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Influenza A virus (IAV) is a threat to public health due to its high mutation rate and

resistance to existing drugs. In this investigation, 15 targets selected from an influenza

virus–host interaction network were successfully constructed as a multitarget virtual

screening system for new drug discovery against IAV using Naïve Bayesian, recursive

partitioning, and CDOCKER methods. The predictive accuracies of the models were

evaluated using training sets and test sets. The system was then used to predict

active constituents of Compound Yizhihao (CYZH), a Chinese medicinal compound

used to treat influenza. Twenty-eight compounds with multitarget activities were selected

for subsequent in vitro evaluation. Of the four compounds predicted to be active on

neuraminidase (NA), chlorogenic acid, and orientin showed inhibitory activity in vitro.

Linarin, sinensetin, cedar acid, isoliquiritigenin, sinigrin, luteolin, chlorogenic acid, orientin,

epigoitrin, and rupestonic acid exhibited significant effects on TNF-α expression, which is

almost consistent with predicted results. Results from a cytopathic effect (CPE) reduction

assay revealed acacetin, indirubin, tryptanthrin, quercetin, luteolin, emodin, and apigenin

had protective effects against wild-type strains of IAV. Quercetin, luteolin, and apigenin

had good efficacy against resistant IAV strains in CPE reduction assays. Finally, with the

aid of Gene Ontology biological process analysis, the potential mechanisms of CYZH

action were revealed. In conclusion, a compound-protein interaction-prediction system

was an efficient tool for the discovery of novel compounds against influenza, and the

findings from CYZH provide important information for its usage and development.

Keywords: influenza A virus, compound yizhihao, multitarget, virtual screening, in vitro evaluation, biological

process analysis

INTRODUCTION

Influenza (flu) is an acute respiratory viral infection responsible for seasonal pandemics, causing
up to millions of cases of severe illness around the globe each year. The influenza A virus (IAV)
presents the strongest infectivity among the influenza types A, B, and C (Nicholls, 2006). The IAV
is highly variable due to the constant production of unique viral strains; this occurs through genetic
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mutation, leading to evasion of the human immune system,
which causes great difficulty in studying antiviral drugs to treat
flu. There are several types of anti-flu drugs available, including
inhibitors of neuraminidase (NA), the M2 ion channel, and
RNA-dependent RNA polymerase (RdRp), however, their clinical
use is occasionally impeded by high levels of resistance in
mutated viral strains (Zu et al., 2015; Schaduangrat et al., 2016).
These targets are prone to resistance in the clinic, therefore, the
development of antiviral drugs with novel modes of action are of
high importance.

Chinese herbal formulas have been commonly used to treat
flu since ancient times and are well-developed for clinical
use. Compound Yizhihao (CYZH) is a traditional Uyghur
medicinal formula, consisting of Radix isatidis, Folium isatidis,
and Artemisia rupestris, which is recorded in the Complication
of National Standard for Traditional Chinese Medicine for
treating fever, sore throat and cold symptoms. The previous
study has demonstrated that CYZHhad broad-spectrum antiviral
effects against influenza A (H1N1, H3N2, oseltamivir resistant
H1N1, amantadine resistant H3N2) and B strains in vitro
(Yin et al., 2017). Although CYZH possesses effect against
influenza virus, its active ingredients and mechanisms have
not yet been elucidated. The compositions from traditional
Chinese medicines (TCMs) are very complicated, and the
identification of compound-protein interactions (CPIs) remains
a costly and time-consuming step for biological experiments.
Therefore, in silico prediction tools for exploring compound-
protein interactions and biochemical mechanisms need to
be developed.

Structure-based and ligand-based methods, such as
pharmacophore modeling studies, similarity searches, and
docking, are extensively used (Zhang et al., 2017). Molecular
docking is a basic structure-based method for computationally
exploring CPIs and estimating their binding energies. Lai et al.
docked the components from anti-flu TCMs to several viral
proteins to study their binding modes (Gu et al., 2013). However,
molecular docking simulations are often limited by slow
computational speeds and unavailable target crystallographic
structures. Quantitative structure-activity relationship (QSAR)
methods are of major importance for the prediction of
biological activity. Liu et al. built a QSAR classification model
using a support-vector machine (SVM) and Naïve Bayesian
(NB) model to find NA inhibitors (Lian et al., 2016). In
the supervised machine learning methods of SVM and NB,
the molecular descriptors improved the predictive power of
QSAR classification modeling and reduced the computational
complexity by removing uncorrelated descriptors. Notably,
molecular docking is still a suitable method when target inhibitor
data is insufficient to build datasets for machine learning models.

A principal step in the construction of virtual screening
(VS) models is in choosing target proteins responsible for
pathogenesis. Single-target research is encountering bottlenecks
for some complex diseases and their drugs, causing high costs and
low success rates, therefore multitarget-directed ligands are an
increasingly popular strategy to combat complex diseases such as
cancers and neurodegenerative diseases (Benek et al., 2016; Fang
et al., 2018). As the flu virus is an intracellular pathogen, the role

of host factors is critical to the functioning of flu viral proteins.
Targeting factors within the network of viral component-host
factor interactions could be a promising way to discover novel
antiviral agents (Tripathi et al., 2015; Watanabe and Kawaoka,
2015).

In this study, multiple key targets from the network of IAV–
host interactions were investigated, including viral and host
proteins. For NB, recursive partitioning (RP), and CDOCKER
methods, a multitarget vs. system for CPI against the IAV
was established. We applied it to predict potential targets from
CYZH constituents. The most promising constituents were then
validated by in vitro experiments. Lastly, combined with an
analysis of network pharmacology, the mechanism of this drug
formula was elaborated. A workflow for the integrated method is
shown in Figure 1.

