
Machine learning classification can reduce false
positives in structure-based virtual screening
Yusuf O. Adeshinaa,b, Eric J. Deedsb,c, and John Karanicolasa,1

aProgram in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA 19111; bCenter for Computational Biology, University of Kansas, Lawrence,
KS 66045; and cDepartment of Molecular Biosciences, University of Kansas, Lawrence, KS 66045

Edited by Susan Marqusee, University of California, Berkeley, CA, and approved June 23, 2020 (received for review January 10, 2020)

With the recent explosion in the size of libraries available for
screening, virtual screening is positioned to assume amore prominent
role in early drug discovery’s search for active chemical matter. In
typical virtual screens, however, only about 12% of the top-scoring
compounds actually show activity when tested in biochemical assays.
We argue that most scoring functions used for this task have been
developed with insufficient thoughtfulness into the datasets on
which they are trained and tested, leading to overly simplistic models
and/or overtraining. These problems are compounded in the litera-
ture because studies reporting new scoring methods have not vali-
dated their models prospectively within the same study. Here, we
report a strategy for building a training dataset (D-COID) that aims to
generate highly compelling decoy complexes that are individually
matched to available active complexes. Using this dataset, we train
a general-purpose classifier for virtual screening (vScreenML) that is
built on the XGBoost framework. In retrospective benchmarks, our
classifier shows outstanding performance relative to other scoring
functions. In a prospective context, nearly all candidate inhibitors
from a screen against acetylcholinesterase show detectable activity;
beyond this, 10 of 23 compounds have IC50 better than 50 μM. With-
out any medicinal chemistry optimization, the most potent hit has
IC50 280 nM, corresponding to Ki of 173 nM. These results support
using the D-COID strategy for training classifiers in other computa-
tional biology tasks, and for vScreenML in virtual screening cam-
paigns against other protein targets. Both D-COID and vScreenML
are freely distributed to facilitate such efforts.

virtual screening | machine learning classifier | structure-based drug
design | protein–ligand complex

Advances in biomedical sciences, driven especially by the
advent of next-generation genome sequencing technologies,

have enabled discovery of many new potential drug targets (1, 2).
Ultimately, however, validating a new candidate target for thera-
peutic intervention requires development of a chemical probe to
explore the consequences of pharmacological manipulation of this
target (3). In recent years, this step has typically been carried out
by using high-throughput screening (HTS) (4) as a starting point
for subsequent medicinal chemistry optimization; with improve-
ments in automation, it has become feasible to screen libraries
that exceed a million compounds (5).
More recently, however, sets of robust chemical transformations

from available building blocks have been used to enumerate huge
libraries of compounds that are readily accessible but never before
synthesized (6–9). These libraries can comprise billions of com-
pounds, and thus remain far beyond the scale accessible to even
the most ambitious HTS campaign. This expansion of chemical
space in which to search, along with the high cost of setting up and
implementing an HTS screen, has increasingly driven the use of
complementary computational approaches.
In broad terms, virtual screening approaches can be categorized

into two classes: ligand-based screens and structure-based screens
(10–12). Ligand-based screening starts from the (two-dimensional
[2D] or three-dimensional [3D]) structure of one or more already-
known ligands, and then searches a chemical library for examples
that are similar (in either a 2D or a 3D sense). In contrast,

structure-based screening does not require a priori knowledge of
any ligands that bind to the target protein: Instead, it involves se-
quentially docking each member of the chemical library against the
3D structure of the target protein (receptor) and using a scoring
function to evaluate the “quality” of each modeled protein–ligand
complex. The scoring function is intuitively meant to serve as a
proxy for the expected strength of a given protein–ligand complex
(i.e., its binding affinity) (13), and is typically built upon either a
physics-based force field (13–17), an empirical function (18–22), or
a set of knowledge-based terms (23–28).
After docking, the scoring function is used to select the most

promising compounds for experimental characterization; at this
stage, the accuracy of the scoring function is of paramount im-
portance and represents the primary determinant of success or
failure in structure-based screening (29). A snapshot of the field
was captured by a review summarizing successful outcomes from
54 virtual screening campaigns against diverse protein targets
(12); for the most part, all groups screened the same 3 to 4
million compounds from ZINC (8, 30). Excluding G protein-
coupled receptors (GPCRs) and artificial cavities designed into
protein cores, the median values across the set reveal that an
expert in the field—using their own preferred methods of choice,
which can include various postdocking filters and human visual
inspection (“expert hit-picking”)—can expect about 12% of their
predicted compounds to show activity. That said, the hit rate can
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also be higher in cases where the composition of the screening
library is restricted to compounds containing a functional group
with natural affinity for the target site (certain well-explored
enzyme active sites). Conversely, the hit rate is typically lower
when the scoring function is applied without additional filters or
human intervention (12). The median value of the most potent
hit from each of the collected campaigns had Kd or Ki value of ∼3
μM, although this latter result is strongly impacted by the fact
that some of these Kd or Ki values are from custom compounds
subsequently optimized via medicinal chemistry, rather than
from the initial screening hit.
Despite extensive efforts, the reasons for which active com-

pounds are only identified at a relatively low rate are not quite
clear. In addition to factors not evident from the structure of the
modeled complex (compound solubility, incorrectly modeled
protonation/tautomerization states of the ligand, etc.), we and
others have hypothesized that the current bounds of perfor-
mance may be attributable to limitations in traditional scoring
functions (31, 32): These may include inadequate parametriza-
tion of individual energy terms, exclusion of potentially impor-
tant terms, and also failure to consider potential nonlinear
interactions between terms. For these reasons, machine learning
techniques may be especially well suited for developing scoring
functions that will provide a dramatic improvement in the ability
to identify active compounds without human expert intervention.
However, while machine learning may offer the potential to
improve on the high false-positive rate of current scoring func-
tion, further analysis has revealed that many methods to date
reporting promising results in artificial benchmark experiments
may have inadvertently overfit models to the training data (33):
This can be a subtle effect of information leakage, occurring
when the validation/testing data are not truly nonredundant from
the training data. Other studies have shown that apparently
impressive performance from deep learning methods can result
from detecting systematic differences in the chemical properties
of active versus decoy compounds (34). Either of these artifacts in-
flates expectations based on benchmark performance, but ultimately
leads to nontransferrable and disappointing outcomes when the
methods are tested in subsequent prospective evaluations (35–38).
Here, we report the development of a dataset aimed to promote

