double-emulsion
microfluidic device and methodology as presented in ref 37.
Inner CFES solutions were prepared with a plasmid DNA
template similar to the bulk CFES experiments. The lipid oil
phase was composed of 1-octanol (Sigma, USA) with 6.5 mM
L-α-phosphatidylcholine (Egg PC) phospholipids (Avanti,
USA) and 53.3 μM 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindo-
dicarbocyanine, 4-chlorobenzenesulfonate salt (DiD) fluores-
cent dye (Invitrogen, USA). The outer aqueous solution was
composed of a CFES feeding buffer solution modified using
previous work,8 which contains NTPs (6 mM ATP (Sigma,
USA), 4 mM CTP (Sigma, USA), 4 mM UTP (Sigma, USA),
6 mM GTP (Roche, Switzerland)), amino acids (0.5 mM
each) (Sigma, USA), 1.5 mM spermidine(Sigma, USA), 1.5
mM dithiothreitol (Thermo, USA), 0.02 mM folinic acid
(Sigma, USA), 280 mM potassium glutamate (Sigma, USA),
20 mM magnesium glutamate (Sigma, USA), 100 mM HEPES
(Roth, Germany), 480 mM glucose (Sigma, USA), and 2%
(w/v) Pluronic F-68 (Gibco, USA) at pH 7.6. We can generate
hundreds to thousands of synthetic cells per microfluidic
session but typically prepare up to a hundred synthetic cells in
a glass slide for imaging. Prepared synthetic cell populations
were imaged by confocal laser scanning microscopy using an
inverted Zeiss LSM 880 with Airyscan and a 10X/0.45 Plan-
Apochromat M27 objective. The samples were maintained at
30 °C. Laser excitation wavelengths were 488, 488, 561, and
633 nm for Broccoli RNA, eGFP protein, mCherry protein,
and DiD dye, respectively. Emission wavelengths were 499−
561, 499−561, 579−641, and 640−720 nm for Broccoli RNA,
eGFP protein, mCherry protein, and DiD dye detection,
respectively. Images were focused at the equator of the
synthetic cells and then acquired every 5 min for a total of 12
h. z-stack images of the samples were taken at the 12 h
endpoint. Timelapse and z-stack images were processed using
Fiji (v1.53c)61 and Python (v3.6) with Scikit-image.62

Synthetic cells were segmented, and fluorescence values for
each cell were taken and converted to concentration units
using a linear calibration curve from serial dilutions of purified

eGFP protein, mCherry protein, and Broccoli RNA in bulk
CFES reaction solutions with the same confocal microscopy
acquisition settings and corrected for changes in laser power
(Section 5 in the Supporting Information). Further details for
microfluidic chip fabrication and pretreatment, bulk phase
transfer and microfluidic CFES encapsulation, image analysis,
and synthetic cell population experiments are available in
Sections 10−16 in the Supporting Information.

4.4. CFES Model Selection and Parameter Estimation.
A cell-free gene expression model was developed based on a
previously published resource-limited gene expression model.22

We tested seven variations of the model using mass action or
Michaelis−Menten kinetics for transcription and translation
and the degradation and consumption of transcription
resources (TsR) and translation resources (TlR). These
models were fit on the Broccoli RNA aptamer and mCherry
protein time series data from our bulk experiments. The
agreement between the experimental data and model was
measured by the negative natural logarithm of the likelihood of
the model parameters given the experimental data

p DLL ln ( )θ− = − | (7)

where θ = {θ1, ···, θk} is the set of parameters for the model
and D is the experimental data. The term on RHS is the log-
likelihood of observing data D given model parameters θ. Rate
parameters of a model were estimated by minimizing the log-
likelihood, that is

p Dargmin ln ( )θ θ̂ = [− | ]θ (8)

where θ̂ is the maximum likelihood estimator (MLE) of the
model parameters. The different models were ranked
according to the AIC

kAIC 2 2LL= − (9)

where k is the number of parameters and LL is the log-
likelihood evaluated at the MLE θ̂. The models with the lowest
AIC values were selected and used for profile likelihood
analysis. Profile likelihoods and likelihood-based CIs from the
parameter estimates were calculated to assess the parameter
identifiability.47,48 The profile likelihoods of each parameter
were calculated by

p DPL( ) min ln ( )i
j i

θ θ= [− | ]
θ ≠ (10)

which is the minimum of the negative log-likelihood with
respect to all parameters θj≠i while holding the parameter θi
fixed. Likelihood-based CIs of each parameter were estimated
by the regions in

p DPL( ) ln ( ) ( , df)i i
2θ θ θ χ α{ | + | ̂ < } (11)

where χ2(α,df) is the chi-squared distribution with α = 0.95
confidence level and df is the degree of freedom, which is the
number of parameters of the model.48 The final model used
(eqs 1−6) was chosen based on the AIC. Further details and
results of the model selection and parameter estimation are
available in Section 9 of the Supporting Information.
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