MATERIALS AND METHODS

Data Collection and Preparation
Flu targets were collected from the Thomson Reuters
Integrity Database (https://integrity.clarivate.com), and the
supplementary targets of new drugs that had entered into at
least phase I clinical trials were explored using the Therapeutic
Target Database (https://db.idrblab.org/ttd/). Chemical and
pharmacological information on active ligands for the collected
targets was obtained using the Binding Database (www.
bindingdb.org). The data sets of the ligands were refined using
the following criteria: compounds were omitted if IC50 > 10µM;
duplicate structures were removed; SMARTS rules were used for
filtering molecules carrying a charge and salts that are converted
into acids or bases. Decoy compounds were generated using the
DUD-E (http://dude.docking.org/) online tool. For each target,
both active compounds and triple amounts of decoy compounds
were randomly but proportionally divided into training sets
and test sets; the ratio of training set vs. test set was 3:1. For
the targets whose ligands’ number was <50, molecular docking
was considered as the better choice for target identification. The
crystallographic structures of targets obtained from the RCSB
Protein Data Bank (http://www.rcsb.org/) were imported into
Discovery Studio 2016 (Accelrys Software, Inc., San Diego, CA,
USA) for use in the docking method. Protein preparation was
carried out based on the following criteria: missing hydrogen
atoms and missing residues were corrected, water molecules and
the complexes bound to receptor molecules were removed, and
energy values of proteins were minimized (Fang et al., 2014).

The reported constituents of CYZH (Radix isatidis, Folium
isatidis, Artemisia rupestris) were obtained from the TCMSP
database (http://lsp.nwsuaf.edu.cn/tcmsp.php), Drugbank
(https://www.drugbank.ca/), and PubChem Compound
database (https://www.ncbi.nlm.nih.gov/pccompound). After
deduplication, ingredients were sorted for further prediction.

Computational Methods and Prediction
System
The predictive modeling system integrated both ligand-based
and structure-based algorithms, including machine learning
methods that use NB and RP algorithms, and CDOCKER for the
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FIGURE 1 | Scheme for model construction, identification of potential anti-influenza ingredients, and elucidation of the mechanisms of CYZH, based on network

pharmacology approaches.

FIGURE 2 | The workflow for the construction of multi-target models against

IAV.

remaining targets without enough inhibitors in Discovery Studio.
The model building process is shown in Figure 2.

Naïve Bayesian
NB classifiers is a statistical approach used for categorization,
which is based on the frequency of the occurrence of features
(molecular fingerprints and properties) that can distinguish
differences between active and decoy compounds. It generates
posterior probability from a priori probability and data based
on the core of the function, as Equation (1) shows. A relative
predictor can process large datasets with fast learning ability, be
tolerant of random noise, and estimate the likelihood of data

samples with activity.

P(Y|X) =
P (X|Y)P(Y)

P(X)
(1)

Here, X and Y are independent events. P(X) is the marginal
probability of the given molecules that will occur in the dataset;
P(Y) is the a priori probability induced from a set of compounds
in the dataset; P(X|Y) is the conditional probability that a
particular molecule is classified as being bioactive in the dataset.

Extended connectivity fingerprints (ECFPs) are circular
topological fingerprints that have the advantage of being rapidly
calculated, and present stereochemical information and chemical
substructures. As fragments should be neither too large nor too
small, the diameter of 6, namely, an ECFP_6 fingerprint, was
selected for each fingerprint (Fang et al., 2013). Hence, ECFP_6
fingerprint and default molecular descriptors were used for small
molecular description in building NB classifier models.

Recursive Partitioning
RP is a classification method used to recursively partition a
group of compounds into smaller and smaller subsets by a set
of hierarchical rules until the active response variable becomes
homogeneous. As a result, compound groups are classified into
similar response nodes. The developed RP model is featured
by “decision tree,” which can reveal the relationship between a
dependent property (activity class) and independent properties
(molecular fingerprints and properties), so it can be used to
categorize samples into active and decoy compounds (Chen
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et al., 2011; Fang et al., 2015). ECFP_6 fingerprint and default
molecular descriptors were also used as chemical descriptors.

Performance Evaluation of Models
Five-fold cross-validation and test set validation methods were
used to evaluate NB and RP classifiers. In the 5-fold cross-
validation, the dataset was randomly partitioned into five equal-
sized splits. The model was trained on four out of the five cross-
validation splits, and the fifth subset was used to assess the
model. For both validation methods, the Matthews correlation
coefficient (MCC) and the area under the receiver operating
characteristic curve (AUC) were considered as the vital index.
The MCC can be used to represent the quality of a binary
classifier system, which varies a value between −1 and +1. A
value of +1 represents no difference between a predicted and
observed result, 0 represents a random result, and −1 represents
a definite difference between a predicted and observed result.
An ROC curve is plotted to characterize the diagnostic ability
of binary classification, while the AUC is calculated to quantify
the ability, falling in the range of 0–1 (Fang et al., 2015).
The greater the score, the better the performance, with the
perfect classification giving an AUC value of 1, an uninformative
classifier yielding 0.5, whereas 0 represents no performance.

CDOCKER
Molecular docking, based on the 3D structure of biological
proteins obtained by X-ray diffraction, nuclear magnetic
resonance data, or homology modeling, is a process that
identifies the complementary molecules for a target spatially
and electrically. The CDOCKER module is a CHARMm-based
docking algorithm (Bhuvanendran et al., 2019), offering full
ligand flexibly for high-accuracy docking results of the potential
binding mode between ligands and receptors.

To determine the reliability of docking data, co-crystallized
ligands were firstly re-docked into defined cavities with the
CDOCKER protocol. The root-mean-square deviation (RMSD)
values were then calculated between the docking and initial
conformations (Pang et al., 2018). Generally, the smaller the
RMSD value, the better the docking pose has to the ligand
binding mode.

Gene Ontology Biological Process Analysis
Clustering of Gene Ontology (GO) terms is a useful online tool
to systematically extract the biological functions shared within
a list of genes, which are rich annotations of biological process
(BP), cellular component (CC), and molecular function (MF)
terms represented by GO terms (Tiirikka et al., 2014). GO-BP
annotations are based on specific and traceable scientific evidence
and provide information about the biological pathways a gene
product’s activity contributes toward.