training of a machine learning model designed to be maximally
useful in real-world (prospective) virtual screening applications. To
build this dataset, we compile a set of “compelling” decoy com-
plexes: a set that mimics representative compounds that might
otherwise move forward to experimental testing if generated in the
course of a typical virtual screening pipeline. We then use this
dataset to train a machine learning classifier to distinguish active
complexes from these compelling decoys, with the rationale that
this is precisely the step at which standard scoring functions must
be augmented. Finally, we apply this model in a prospective ex-
periment, by screening against a typical enzyme target (acetylcho-
linesterase [AChE]) and testing the top-scoring compounds in a
biochemical (wet laboratory) assay for inhibition of protein activity.

Results
Developing a Challenging Training Set. Machine learning methods
at varying levels of sophistication have long been considered in the
context of structure-based virtual screening (29, 31, 32, 39–54).
The vast majority of such studies sought to train a regression
model that would recapitulate the binding affinities of known
complexes, and thus provide a natural and intuitive replacement
for traditional scoring functions (29, 31, 32, 39–47, 50, 51, 53). The
downside of such a strategy, however, is that the resulting models
are not ever exposed to any inactive complexes in the course of
training: This is especially important in the context of docked
complexes arising from virtual screening, where most compounds
in the library are presumably inactive. We instead anticipated that
a binary classifier would prove more appropriate for distinguishing

active versus inactive compounds, and that training would prove
most effective if decoy complexes closely reflected types of com-
plexes that would be encountered during real applications.
Building first our set of active complexes, we drew examples

from available crystal structures in the Protein Data Bank
(PDB). Others have used collections of active compounds for
which the structure of the complex is not known, and docked
these to obtain a considerably larger set of active complexes (41,
49). The downside of this approach, however, is that misdocked
examples (which may be numerous) are labeled as active during
training; this is problematic because misdocked models do not
have appropriate interactions with the protein target that would
lead to engagement, and thus should be marked as inactive by the
classifier. While restricting examples of active complexes to those
available in the PDB drastically limits the number available for
training, this strategy ensures that the resulting model will evaluate
complexes on the basis of the protein–ligand interactions provided.
Our primary consideration in compiling active compounds for

the training set was that the scope of examples should match as
closely as possible those anticipated to be encountered when the
model is deployed. Training the model on an overly restrictive
set of examples would limit its utility (since many cases will be
“out of distribution”), whereas training too broadly might limit
the resulting model’s performance. Accordingly, we sought to
train the model on precisely the type of scenarios that match its
intended application. We therefore further filtered the set of
active compounds from the PDB to include only ligands that
adhere to the same physicochemical properties required for in-
clusion in our compound library for real screening applications
(Methods). This led to a collection of 1,383 active complexes,
which were then subjected to energy minimization: This pre-
vented us from inadvertently training a model that simply dis-
tinguished between crystal structures and models produced by
virtual screening.
Turning next to the set of decoy complexes, our primary

consideration in compiling the training set was that the decoy
complexes should be as “compelling” as possible. If the decoy
complexes can be distinguished from the active complexes in
some trivial way—if they frequently have steric clashes, for ex-
ample, or they are systematically underpacked, or they do not
contain intermolecular hydrogen bonds—then the classifier can
simply use these obvious differences to readily distinguish active
versus inactive compounds. In addition to making compelling
decoys, the proportion of decoys-to-actives also has a significant
effect on the performance of machine learning trained model (55).
In order to achieve a nearly balanced training set, we aimed to
include only small number of (very challenging) decoy complexes.
For each active complex, we first used the DUD-E server (56)

to identify 50 compounds with physicochemical properties matched
to the active compound but completely unrelated chemical struc-
ture: This provided a set of compounds compatible in very broad
terms for the corresponding protein’s active site, and also ensured
that the decoy compounds would not have systematic differences
from the active compounds. We then built low-energy conforma-
tions of each candidate decoy compound, and screened these
against the 3D structure of the active compound using ROCS (57).
From among the 50 candidates, we selected those that best matched
the overall shape and charge distribution of the active ligand. Using
the structural alignment of the decoy compound onto the active
compound, we placed the decoy into the protein’s active site and
carried out the same energy minimization that was applied to the
active complexes (Fig. 1A).
We note that the protocol used here to build the decoy com-

plexes doubles as an entirely reasonable approach for ligand-based
(pharmacophoric) virtual screening: Indeed, ROCS is typically
applied to identify compounds with matched 3D properties to a
given template, with the expectation that the hits will themselves be
active (58–60). Thus, the unique strategy motivating construction
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of our training set is in essence a form of adversarial machine
learning: We intentionally seek to build decoys that we anticipate
would be misclassified by most models. We named this dataset
D-COID (dataset of congruent inhibitors and decoys) and have
made it publicly available for others to use freely (Methods).
To confirm that this decoy-generation strategy indeed led to a

challenging classification problem, we applied some of the top
reported scoring functions in the literature to distinguish between
active and decoy complexes in the D-COID set. For all eight
methods tested [nnscore (32), RF-Score v1 (31), RF-Score v2 (40),
RF-Score v3 (29), PLEClinear (42), PLECnn (42), PLECrf (42),
and RF-Score-VS (41)], we found that the distribution of scores
assigned to active complexes was strongly overlapping with those
of the decoy complexes (Fig. 1B), indicating that these models
showed very little discriminatory power when applied to this set.
Typical scoring functions report a continuous value, because

they intend to capture the strength of the protein–ligand inter-
action. In order to use the scoring function for classification, one
must define a threshold value at which complexes are predicted
to be either active or inactive. To avoid overestimating perfor-
mance by selecting the threshold with knowledge of the test set,

we carried out 10-fold cross-validation to determine appropriate
threshold. In particular, we used 90% of the dataset to define the
threshold that maximized the Matthews correlation coefficient
(MCC), and then applied this threshold to assign each complex in
the unseen 10% as active/inactive. Using this unbiased thresh-
olding measure to assign each complex in the D-COID set, we
found MCC for the best-performing scoring function in this ex-
periment to be only 0.39.

A Classifier for Identifying Active Complexes: vScreenML. Having
developed a relevant and challenging training set, we next sought
to develop a machine learning model that could discriminate
between active and decoy complexes in this set. It has been
pointed out in the past that machine learning models built ex-
clusively upon protein–ligand element–element distance counts
can yield apparently impressive performance in certain bench-
marks without proving useful beyond these (37). To avoid this
pitfall, we used as our starting point the Rosetta energy function
(61): a classical linear combination of traditional (physics-based)
molecular mechanics energy terms, alongside empirical terms added
so that distributions of atomic arrangements would quantitatively
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Fig. 1. Developing a challenging training set (D-COID). (A) Active complexes were assembled from the PDB by filtering for ligands that match those reflected
in a screening library. For each active complex, 50 physicochemically matched compounds were selected and overlaid onto the active compounds; the three
most similar compounds on the basis of overall shape and electrostatic similarity were aligned into the protein active site, and used as decoy complexes. This
strategy mimics the selection of candidate (active) compounds in a realistic pharmacophore-based screening pipeline, and thus generates highly compelling
decoy complexes for training/testing. (B) Modern scoring functions cannot distinguish active complexes from decoys in this set. Overlaid histograms are
presented for scores obtained using various scoring functions when applied to active complexes (blue) and decoy complexes (red) in D-COID. For all eight
methods tested, the distribution of scores assigned to active complexes strongly overlaps with the distribution of scores assigned to decoy complexes. From
each model’s continuous scores, 10-fold cross-validation was used to obtain the classification cutoff that maximizes Matthews correlation coefficient (MCC) on
each subset of the data, and these cutoffs were used in calculating precision/recall/MCC. Performance measures are presented as the average of 100
bootstrapped models, and uncertainty is presented as 95% confidence intervals.
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mimic those observed in the PDB (62). While we acknowledge
that the Rosetta energy function is not commonly used for virtual
screening, this is primarily because it is too slow to be applied for
docking large compound libraries: In one recent benchmark for
classification of active versus decoy complexes (63), the Rosetta
energy function showed equivalent performance as the popular
FRED Chemgauss4 scoring function (64).
At the outset, we found that applying Rosetta to the D-COID

set did not yield results notably different from in our previous
experiment (Fig. 2A), and indeed this was confirmed quantita-
tively through the MCC (0.40). Next, we used 10-fold cross-
validation to reweight the terms in this scoring function for im-
proved performance in this D-COID classification task using a
perceptron (65, 66) to maintain the linear functional form of the
Rosetta energy function: This resulted in a modest improvement
in the apparent separation of scores (Fig. 2B), but a notable
improvement in MCC (0.53). This observation is unsurprising,
because the Rosetta energy function is primarily optimized for
proteins rather than protein–ligand complexes, and retraining its
component energies for a specific task will naturally lead to im-
proved performance for that task. For precisely this reason, his-
torically a separate linearly reweighted version of the default
Rosetta energy function has been used when modeling protein–
ligand complexes (67) or when reranking complexes from virtual
screening (63).

Next, we explored the performance of models that move be-
yond linear combinations of these energy terms, and instead use
these component energies as the basis for building decision trees.
Using the XGBoost framework (an implementation of gradient-
boosted decision trees), we observed notable separation of the
scores assigned to active/decoy complexes (Fig. 2C), along with a
slight increase in MCC (0.57). Importantly, here and in the ex-
tensions below, the model is evaluated using a held-out subset of
the data that was not included in training.
To complement the existing terms in the Rosetta energy

function, we next added a series of structural quality assessments
calculated by Rosetta that are not included in the energy func-
tion (SI Appendix, Fig. S1); inclusion of these terms yielded a
model with further improved discriminatory power (Fig. 2D).
Inspired by this improvement, we then incorporated additional
structural features aiming to capture more sophisticated chem-
istry than that encoded in Rosetta’s simple energy function,
specifically from RF-Score (31) (features that count the occur-
rence of specific pairwise intermolecular contacts), from BINANA
(68) (analysis of intermolecular contacts), from ChemAxon
(ligand-specific molecular descriptors), and from Szybki (a term
intended to capture ligand conformational entropy lost upon
binding). We proceeded to train a model using this collection of
features, which we denote “vScreenML,” and were pleased to
discover that these again increased the separation between scores
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Fig. 2. Development of vScreenML. Overlaid histograms are presented for scores obtained when scoring active complexes (blue) and decoy complexes (red)
from D-COID. Scoring functions used were: (A) default Rosetta energy function, (B) linearly reweighted Rosetta energy terms, (C) Rosetta energy terms
combined via XGBoost, (D) Rosetta energy terms plus structural assessments, (E) Rosetta terms plus additional diverse descriptors (nonoptimized vScreenML),
and (F) vScreenML after hyperparameter tuning. Over the course of this sequence, the overlap between the active and decoy complexes is progressively
reduced and MCC systematically increases. For the first two panels, 10-fold cross-validation was used to obtain the classification cutoff that maximizes
Matthews correlation coefficient (MCC) on each subset of the data, and these cutoffs were used in calculating precision/recall/MCC. Because the remaining
panels each report results from classification models, their thresholds are fixed at 0.5. Performance measures are presented as the average of 100 trained
models, each of which derived from 10-fold cross-validation (Methods). Uncertainty is presented as 95% confidence intervals. In all cases, performance
measures were calculated for a subset of the data that was held out from the training step.
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assigned to active and decoy complexes (Fig. 2E). Finally, we used
hyperparameter tuning to optimize development of the model (SI
Appendix, Tables S1 and S2), and accordingly developed a model
that provided nearly complete separation of active and decoy
complexes (Fig. 2F) and unprecedented MCC for this challenging
task (0.74). We have made this model publicly available for others
to use freely (Methods).
Through the course of developing of this model, we transitioned