Viral Strains, Cell Lines, and Reagents
Influenza virus strain A/Puerto Rico/8/34 (wild-
type H1N1), A/Minfang/151/2000 (wild-type H3N2),
A/HebeiXinhua/SWL1106/2017 (oseltamivir- and amantadine-
resistant H1N1), and A/FujianXinluo/SWL2457/2014
(amantadine-resistant H1N1) were obtained from the Institute

for Viral Diseases Control and Prevention, Chinese Center for
Disease Control and Prevention. The viruses were propagated
in 9-day-old embryonated chicken eggs at 35◦C for 48 h and
aliquoted before storing at−80◦C. Their hemagglutination titers
reached 1:2048, 1:32, 1:256, and 1:64, respectively.

Madin-Darby Canine Kidney (MDCK) cells and human lung
cancer cell line (A549) cells were purchased from Cell Center,
Institute of Basic Medical Research, Chinese Academy ofMedical
Sciences. MDCK and A549 cells were cultured in Dulbecco’s
Modified Eagle medium (DMEM) and RPMI 1640 medium,
respectively, with 10% fetal bovine serum at 5%CO2, 90% relative
humidity and 37◦C.

Human TNF-α ELISA kits (Cat No.EH009) were purchased
from ExCell Bio, Shanghai, China. The NA substrate 4-
methylumbelliferyl-a-D-N-acetylneuraminic acid sodium salt
hydrate solution (MUNANA, Lot#M8639), thiazolyl blue
tetrazolium bromide (MTT, Lot#M5655), and TPCK-treated
trypsin (Lot#SLBW1439), were purchased from Sigma Aldrich.

The potential active constituents from CYZH were purchased
from Sichuan Wei Keqi Biological Technology Co., Ltd., and
Shanghai source Leaf Biological Technology Co., Ltd. Zanamivir
(Lot#1724088), ribavirin with 98% purity (Lot#020M4003), and
oseltamivir phosphate (Lot#BP903) were purchased from Sigma
Aldrich. Stock solutions of CYZH compounds, ribavirin, and
oseltamivir phosphate were dissolved in 100mM in dimethyl
sulfoxide (DMSO). These solutions were diluted to the indicated
concentration for each assay.

Neuraminidase Inhibition Assay
The neuraminidase (NA) inhibition assay (Li et al., 2015)
was carried out in 96-well plates. A/PR/8/34 (H1N1),
A/minfang/151/2000 (H3N2), A/HebeiXinhua/SWL1106/2017
(oseltamivir- and amantadine-resistant H1N1), and
A/FujianXinluo/SWL2457/2014 (amantadine-resistant H1N1)
were used as NA sources. Reaction mixtures containing 30
µL NA with either 10 µL of four serial compound sample
dilutions (sample wells), 10 µl zanamivir, or water (model
wells), were mixed by vibration for 1min. In addition, blank
wells were prepared using 40 µL water. Subsequently, 60 µL
of the fluorescent substrate MUNANA was added to give a
total of 100 µL in each reaction buffer solution. After this
step, the final concentrations of the compound in sample wells
were at 0.8, 4, 20, and 100µM. After mixing by vibration
for 1min and incubating for 60min at 37◦C, 150 µL NaOH
solution (34mM) was added to terminate the reaction. The
fluorescence was measured with an excitation wavelength at
360 nm and emission wavelength at 450 nm. Fluorescence values
were used to calculate the inhibition rate (%) by the following
Equation (2), the IC50, the concentration of inhibitor required
to produce 50% inhibition of an enzymatic reaction at a specific
substrate concentration, was calculated by percent inhibition
with corresponding inhibitor concentration. Each measurement
was performed in triplicate.

Inhibition rate (%) =
RFU model − RFU sample

RFU model − RFU blank
(2)

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4 February 2020 | Volume 10 | Article 16

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Xu et al. Compound Yizhihao Against Influenza Virus

Here, RFUmodel, RFUsample, and RFUblank represent the
fluorescence values of model wells, sample wells, and blank
wells, respectively.

TNF-α Inhibition Assay
A549 cells were seeded into a single layer on 96-well
plates. The cells were washed, then treated with compound
samples (100µM) and the H1N1 virus A/PR/8/34 (100TCID50)
simultaneously. In addition, control wells were prepared with
serum-free medium and model wells with virus. The 96-well
plates were incubated at 37◦C and 5% CO2 for 30 h, then cell
culture supernatants were collected. The levels of expressed
TNF-α were detected in cell culture supernatant samples by
enzyme-linked immunosorbent assay (ELISA) according to the
manufacturer’s protocol. Each measurement was performed
in triplicate.

Cytotoxicity Test
MDCK cells were plated in 96-well plates and incubated at
37◦C in a humidified 5% CO2 atmosphere until reaching 80–
90% confluence. After being washed, drug group cells were
treated with the 28 compounds at 100 µM and negative control
group cells were treated with mock control solutions, then
returned to the incubator for 48 h. One hundred microliters
of MTT (0.5 mg/ml) was then added to each well and cells
were incubated for 4 h. Crystallized formazan in plates was
dissolved in DMSO (100 µL/well) and absorbance was measured
at 570 nm by spectrophotometry using a microplate reader
(Molecular Devices, USA) (Ding et al., 2017). Each measurement
was performed in triplicate.

Cytopathic Effect Reduction Assay
MDCK cells were seeded on 96-well plates and grown until a
100% confluentmonolayer was formed. To evaluate drug activity,
two wild and two resistant type A virus strains were used in four
different modes as follows: (1) Drug administration after viral
infection: test samples with 6 two-fold serial dilutions (3.125,
6.25, 12.5, 25, 50, 100 µM) from the stock solutions were added
to the cells 2 h after the adsorption of flu virus (100TCID50). (2)
Viral infection after drug administration: cells were incubated
with 6 dilutions of the test drugs for 2 h, then infected with flu
virus at 100TCID50 for 2 h. (3) Pre-incubation of virus and drug:
100TCID50 of flu virus was pre-incubated with the six dilutions
of the test drugs for 2 h before being added to the cells. (4)
Simultaneous viral infection and drug administration: Cells were
treated with the six serial dilutions of the test samples and flu
virus (100TCID50) simultaneously for 2 h. In addition, control
wells were prepared with serum-free medium and model wells
were infected with virus for 2 h on each plate. After removal of the
virus solution, a maintenance solution containing TPCK-treated
trypsin that cleaves hemagglutinin (HA) was added. All plates
were incubated at 37◦C and 5% CO2 for 48 h. Cell viability was
determined by MTT assay, as described in the preceding section.
Each measurement was performed in triplicate. Absorbance
values were used to calculate the inhibition rate (%) using the

following Equation (3):

Inhibition rate (%) =
ODsample− ODmodel

ODcontrol− ODmodel
(3)

ODcontrol, ODmodel, and ODsample mean the optical density
values of control, model and sample wells, respectively. Each
determination was performed in duplicate (Li et al., 2005).

Statistical Analysis
All values are expressed as the mean ± SD from at least three
independent experiments. Statistical significance was evaluated
by one-way ANOVA. Differences are considered to be significant
at ∗p < 0.05, ∗∗p < 0.01, and ∗∗∗p < 0.001.

RESULTS

Data Collection for Targets
Flu is a multifaceted disease with many symptoms, including
coughing, runny nose, fever, headache, and pneumonia, which
are related to host respiratory, nervous, and immune systems.
Fifteen targets from the network of IAV–host interactions were
selected (Table 1). IAV contains a genome composed of 8 RNA
segments encoding the following: surface proteins HA, NA, and
M2 ion channel (M2); matrix protein 1 (M1) situated beneath
the membrane; three subunits of RdRp known as polymerase
basic protein 1 (PB1), polymerase basic protein 2 (PB2) and
polymerase acidic protein (PA); nucleocapsid protein (NP) that
coats the viral genome; non-structural protein-1 (NS1); and
nuclear export protein (NEP/NS2) (Loregian et al., 2014; Brooke,
2017).

In addition to viral factors, the host’s cellular machinery
is utilized during each step of the IAV infection cycle. Cdc2-
like kinase 1 (CLK1), which regulates alternative splicing of
the M2 gene, was found to be a vital host factor for flu in
previous research conducted by our group. Similarly, CLK4 is
another key host CLK family isoform for IAV infection (Zu
et al., 2015). Moreover, the neuroendocrine immunomodulation
(NIM) network plays a critical role in the process of immune and
infectious diseases via homeostasis and defense against outside
pathogens (Wang et al., 2016).When the host innate and adaptive
immune system are induced by an invading virus, a variety
of cellular signal pathways are triggered. Earlier findings have
indicated that NF-κB and TNF-α pathways can be activated to
regulate cytokine and chemokine expression, maintaining host
defense responses to the flu virus (Pinto et al., 2011; DeBerge
et al., 2014). A phase 2 antiviral agent, ATL101, targets glutamate
carboxypeptidase II (GCPII), which belongs to the TNF-α
signaling pathway. Glycyrrhizin is a natural product that has
entered into phase III clinical trials and acts on corticosteroid 11-
beta-dehydrogenase isozyme 1 (HSD11B1) in the IL1 signaling
pathway (Southan et al., 2016). The opioid receptor (OPR) is
a widely distributed receptor found on neurons, immune cells,
and epithelial cells of the oral and respiratory tract. Evidence
suggests that the OPR has a functional role in inflammation
and respiratory viral disease (Yan et al., 2015). The dopamine
receptor (D2R) and N-methyl-D-aspartate receptor (NMDAR)
are localized on CNS neurons and are related to neurological
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TABLE 1 | The name and classification of flu targets.

Name Abbreviation Classification Modeling method

Hemagglutinin HA Viral target CDOCKER

Nucleoprotein NP Viral target CDOCKER

Matrix protein 2 M2 Viral target CDOCKER

Neuraminidase NA Viral target NB & RP

RNA-directed RNA polymerase RdRp Viral target NB & RP

Reverse transcriptase RT Viral target NB & RP

Cdc2-like kninase 1 CLK1 Host cellular target assisting viral replication NB & RP

Cdc2-like kninase 4 CLK4 Host cellular target assisting viral replication NB & RP

Opioid receptor OPR Neuroendocrine immunomodulation-related target NB & RP

Dopamine receptor D2R Neuroendocrine immunomodulation-related target NB & RP

N-methyl-D-aspartate receptor NMDAR Neuroendocrine immunomodulation-related target NB & RP

Glutamate carboxypeptidase II GCPII Neuroendocrine immunomodulation-related target NB & RP

Corticosteroid 11-beta-dehydrogenase HSD11B1 Neuroendocrine immunomodulation-related target NB & RP

Tumor necrosis factor alpha TNF-α Neuroendocrine immunomodulation-related target NB & RP

Nuclear factor of kappa B NF-κB Neuroendocrine immunomodulation-related target NB & RP

defects caused by IAV, which have been documented on the
Thomson Reuters Integrity database.

Data Set Analysis and Model Evaluation
Chemical Space Diversity Analysis of mt-QSAR

Models
Generally, the predictive accuracy of mt-QSAR classification
models is greatly influenced by the chemical space diversity
of datasets. A classification model with a narrow chemical
space usually results in its limited application. Based on this
consideration, the statistical data was organized into training sets
and test sets for each target (Table 2). The Tanimoto similarity
index (TSI) can be used for measurements of chemical spatial
regions; the smaller the TSI value, the greater the diversity of
a dataset. Based on results, the TSI value ranges from 0.084 to
0.117, which indicates that data sets are sufficiently diverse.