from a linear combination of six Rosetta features with clear physical
basis, to a collection of 68 diverse and likely nonorthogonal features
connected through a more complex underlying model (SI Appendix,
Fig. S1). Using the complete set of features that comprise vScreenML,
we tested alternate machine learning frameworks, leading us to
discover that a different implementation of gradient-boosted de-
cision trees yielded essentially identical performance, and other
models built upon decision trees were only slightly worse. By
contrast, other models that are not built on decision trees did not
provide comparable performance (SI Appendix, Table S3). Im-
portantly, we note that this model has been trained to distinguish
actives from decoy complexes in a context where both have been
subjected to energy minimization using the Rosetta energy func-
tion: The same optimized model is not necessarily expected to
recognize actives successfully if they have not been prepared this
way (e.g., crystal structures).
To evaluate the contributions of each part of our feature set,

we next removed one at a time all features from a given origin,
and explored how the lack of these features would affect per-
formance (SI Appendix, Table S4). This experiment showed that
only a very small deterioration in performance was observed
when either the RF-Score or BINANA features were removed,
but removing both had a larger impact; this is unsurprising, given
the fact that many of the features in these sets are correlated.
Interestingly, removing the Rosetta features had comparable
impact as together removing both the RF-Score and the BINANA
features, implying that the Rosetta features provide nonoverlap-
ping information relative to these counting-based features. Finally,
we find that removal of SZYBKI’s conformational entropy term
had no impact on the model’s performance, suggesting either that
the change in ligand conformational entropy as described by
SZYBKI does not help distinguish active versus decoy complexes
in this dataset, or that this effect is already captured through some
combination of other features. In principle, features that are un-
necessary (either because they are correlated with other features
or because they do not help in classification) should be removed to
better avoid the risk of overtraining. Because XGBoost is not
particularly susceptible to overtraining and our feature set remains
relatively small in comparison to our training set, however, in this
case we elected instead to simply test our model immediately in
orthogonal benchmarks to evaluate potential overtraining.

Benchmarking vScreenML Using Independent Test Sets. The DEKOIS
project (currently at version 2.0) (69, 70) is intended to provide a
“demanding” evaluation set for testing virtual screening meth-
ods. Acknowledging that a wide variety of factors make some
protein targets easier to model than others, this set includes 81
different proteins with available crystal structures. For each pro-
tein, a custom library is provided that contains 40 active com-
pounds and 1,200 decoys: Thus, about 3.2% of each library is
active. The crystal structures of active complexes are not provided
(and indeed, most have not yet been experimentally determined).
To evaluate performance of a new scoring function, one typically
ranks all 1,240 compounds for a given protein and selects the top-
scoring 12; the enrichment factor for this subset of the library (EF-
1%) corresponds to the ratio of the percent of active compounds
among the selected 12 to the ratio of active compounds in the
original library. Scoring perfectly for a given protein in this set
would mean ranking 12 active compounds before all 1,200 of the
decoys: This would correspond to EF-1% = 1.00/0.032 = 31.

Conversely, a method that randomly selects compounds from the
library would (on average) select active compounds 3.2% of the
time, and thus yield an EF-1% of 1.
Among the 81 proteins in the DEKOIS set, we noted that

some were included in our training set as well. To avoid any
potential information leakage that might overestimate the per-
formance we could expect in future applications (33), we com-
pletely removed these test cases. This left a set of 23 protein
targets, each of which vScreenML had never seen before. For
each protein, we docked each compound in the corresponding
library to the active site (Methods); we note that this unavoidable
step could artificially deflate the apparent performance of
vScreenML or other models tested, since a misdocked active
compound should have no basis for being identified as active.
Some of the compounds in the DEKOIS set could not be suitably
modeled in all parts of our pipeline, and were therefore removed
(this arose primarily due to atom types for which Rosetta lacks
parameters, such as boron); each of the 23 proteins considered
ultimately was used to generate 30 to 40 active complexes and
800 to 1,200 decoy complexes. Each of these complexes (both
actives and decoys) were then subjected to energy minimization
using the Rosetta: As noted earlier, vScreenML should only be
applied in the context of Rosetta-minimized structures. Along
with vScreenML, eight other machine learning scoring functions
were then used to rank the docked-and-minimized models: nnscore
(32), PLECnn (42), PLECrf (42), PLEClinear (42), RF-Score v1
(31), RF-Score v2 (40), RF-Score v3 (29), and RF-Score-VS (41).
We additionally included the (default) Rosetta energy function in
this benchmark (61). vScreenML was used exactly as trained on the
D-COID set, with no adjustments for this DEKOIS benchmark.
While vScreenML was not trained on precisely the same protein

as any of the 23 included in this benchmark, some of these had
close homologs in the training set. Among these 23 test cases, the
median sequence identity for the closest homolog in the training
set was 42%; however, performance of vScreenML was not better
in the cases for which a closer homolog was present in the training
set (SI Appendix, Table S5), implying that this similarly had not
inadvertently allowed vScreenML to recognize certain complexes
based on similarity of their binding sites.
To compare performance between methods, we plot EF-1%

using one method (for each of the 23 protein targets) as a function
of EF-1% using the other method (Fig. 3A). As plotted here,
points below the diagonal are specific protein targets for which
vScreenML outperformed the alternate method (higher EF-1%
for this protein target). The importance of training on both actives
and decoys for this task is immediately apparent in these com-
parisons, by comparing for example vScreenML against PLECnn
(a neural network representing the current state-of-the-art among
models trained exclusively on active complexes). For the 23 targets
in this experiment, PLECnn out-performs vScreenML in 3 cases
(points above the diagonal), whereas vScreenML proves superior
in 12 cases (the other 8 cases were ties).
To evaluate in a statistically rigorous way which method was

superior, we applied the (nonparametric) Wilcoxon signed-rank
test: This paired difference test uses the rank values in the data,
and thus it takes into account not just which method has higher
EF-1%, but also the magnitude of the difference (63). We used a
two-tailed test, in order to assume no a priori expectation about
what method would outperform the other. At a threshold of P <
0.05, this analysis shows that vScreenML outperformed eight of
the nine alternate scoring functions to a statistically significant
degree. Only RF-Score-VS was not outperformed by vScreenML
at a statistically significant threshold; however, we note that about
half of the 23 targets in this benchmark were included in training
RF-Score-VS (black points in this figure), which may have pro-
vided it with a slight advantage relative to vScreenML (since the
latter had not seen any of these targets before).
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To test these methods on a second independent virtual
screening benchmark, we drew from our own prior studies of
inhibitors of protein–protein interactions (63). In the course of
evaluating existing scoring functions, we had several years ago
assembled a set of small molecules that engage protein interaction
sites; 10 of these protein targets had not been included in training
vScreenML. For each of these, we had previously compiled 2,000
decoys with dissimilar chemical structure matched to the active