Performance Evaluation of mt-QSAR Models
Five-fold cross-validations utilizing the training set were
performed to avoid overfitting of the model. Subsequently, the
generated models were used to predict respective test sets.
Validation results are provided in Table 3. The 5-fold cross-
validation results of the training set for the 24 classification
models show that MCC values range from 0.8 to 1, with an
average of 0.936, whereas the AUC values range from 0.969 to
1, with an average of 0.989, suggesting that the 24 classifiers
are of high quality. However, five-fold cross-validations cannot
completely represent the true predictive ability of the models,
therefore test set validation was further explored. Among the
24 models, 23 models gave an MCC value >0.6; MCC values
ranged from 0.327 to 1, with an average of 0.851. Twenty-three
models out of 24 give an AUC value >0.9; AUC values ranged
from 0.779 to 1, with an average of 0.970. This data indicates that
the predictive abilities of these models are sufficient for further
compound activity prediction.

Validation of CDOCKER Models
The docking models for HA, NP, and M2 were constructed
using the CDOCKER instead of the QSAR method due to
a lack of inhibitors. The X-ray crystal structures of HA, NP
and M2 were downloaded using PDB IDs for 3UBE, 4DYN,
and 6BKL, respectively. Firstly, co-crystallized ligands were
redocked into cavities using the CDOCKER algorithm. The
lowest values for CDOCKER energy (CE) for HA, NP and M2
were −31.98, −21.9, and −6.45 kcal/mol, respectively, whereas
the corresponding RMSD values were 0.73, 1.16, and 2.0 Å,
respectively, which suggests that the CDOCKER models with the
defined cavities were suitable for prediction. The non-bonded
interactions between receptors and the most stable poses of
co-crystallized ligands are shown in Figure 3.

Prediction of the Active Constituents From CYZH
To explore the interactions between CYZH ingredients and
the 15 anti-IAV targets, predictions were made for the 203
ingredients using the integrated prediction system. Based on
the mt-QSAR models, only compounds with positive results
from both NB and RP algorithms were considered to be active
on their target. The predictive results of NB and RP are
given in Supplementary Tables 2 and 3. Based on CDOCKER
models, compounds whose CE to one target was lower than
the lowest CE of co-crystallized ligands were considered to be
active on their target. Detailed information on the CDOCKER
models is given in Supplementary Table 1. The number of
predicted active compounds per target is shown in Figure 4A.
The number of active compounds for M2, NMDAR, NF-
κB, RT, GCPII, and CLK1 exceed the average of 29.8. The
number of compounds acting on different numbers of targets
is shown in Figure 4B. Finally, 28 compounds that act on
three or more targets containing one or more viral targets
were identified; the ligand-target interaction analysis is shown
in Figure 4C. Twelve targets interacted with 28 compounds, of
which, NF-κB, M2, NP, TNF-α interacted with more than 10
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TABLE 2 | The detailed statistical description of data sets for flu targets.

Target Training set Test set

Inhibitors Decoys Total TSI Inhibitors Decoys Total TSI

NA 160 484 644 0.117 54 162 216 0.116

RdRp 166 498 664 0.111 55 165 220 0.113

RT 172 516 688 0.1 57 171 228 0.105

CLK1 126 378 504 0.1 42 126 168 0.097

CLK4 88 264 352 0.112 29 87 116 0.111

OPR 425 1,275 1,700 0.089 142 426 568 0.087

D2R 176 528 704 0.092 59 177 236 0.096

NMDAR 41 123 164 0.112 13 39 52 0.103

GCPII 118 354 472 0.108 39 117 156 0.108

HSD11B1 1,900 5,700 7,600 0.096 633 1,899 2,532 0.097

TNF-α 878 2,634 3,512 0.102 293 879 1,172 0.098

NF-κB 848 2,544 3,392 0.084 282 846 1,128 0.086

TABLE 3 | The 5-fold validation and test set validation performance of 12 flu targets using NB and RP classifiers.

Target 5-fold cross validation Test set Validation

NB RP NB RP

MCC AUC MCC AUC MCC AUC MCC AUC

NA 1.000 1.000 0.967 0.981 0.977 1.000 0.965 0.917

RdRp 0.992 0.995 0.960 0.991 0.915 1.000 0.940 0.973

RT 0.992 0.996 0.800 0.969 0.891 0.993 0.327 0.779

CLK1 0.974 0.990 0.854 0.981 0.954 0.993 0.769 0.917

CLK4 0.992 0.999 0.954 0.978 1.000 1.000 0.809 0.961

OPR 0.983 0.998 0.901 0.994 0.995 1.000 0.868 0.983

D2R 0.989 0.997 0.895 0.994 0.978 1.000 0.868 0.978

NMDAR 0.984 0.999 0.884 0.994 0.648 1.000 0.648 1.000

GCPII 0.994 1.000 0.919 0.982 1.000 1.000 1.000 1.000

HSD11B1 0.983 0.994 0.911 0.992 0.973 0.998 0.868 0.974

TNF-α 0.949 0.981 0.802 0.973 0.846 0.988 0.663 0.923

NF-κB 0.940 0.989 0.834 0.981 0.835 0.990 0.685 0.917

active compounds in the vs. prediction. The numbers of active
compounds for NF-κB, M2, NP, and TNF-α were 19, 18, 13, and
11, respectively.

Experimental Validation
The 28 predicted multitarget compounds were applied to in vitro
validation studies, which verified their activity at the protein level
via activity on NA and TNF-α, and their overall antiviral efficacy
at the cellular level.

The NA Inhibition Activity of CYZH Compounds
NA is a relatively stable homotetramer present on the flu viral
surface. It has been accepted as a classic anti-flu drug target and
is involved in the release of flu viral progeny particles. Predictive
results indicated that 4 of the 28 compounds have potential
activity on NA. An NA inhibition assay was conducted for the
4 potentially active compounds; their IC50 values are shown in
Table 4. The IC50 values of chlorogenic acid and orientin against
NA ofH1N1 andH3N2were below 100µM, showing that the NA

model has a 50% hit rate and the two compounds have activities
on viral NA. However, the activity against NA—resistant strains
was not shown at this concentration.

The Effects of CYZH Compounds on TNF-α Levels

Determined by ELISA
TNF-α can exacerbate inflammation and increase morbidity
rates following flu infection, while neutralization of TNF-α can
prolong survival by reducing pulmonary infiltration and lung
injury. TNF-α expression in the cell culture supernatant of each
group was measured by ELISA. Eleven of the 28 predicted
compounds, linarin, sinensetin, cedar acid, isoliquiritigenin,
sinigrin, tryptanthrin, luteolin, chlorogenic acid, orientin,
epigoitrin, and rupestonic acid, were predicted by the vs. system
to be active on TNF-α. As shown in Figure 5, in comparison
with the model group, all compounds except tryptanthrin, were
associated with significantly less TNF-α based on ELISA results.
Among them, isoliquiritigenin and luteolin had a greater effect
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FIGURE 3 | Diagrams of the non-bonded interactions between the target protein and the co-crystallized ligands. (A,D) show the interaction between HA and o-sialic

acid. N- [4-chloranyl-5- [4- [ [3-(2-methoxyphenyl)-5-methyl-1,2-oxazol-4-yl] carbonyl] piperazin-1-yl]−2-nitro-phenyl] pyridine-2-carboxamide shows powerful

interactions with NP mainly through π-π T-shaped, π-π stacked, alkyl, and hydrogen bond interactions in (B,E). The non-bonded interactions between M2 and

rimantadine (C,F) were strong with the key amino acid residues VAL27 and SER31.

on TNF-α than positive drugs. Based on these results, the TNF-α
predictive model showed a strong predictive capability with a hit
rate of 10/11.

Activity Evaluation of Wild-Type and Resistant IAV

Strains by Cytopathic Effect Assay
In order to evaluate the overall antiviral activity of the
28 predicted active compounds, their cytotoxic effects were
examined in MDCK cells. The results show that the maximal
non-toxic concentration (TC0) values for all compounds were
>100 µM.

Cytopathic effect (CPE) reduction assays were performed
with different IAV strains, including wild-type and drug-
resistant IAV strains. The CPE assay results for the wild-type
strain A/Puerto Rico/8/34 (H1N1) and A/Minfang/151/2000
(H3N2) are summarized in Table 5. Oseltamivir and ribavirin
showed efficacy in the four modes of action tested for the
two virus strains, with IC50 < 100µM. Acacetin exhibited
stronger antiviral activity on H1N1 than oseltamivir under
the administration mode tested, therefore acacetin may have a
stronger inhibitory effect on H1N1 invasion. When H1N1 virus
was pre-incubated and treated simultaneously with the drug
compounds, the IC50 values for quercetin, luteolin, emodin, and
apigenin were lower than for oseltamivir or ribavirin, suggesting

that they had an effect on reducing H1N1 viral activity or
impairing viral adsorption.

Based on H3N2-induced CPE assay results, the IC50 values for
apigenin, indirubin and tryptanthrin were similar to oseltamivir
and ribavirin when they were administered to cells before
viral infection. This suggests they could have potential antiviral
prophylactic effects on cells. Acacetin, quercetin, and apigenin
had stronger effects than oseltamivir or ribavirin on pre-
incubation and simultaneous action modes with the H3N2
virus, possibly due to weakening of H3N2 activity or viral
adsorption. Overall, acacetin, indirubin, tryptanthrin, quercetin,
luteolin, emodin, and apigenin showed protective effects on
cells based on the CPE reduction assay with two wild-type
IAV strains.

The details of CPE reduction assay for cells
infected with mutant A/HebeiXinhua/SWL1106/2017
(Oseltamivir & amantadine-resistant H1N1) and mutant
A/FujianXinluo/SWL2457/2014 (Amantadine-resistant H1N1)
are summarized in Table 6. In the dual-oseltamivir and
amantadine-resistant H1N1 CPE assay, the IC50 value of
ribavirin was 29.8–57.9µM, while oseltamivir had no effect
on results in the modes tested. The IC50 values for quercetin,
luteolin, and apigenin were <100µM in all modes except for
drug administration after viral infection; quercetin and luteolin
showed stronger efficacy than ribavirin. Results suggest that these
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FIGURE 4 | (A) Number of compounds corresponding to each target. (B) Proportion of compounds acting on different numbers of targets. (C) The network of 28

multitarget-directed ligands in CYZH and targets based on the prediction system against IAV. Blue circles represent drug nodes and red circles represent protein

nodes.

TABLE 4 | The evaluation of the activity of constituents from CYZH based on an NA inhibition test (µM).

Compound A/PR/8/34 (H1N1) A/Minfang/15/90

(H3N2)

A/HebeiXinhua/

SWL1106/2017

A/FujianXinluo/

SWL2457/2014

Chlorogenic

acid

64.61 ± 6.97 57.15 ± 2.98 N/A N/A

Orientin 53.71 ± 9.98 72.54 ± 2.97 N/A N/A

Epigoitrin N/A N/A N/A N/A

Rupestonic

acid

N/A N/A N/A N/A

Zanamivir 0.0000176 ± 0.000013 0.000075 ± 0.000005 0.0000196 ± 0.0000074 0.0000913 ± 0.0000214

Data are expressed as mean ± SD (n = 3);

N/A: IC50 > 100 µM.

four compounds could prevent or reduce viral activity, or impair
the adsorption of oseltamivir and amantadine-resistant H1N1
on cells. Oseltamivir and ribavirin showed inhibitory activities in

CPE reduction assay results when tested on amantadine-resistant
strains. Compared with oseltamivir, the inhibitory efficacies of
quercetin, luteolin, and apigenin were strong when they were
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FIGURE 5 | Effect of CYZH compounds on TNF-α expression in virus-infected

A549 cells. Data are expressed as mean±SD (n = 3). *P < 0.05, **P < 0.01,

***P < 0.001 vs. Model group.

administered after amantadine-resistant virus inoculation. In
contrast to ribavirin, the activities of quercetin and apigenin were
stronger in the prophylactic mode of viral infection after drug
pre-administration. In general, quercetin, luteolin, and apigenin
demonstrated inhibitory efficacy in the CPE reduction assay with
resistant strain infection.