compound’s lipophilicity. The decoy compounds were already
docked and energy minimized from our studies, making this “PPI
set” a natural testbed for the newer methods that were not
available at the time this benchmark was developed (63). In
contrast to the DEKOIS benchmark, the structures of the active
complexes are drawn from (energy-minimized) crystal structures,
removing a potential source of variability (since misdocked active
compounds should not be labeled “correct” by a scoring function).
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Fig. 3. Comparing vScreenML to other
scoring functions using two independent
virtual screening benchmarks. Each bench-
mark is composed of multiple protein tar-
gets, corresponding to points on these
plots. (A) DEKOIS benchmark, composed of
23 protein targets. For each target (indi-
vidual dots), 30 to 40 active complexes and
800 to 1,200 decoy complexes are provided.
For a given target, each scoring is used to
rank the set of complexes. For a given
scoring function, the number of active
complexes in the top 1% of all complexes is
used to calculate the enrichment of actives
relative to randomly selecting complexes;
thus, higher numbers indicate better per-
formance.When comparing vScreenML against
another method, a point below the diagonal
indicates superior performance by vScreenML
for this particular target. Targets seen by
rfscore_VS during training of this method
are marked with black triangles. (B) PPI
benchmark, composed of 10 protein targets.
For each target, a single active complex is
hidden among 2,000 decoy complexes. In-
stead of using enrichment, the rank of the
active compound (relative to the decoys) is
calculated: thus, lower numbers indicate
better performance. When comparing vScreenML
against another method, a point above the
diagonal indicates superior performance by
vScreenML for this particular target. P values
in both cases were computed using the two-
tailed Wilcoxon signed-rank test.
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Here again, vScreenML was used exactly as trained on the D-COID
set, with no adjustments for this particular benchmark.
Because each protein target is only associated with a single

active compound in this test set, we cannot meaningfully calculate
enrichment factor; instead, after scoring each of the complexes, we
simply report the rank of the active compound. As there are 2,001
complexes for each protein target, a method that performs as ran-
dom would be expected to rank the active compound at position

1001, on average. After applying each of the same scoring func-
tions used in our DEKOIS experiment, we find that for 5 of the 10
protein targets vScreenML ranks the active compound among the
top 100 (i.e., top 5% of the compounds for a given target)
(Fig. 3B). The other scoring functions tested each ranked the
active compound in the top 100 for at most one target, except for
RF-Score-VS, which met this criterion twice. Once again applying
the Wilcoxon signed-rank test to these rankings, we once again
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Fig. 4. Prospective evaluation of vScreenML in a virtual screen against human acetylcholinesterase (AChE). (A) Of the 23 compounds prioritized by vScreenML
for testing, at 50 μM nearly all of these inhibit AChE. Data are presented as mean ± SEM; n = 3. (B) Chemical structures of the most potent hit compounds. (C)
Dose–response curve for the most potent hit compound, AC6. Data are presented as mean ± SEM; n = 3. (D) Model of AC6 (orange sticks) in the active site of
the AChE (light gray). (E) Predicted activity of AC6 from three target identification tools: None of these identifies AChE as a potential target of this com-
pound, suggesting that this is a new scaffold for AChE inhibition. (F) Similarity searching against all compounds in ChEMBL designated as AChE inhibitors
(either by fingerprint similarity of by shared substructure) finds no hits with discernible similarity, confirming that this is a new scaffold for AChE inhibition.
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conclude that vScreenML outperforms at a statistically signifi-
cance degree all of these alternate scoring functions except for
RF-Score-VS.
To determine whether vScreenML’s impressive performance

derived from its training on the D-COID set or from the broad
collection of features it includes, we used D-COID to train a
model using the features from RF-Score v1; our retrained model
preserves the same random forest framework and hyperparameters
from the original model (31). As noted earlier (Fig. 1B), RF-Score
v1 initially yields very little discriminative power when applied to the
D-COID set; after retraining on this set, we find much improved
separation of the scores assigned to active versus decoy complexes
(SI Appendix, Fig. S2 A and B), although not close to the perfor-
mance of vScreenML (Fig. 2F). This retrained variant of RF-Score
v1 also outperforms the original RF-Score v1 on both the DEKOIS
and the PPI benchmarks, albeit not to a level of statistical signifi-
cance, and for the PPI benchmark it even ranks two actives in the
top 100 for their corresponding protein targets (SI Appendix, Fig.
S2 C and D). That said, the level of improvement is insufficient for
the retrained RF-Score v1 to outperform vScreenML in either
benchmark (SI Appendix, Fig. S2 E and F), consistent with their
relative performance on D-COID set. Overall, these observations
show that training using the D-COID approach can certainly im-
prove performance of existing scoring functions for other unrelated
tasks; however, it also suggests that some part of vScreenML’s
power derives from the broad and diverse set of features that it uses.