Gene Ontology Biological Process Analysis
Gene Ontology biological process (GO-BP) analysis was
performed on the 28 multi-target compounds from CYZH to
explore their possible mechanisms of action. The constructed
compound-target-BP network is shown in Figure 6. Targets
were involved in viral replication, and also in the immune
response, inflammation, apoptosis and in neuroprotection, which
are collectively termed NIM-related processes. Such processes
include the MAPK cascade, the NF-κB signaling pathway, the
TNF-mediated signaling pathway, the IFN-mediated signaling
pathway, regulation of IL6, IL8, IFNγ, and chemokine secretion,
regulation of host autophagy and ISG15 activity, the ionotropic
glutamate receptor signaling pathway, regulation of pain, and
fever generation. The results indicate that CYZH components
act on multiple targets, whose action can directly affect IAV
replication, and regulate immune and neuroprotective effects on
the body.

DISCUSSION

Pandemics caused by IAV strains remain a serious threat to
public health. Novel treatments are urgently required due to the
high mutation rate of IAV and current drug-resistant strains.
CYZH is an anti-flu medication, but information about its
inhibitory mechanisms is not known. To uncover new agents
against IAV, the 203 constituents of CYZH were collected
and predicted using an in silico multi-target predictive system
against IAV, which was constructed using a combination of NA,

RP and CDOCKER methods. Twenty-eight compounds were
acquired with activities predicted for three or more targets.
Among them, rupestonic acid is the main active ingredient
in Artemisia rupestris L. Previous studies had confirmed that
it exhibited anti-influenza activity in obvious (Yong et al.,
2013) or moderate (Obul et al., 2019) way. And Epigoitrin,
a marker compound of Radix isatidis, was reported to exert
antiviral activity against influenza virus FM1 by inhibiting virus
attachment and proliferation in vitro (Xiao et al., 2016). These
compounds are predicted to be against IAV by the vs. model
constructed in this study.

To confirm the specific-target and multitarget profiles of the
28 compounds and the reliability of the vs. model, biological
experiments were performed on single targets (NA and TNF-
α) and their effects were assessed comprehensively at a cellular
level. Based on NA inhibition assay results, chlorogenic acid and
orientin had inhibitory activities against NA of wild influenza
virus (IC50 < 100µM). Chlorogenic acid and orientin were
among the four chemicals predicted as potential NA inhibitors.
However, they have less inhibitory activity against NA of
resistant viruses than wild strains. Linarin, sinensetin, cedar acid,
isoliquiritigenin, sinigrin, luteolin, chlorogenic acid, orientin,
epigoitrin, and rupestonic acid exhibited significant effects on
TNF-α expression; this was almost consistent with the predicted
result. The study first discovered that rupestonic acid can
target TNF-α, suggesting that it may regulate the expression
of cytokines and chemokines by activating the TNF-α pathway
to maintain the host’s defense response to flu virus. We learn
from these two experiments that chlorogenic acid and orientin
are likely to be dual-targeted ligands against IAV at the very
least. In the cellular experiment, acacetin, indirubin, tryptanthrin,
quercetin, luteolin, emodin, and apigenin showed efficacies (IC50

< 100µM) against the wild-type H1N1 strain and H3N2 strain.
Quercetin, luteolin, and apigenin demonstrated protective effects
(IC50 < 100µM) for cells infected with the resistant IAV strains
in CPE reduction assay. The two NA inhibitors, chlorogenic
acid and orientin, showed no inhibition of virus-induced CPE
in the concentration range of 100µM. We suspected that their
efficacies were not strong enough in NA inhibition assay so
that they may be effective in CPE at concentrations above
100µM. Results from GO-BP analysis of CYZH targets suggest
that CYZH ingredients are involved in the pathways for viral
replication, immune responses, inflammation, apoptosis, and
neuroprotective processes.

In recent years, the study of multitarget-directed ligands
has increased in popularity for the systemic discovery of
novel drugs. Polypharmacology has emerged as a frontier
cross-discipline, whereby effective drugs exert their therapeutic
effect by modulating six targets on average (Anighoro et al.,
2014). Compared to single-target drugs, agents targeted toward
multiple proteins have greater efficacies and could circumvent
drug resistance arising from single-target mutations or rare
simultaneous mutations of several targets in different positions.
Multitarget-directed studies could help toward finding multi-
targeted drugs and may provide new indications or mechanisms
of action for known drugs (Watanabe and Kawaoka, 2015). In
our study, 15 targets, including viral proteins and host cellular

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10 February 2020 | Volume 10 | Article 16

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Xu et al. Compound Yizhihao Against Influenza Virus

TABLE 5 | The activity evaluation of constituents from CYZH in wild strains-induced CPE reduction assay (µM).

A/PR/8/34 (H1N1) A/Minfang/151/2000 (H3N2)

Compound

name

Drug

administration

after virus

inoculation

Virus inoculation

after drug

administration

Pre-incubation

of virus and

drug

Simultaneous

action of virus

and drug

Drug

administration

after

virus inoculation

Virus inoculation

after drug

administration

Pre-incubation

of virus

and drug

Simultaneous

action of virus

and drug

Acacetin 62 ± 5.91 N/A 77.44 ± 25.7 N/A N/A 72.54 ± 11.74 12.46 ± 5.46 20.46 ± 0.86

Indirubin N/A N/A N/A N/A N/A 52.58 ± 27.42 N/A N/A

Tryptanthrin N/A N/A 72.01 ± 23.57 N/A N/A 76.33 ± 3.4 17.74 ± 1.74 31.83 ± 11.56