Evaluating vScreenML in a Prospective Experiment.As noted earlier,
it is absolutely essential to test new scoring functions in prospec-
tive experiments: This can readily determine whether performance
in a given benchmark experiment is likely to extend into real
future applications, and rule out any possibility that inadvertent
information leakage allowed an overfit model to “cheat” in
benchmark experiments. We selected as our representative target
human AChE because of its biomedical relevance and the avail-
ability of a straightforward functional assay (using commercially
available enzyme and substrate).
To ensure that our search for new candidate AChE inhibitors

would not be limited by the chemical space present in a small
screening library, we turned to a newly available virtual library of
“readily accessible” but never-before-synthesized compounds
(9). At the time of our screen, this library was comprised of 732
million chemical entities that conform to historic criteria for
drug-likeness (71, 72). Because building conformers and docking
each entry in this library would be extremely computationally
demanding, we instead took a two-step approach to finding
candidate inhibitors. First, we explicitly docked a chemically di-
verse set of 15 million representatives from the library, and ap-
plied energy minimization to the top 20,000 models from the
crude docking step. We ranked each of these using vScreenML
and identified the top 100 candidates. For each of these 100
initial candidates, we returned to the complete compound library
and identified 209 analogs on the basis of chemical similarity:
After merging these with the parent compounds from each
search, this led to a new focused library of 20,213 unique com-
pounds. We structurally aligned each of these compounds back
onto the parent docked model that led to their selection, remi-
nimized, and then used vScreenML to rank these second-stage
candidates. We collected into a single list the 20 top-scoring
compounds from the first round together with the 20 top-
scoring compounds from the second round, noting that 4 com-
pounds were included on both lists. We eliminated compounds
that were extremely close analogs of one another, and sought to
purchase the remainder. Based on a standard filter (73), none of
these structures was predicted to be PAINS (pan-assay inter-
ference) compounds. Ultimately 23 compounds were successfully
synthesized, as selected by vScreenML without any human in-
tervention (SI Appendix, Table S6). While some compounds use

a shared scaffold, overall there are multiple diverse chemotypes
represented in this collection (SI Appendix, Fig. S3). Interest-
ingly, none of these compounds would have been prioritized by
the other scoring functions evaluated in the context of our study
(SI Appendix, Table S7). Looking back at the complexes present
in D-COID, we also found that the closest ligand to each of these
compounds was bound to a protein completely unrelated to
AChE (SI Appendix, Table S8); thus, vScreenML had not simply
recognized specific binding sites in the training set that resem-
bled that of AChE.
We initially tested these 23 compounds at a concentration of

50 μM for inhibition of AChE, using a colorimetric enzyme assay
(Fig. 4A). To our amazement, we found that nearly all of the 23
compounds selected by vScreenML showed detectable enzyme
inhibition: All except AC12 and AC7 showed a statistically sig-
nificant difference in AChE activity relative to dimethyl sulfoxide
(DMSO) alone (P < 0.05, one-tailed t test). Of these 23 com-
pounds, 10 of them provided more than 50% inhibition, indicating
that these compounds’ IC50 was better than 50 μM. Moreover, the
most potent of these used a variety of diverse chemical scaffolds,
although the most potent pair (AC6 and AC3) do share an ex-
tensive common substructure (Fig. 4B). We then evaluated the
activity of the most potent inhibitor, AC6: In the absence of any
medicinal chemistry optimization, we found this compound to
have an IC50 of 280 nM, corresponding to a Ki value of 173 nM
(Fig. 4C). Thus, applying vScreenML led to a much higher hit rate
than observed in typical screening campaigns, and also yielded a
much more potent starting point than is typically observed.
Unsurprisingly, the underlying model of the complex that was

used by vScreenML to identify this compound shows extensive
and nearly optimal protein–ligand interactions (Fig. 4D). In
principle, it should be the quality of these interactions that
guided vScreenML to prioritize this compound for experimental
validation. To rule out the possibility that vScreenML had in-
stead somehow “recognized” AC6 as an AChE inhibitor from its
training, we asked whether chemoinformatic approaches could
have been used to find AC6.
We first provided the chemical structure of AC6 to three different

“reverse screening” methods: Similarity Ensemble Approach (SEA)
(74), SwissTargetPrediction (75, 76), and PharmMapper (77, 78).
Each of these tools look for similarity of the query compound
against all compounds with known bioactivity, and then they rely
on the fact that similar compounds have similar bioactivity to
predict the likely target(s) of the query compound. SEA and
SwissTargetPrediction carry out this search on the basis of 2D
similarity (i.e., similar chemical structures), whereas Pharm-
Mapper evaluates 3D similarity (i.e., shared pharmacophores).
We took for each method the top five predicted activities for
AC6, but found that none of these methods included AChE
among their predictions (Fig. 4E); the same also held true of
predicted activities for the other compounds tested (SI Appendix,
Table S9). All of these methods do include AChE among their
list of potential targets, however, as confirmed by ensuring that
this prediction emerges when these servers are provided with the
structure of previously described AChE inhibitor donepezil (SI
Appendix, Fig. S4).
To directly determine the AChE inhibitor described to date

that is most similar to AC6, we compiled from ChEMBL all 2,742
compounds reported to have this activity. We then screened this
collection to determine their similarity to AC6, as defined by either
chemical fingerprints or by shared substructure, and found that the
5 most similar compounds as gauged by either approach bear no
obvious similarity to AC6 (Fig. 4F). Analogous analysis revealed no
similar chemical scaffolds for the other AC compounds either (SI
Appendix, Table S10). Collectively then, these experiments confirm
that AC6 and the other AC-series compound are indeed novel
chemical scaffolds with respect to their inhibition of AChE and
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could not possibly have been identified by vScreenML through
inadvertent leakage during the model’s training.

Discussion
At the outset of this work, we noted that typical virtual screening
studies report hit rates of about 12%, with the most potent
reported compound having Kd or Ki value of ∼3 μM (with the
caveat that some of these relied on additional optimization be-
yond the initial screen) (12). Obviously, the results of our screen
against AChE using vScreenML far surpass these mileposts; in
light of this, it important to carefully consider the potential
contributions to vScreenML’s performance in this experiment.
First, we reemphasize the dissimilarity between AC6 and any

known AChE inhibitor: This makes it exceedingly unlikely that
vScreenML found AC6 simply on the basis of having been trained
on some close analog.
Second, we carried out a nonstandard two-step screening

strategy to efficiently explore the complete Enamine collection,
hoping to essentially carry out an internal round of medicinal
chemistry optimization before testing any compounds explicitly.
Tracking the provenance of our most potent compounds, how-
ever, we discovered that all four of our most potent compounds
had already been identified in the first of the two screening steps
(SI Appendix, Table S11). A previous virtual screen of the En-
amine library (9) explicitly docked all compounds from the li-
brary, at a time that the library comprised “only” 138 million
compounds, and found through retrospective analysis that pick-
ing a single representative compounds from a cluster of analogs
would typically not yield sufficient docking score for the cluster
to be advanced for further exploration. In essence, both our results
and the observations from this previous screen suggest that the SAR
landscape may not be sufficiently smooth to allow potentially
promising scaffolds to be identified from a single arbitrary repre-
sentative: Rather, finding the best hits (on the basis of docking
scores) does unfortunately require explicitly screening each member
of the library individually. In this context, then, it is unlikely that the
observed performance of vScreenML can be attributed to having
used a two-step strategy for screening the Enamine library.
In this vein, we also note that our screening strategy was allowed

to explore an unusually large chemical space comprising 732 million
synthetically accessible compounds. However, 7 of our top 10
compounds (those with IC50 values better than 50 μM) had already
been identified in the first screening step (SI Appendix, Table S11),
owing to the ineffectiveness of identifying useful scaffolds from a
single representative compound. The bulk of the success in this
screen was essentially achieved by screening a library of 15 million
diverse compounds, which is by no means unprecedented and has
not led to such dramatic success in the past.
Importantly, we cannot rule out the prospect that the per-

formance we observe here is a result of AChE being an unex-
pectedly easy target. It is certainly the case that virtual screening
hit rates against GPCRs are often much higher those obtained
for other target classes (12). Indeed, careful examination of the
literature showed that some of the studies reporting virtual
screens against AChE (79–83) do indeed find considerably
higher hit rates and more potent compounds than the median
values we quote across all target classes. In light of these other
results, then, a degree of caution must be exercised before ex-
trapolating the performance of vScreenML in this prospective
AChE benchmark to other target classes; further evaluation will
be needed to explicitly determine whether vScreenML affords
similarly outstanding results in future screening experiments.
At the same time, however, results of retrospective benchmarks

comparing vScreenML to other scoring functions are unambigu-
ous. As described, vScreenML dramatically outperforms eight
other modern machine learning scoring functions on both the
DEKOIS and the PPI benchmark sets. Both benchmarks were
carried out with careful vigilance to ensure that information from

training could not contaminate the test data. In the past, we
strongly suspect inadvertent overtraining of this type has limited
the utility of other models and at the same time provided artifi-
cially inflated performance on initial (retrospective) benchmarks.
Indeed, a recurrent disappointment from many past machine
learning scoring functions has been their inability to translate
performance from retrospective benchmarks into equivalent re-
sults in future prospective applications (38). For example, 3 y after
publication of nnscore (32), this program was used in a screen
against farnesyl diphosphate synthase, and only provided one hit
with IC50 of 109 μM (from 10 compounds tested) (84). Where
possible, then, we strongly urge incorporation of careful prospective
evaluations alongside retrospective benchmarks, as a safeguard
against potentially misleading performance from the latter. Already
such prospective experiments have been included in other recent
studies (39, 85), strongly supporting transferability of the underlying
methods. The ability to readily compare vScreenML against other
machine learning scoring functions was also greatly facilitated by the
Open Drug Discovery Toolkit (ODDT) (86), which provides
implementations of multiple methods. Direct head-to-head evalu-
ations of this manner are indeed critical to explore the relative
strengths of different approaches, ideally across diverse types of
benchmarks.
While vScreenML does incorporate a broad and distinct set of

features, these have been largely collected from other approaches:
There is nothing particularly unique or special about the features
it includes. There are also numerous potential contributions to
protein–ligand interactions that are not captured in this collection
of features, ranging from inclusion of tightly bound interfacial
waters (16, 87, 88) to explicit polarizability and quantum effects
(89, 90). In this vein, ongoing research in ligand-based screening
has led to new approaches that learn optimal molecular descrip-
tors (and thus the representation that directly leads to the features
themselves) at the same time as the model itself is trained (91, 92):
These might similarly be used as a means to improve the de-
scriptors used in structure-based screening as well. Thus, there is
likely to be considerable future improvement to vScreenML that is
possible, by further optimization of the features that it captures.
Rather than the specific features incorporated in this first

incarnation of vScreenML, we believe that the impressive per-
formance we observed in our retrospective benchmarks is instead
primarily attributable to the strategy used in training the model.
Whereas scoring functions have historically focused on recapit-
ulating binding affinities of complexes, vScreenML is unique in
having been trained to distinguish active complexes from ex-
tremely challenging decoys in the D-COID set. Indeed, the
overarching hypothesis of our study was that building truly
compelling decoys to better represent the (inactive) compounds
selected from actual virtual screens, we would lead to a model
capable of distinguishing precisely these cases. The performance
of vScreenML in both the retrospective and prospective bench-
mark strongly supports this hypothesis.
Thus, the D-COID set represents an important resource for

driving development of improved scoring functions beyond
vScreenML, and accordingly we have made this dataset freely
available for this purpose (Methods).

Methods
Accessing These Tools. The D-COID dataset is available at https://data.
mendeley.com/datasets/8czn4rxz68/ (93). vScreenML is available at https://
github.com/karanicolaslab/vScreenML. The use of vScreenML requires that
features be calculated precisely the same way that the model was trained,
and it should be applied only to Rosetta-minimized complexes (given that
these were used for training the model).

Software Versions. Rosetta calculations were carried out using the developer
trunk source code, git revision 0831787c75bba750254e86f55acf8b6fe314a7b9.
The following versions of other software were used in this study: OMEGA
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(v2.5.1.4), ROCS (v3.2.1.4), FRED (v3.2.0.2), SZYBKI (v1.9.0.3), ODDT (oddt_cli
0.7), RFSCORE-VS (v1.0), and CHEMAXON Marvin (v1.5.6).

Building the D-COID Set. The overarching goal of our study was to train a
model for real virtual screening applications. We therefore included in
D-COID only active complexes that included representative drug-like ligands,
and excluded chemical matter that did not reflect the composition of the
screening libraries we prefer to use.