Quercetin N/A N/A 8.59 ± 1.34 5.41 ± 0.14 N/A N/A 9.99 ± 2.84 18.33 ± 3.52

Luteolin N/A N/A 4.53 ± 0.92 7.08 ± 0.3 N/A N/A 44.69 ± 19.99 N/A

Emodin N/A N/A 55.85 ± 9.8 6.53 ± 0.29 N/A N/A 18.24 ± 1.02 55.86 ± 6

Apigenin N/A N/A 16.69 ± 1.77 9.06 ± 0.41 N/A N/A 9.28 ± 2.03 15.84 ± 1

Oseltamivir 83.44 ± 15.6 11.41 ± 7.44 74.89 ± 20.7 4.45 ± 0.24 77.94 ± 22.1 54.45 ± 14.24 6.25 ± 2.6 8.47 ± 1.73

Ribavirin 16.1 ± 1.47 47.51 ± 7.94 10.4 ± 2.19 16.35 ± 2.95 22.51 ± 6.16 62.45 ± 16.24 9.18 ± 0.99 21.65 ± 0.97

Data are expressed as mean ± SD (n = 3);

N/A: IC50 > 100 µM.

TABLE 6 | The activity evaluation of constituents from CYZH in resistant strains-induced CPE reduction assay (µM).

A/HebeiXinhua/SWL1106/2017 A/FujianXinluo/SWL2457/2014

Compound

name

Drug

administration

after

virus inoculation

Virus inoculation

after drug

administration

Pre-incubation

of virus and

drug

Simultaneous

action of virus

and drug

Drug

administration

after

virus inoculation

Virus inoculation

after drug

administration

Pre-incubation

of virus

and drug

Simultaneous

action of virus

and drug

Quercetin N/A 19.1 ± 1.95 6.93 ± 4.6 14.59 ± 1.8 20.73 ± 14.71 86.1 ± 13.83 7.73 ± 3.04 37.05 ± 18.16

Luteolin N/A 47.17 ± 7.14 15.22 ± 4.46 20.13 ± 10.56 31.86 ± 1.99 N/A 1.14 ± 1.02 24.95 ± 9.62

Apigenin N/A 38.99 ± 3.82 31.63 ± 10.26 35.38 ± 3.98 28.12 ± 2.37 36.52 ± 5.79 32.11 ± 4.13 40.46 ± 4

Oseltamivir N/A N/A N/A N/A 86.87 ± 7.8 N/A 25.37 ± 8.32 25.5 ± 8.36

Ribavirin 57.9 ± 10.54 39.87 ± 9.71 29.8 ± 6.4 36.2 ± 13.7 25.94 ± 14.6 86.7 ± 9.8 24.64 ± 3.1 26.2 ± 2.4

Data are expressed as mean ± SD (n = 3);

N/A: IC50 > 100 µM.

proteins involved in the host respiratory system, nervous system
and immune system, with functions in protecting the host against
pathogens, blocking viral replication directly, and altering the
biological network from a disordered state to a normal state, were
taken for research.

Traditional Chinese medicines exert their therapeutic efficacy
by targeting multiple proteins of the human body. Network
pharmacology is an effective tool for establishing a “prescription
- chemical composition - protein/gene - pathway - disease”
network, which can be used to discover active ingredients or
markers, and reveal the principles of drug combinations with
the aid of computational processes (Zhang et al., 2019). In
our study, to improve the reliability of multi-target prediction
models, two machine learning algorithms, NB and RP, were
used to build prediction models to predict CPIs for 12
targets. For the remaining three key targets without enough
inhibitors/activators, molecular docking was used to explore
their CPIs. This integrated prediction system is powerful for
predicting the probability of interactions between a panel of c
and targets.

Some limitations exist in the present study. Several
novel-structure compounds with predicted activities were
unobtainable, therefore their activities could not be verified. We
believe that these will be acquired and verified in the future.
In addition, to make the current model more powerful, active
compounds should be continuously supplemented into training
sets from online databases, literature, and experiments.

By combining a multi-target vs. method, pathway analysis,
and experimental validation, it was revealed that the activity of
CYZH against IAV infection occurs through compound groups
interacting with multiple targets by blocking viral replication,
and modulating host immune responses, inflammation,
neuroprotection, autophagy, and apoptosis. Experimental
results verified that chlorogenic acid and orientin in CYZH
simultaneously targeted NA and TNF-α, which represent
direct and indirect suppression of IAV. Compared to viral
protein-targeted drugs, CYZH has advantages in limiting viral
replication, regulating the body’s steady state through immune
system activation, and reducing host nerve discomfort or
damage caused by flu by acting on neuroprotective targets.
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FIGURE 6 | The network of compound-target-biological process analysis for CYZH.

This study provides a theoretical basis for the development
and clinical application of CYZH, and information for the
discovery of anti-flu multitarget drugs. It was firstly reported that
seven compounds were active in cellular experiments; of these,
quercetin, luteolin, and apigenin demonstrated anti-resistant
IAV activity. As promising broad-spectrum candidates, these
compounds could be further studied for their in vivo efficacy,
mechanisms, and structural transformations. Moreover, the
high hit rates for compounds active toward NA, TNF-α, and
IAV-induced cytopathic effects demonstrate that the constructed
computational model has strong promise for screening active
candidates within anti-flu TCMs in a highly efficient and
cost-saving manner.

CONCLUSION

In summary, NA, RP, and CDOCKER algorithms were used to
construct a predictive system based on a series of flu-related viral
and host targets that are involved in assisting viral replication
and NIM-related processes. The application of the predictive

system to the traditional Chinese medicine CYZH uncovered
its active constituents and polypharmacological features. An
experimental approach was used to validate predicted results, and
several constituents were active on both wild-type and resistant
IAVs. Combined with GO-BP analysis, the network action
mechanism of CYZHwas partially revealed. This study will lay an
experimental foundation for the development of broad-spectrum
antiviral drugs, and provide an efficient multi-target predictive
tool for the discovery of new drugs against influenza.
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