We downloaded from the PDB (94) all protein–ligand complexes (56,195
entries as of May 2018), and then restricted this set to crystal structures with
resolution better than 2.5 Å (43,148 complexes). We then drew from Ligand
Expo (95) to define a set of 2,937 specific ligands found in the PDB that we
deemed ineligible for our study: These include nucleotide-like molecules
(e.g., ATP), cofactors (e.g., NAD), metal-containing ligands (e.g., heme),
crystallographic additives (e.g., PEG), and covalent ligands. Our rationale
was that the interactions in these types of complexes may not be repre-
sentative of those found in the types we wanted to identify using our
model, because complexes involving drug-like compounds with proteins may
be fundamentally different from each of these examples (e.g., because the
protein is extensively evolved to fit the ligand, or because the metal domi-
nates the energetics of the interaction, or because the ligand interacts only
weakly with the protein). Instead, our goal was to train a model using a
more restricted set of complexes in which the interactions best represent
those expected in successful docked models from virtual screening. We fil-
tered to remove any complexes in which the only ligand was ineligible based
on the criteria above. Our set included several structures that included a
separate (eligible) ligand in addition to one of these ineligible ligands; we
retained these eligible ligands for consideration, if they were at least 12 Å
away from the ineligible ligand. Filtering out ineligible ligands in this
manner reduced our set to 26,271 complexes.

To focus training on precisely the type of chemical matter used in our
virtual screens, we then applied to this collection the same stringent filter we
usewhen building our screening libraries: molecularweight between 300 and
400 Da and clogP 1 to 4. This filter drastically cut down the size of our col-
lection (to 2,075 complexes). Finally, complexes with double occupancy or
ambiguous density were manually excluded, leaving a high-quality collection
of 1,383 active complexes.

For each of these active complexes, we extracted the ligand and used the
Database of Useful Decoys Enhanced (DUD-E) (56) server to generate
50 property-matched decoys: compounds with similar physicochemical prop-
erties but dissimilar chemical topology. For each of these decoy compounds,
we used OpenEye’s OMEGA (96) to generate 300 low-energy conformers, and
then used ROCS (57) to align each of these to the structure of the active
conformer from the PDB. The three decoys that best matched the 3D shape
and pharmacophoric features of the active conformer were identified on the
basis of their Tanimoto-Combo score; this led to a total of 4,149 decoy com-
pounds. By virtue of having aligned the conformers of the decoys to the active
conformation to evaluate their similarity, already the alignment was available
for placing the decoy compound in the corresponding protein’s active site. We
later discovered that 39 of these decoy compounds included chemical features
that could not be processed by the programs we used to extract structural
features for vScreenML; these decoys were removed, leading to a total of
4,110 decoy complexes.

Finally, to present both the active and decoy complexes in a context
mimicking that of a virtual screening output, we subjected all complexes to
standard energy minimization in Rosetta (61).

Extracting Structural Features. For each of the minimized active and decoy
complexes, structural features were extracted first using the Rosetta
(“REF15”) energy function (61). Ligand properties were calculated using
ChemAxon’s cxcalc, and the ligand’s conformational entropy was estimated
using OpenEye’s SZYBKI tool. The open source implementations of RF-Score
(31) and BINANA (68) were used to calculate structural features from these
two programs. The complete list of vScreenML’s features is presented in SI
Appendix, Fig. S1.

Machine Learning. We considered a total of eight classification algorithms in
this study, using the Python implementations of each: Gradient Boosting (GB)
(97), Extreme Gradient Boosting (XGB) (98), Random Forest (RF) (99), Ex-
tremely Randomized Trees (ET) (100), Gaussian Naïve Bayes (GNB) (101),
k-Nearest Neighbor (kNN) (101), Linear Discriminant Analysis (LDA) (101),
and Quadratic Discriminant Analysis (QDA) (101).

To retrain RF-Score v1 under D-COID, we used a standard random forest
model with hyperparameters n_estimators = 500 and max_features = 5
[drawing these values from the original study describing RF-Score v1 (31)].

For XGBoost hyperparameter optimization, we carried out a grid search to
find the set of parameters that gave the best accuracy upon 10-fold cross-
validation. Optimization was carried out by iteratively retraining the model
using a fixed partition of the data, and at each step evaluating performance
using a separate held-out validation set. This led to a single set of param-
eters (SI Appendix, Table S2) that were used when evaluating performance.

To evaluate performance of various models, in each case we used 10-fold
cross-validation; the dataset was split into 10 subsets in a stratified manner
to ensure that the overall ratio of actives to decoys was preserved in each
split. This process was repeated 10 times with different seeds, to yield a total
of 100 distinct trained models, with a corresponding held-out test set for
each model (hyperparameters were held at the same fixed values for all
models). We then calculated accuracy, precision, recall, area under the ROC
curve (AUC), and MCC for each test set using its corresponding model, and
then evaluated the mean and 95% confidence intervals for each parameter
over these 100 instances.

In all cases, performance metrics are reported only for a held-out subset of
the data, and never for the same data on which the model was trained.

Virtual Screening Benchmarks. Comparisons between scoring functions was
enabled by the Open Drug Discovery Toolkit (ODDT) (86), which provides
implementations of nnscore (version 2), RF-Score v1, RF-Score v2, RF-Score
v3, PLEClinear, PLECnn, and PLECrf at https://github.com/oddt/oddt. The
implementation of RF-Score-VS was obtained from https://github.com/oddt/
rfscorevs.

In both the DEKOIS and the PPI benchmark experiments, we carefully
sought to minimize any potential information leakage from vScreenML’s
training (on D-COID) and the targets present in these benchmark sets. Ex-
cluding a specific complex present in both sets is insufficient, because the
structure of a close chemical analog bound to the same target protein could
still provide an unfair advantage. For this reason, we excluded from these
benchmarks sets any protein targets present in D-COID (on the basis of
shared Uniprot IDs). This reduced the number of DEKOIS targets from 81 to
23, and the number of PPI targets from 18 to 10.

For the DEKOIS set, we docked both the actives and the decoys to their
respective target protein using OpenEye’s FRED (64), and then applied energy
minimization in Rosetta. For the PPI set, active complexes were minimized
starting from their crystal structures; decoy complexes were generated by
docking with FRED, then energy minimized.

Statistical analysis was carried out using the (two-tailed) Wilcoxon signed-
rank test as implemented in Python. Comparisons were applied directly to
the EF-1% values for the DEKOIS experiment, and to the log10 of the ranks in
the PPI experiment.

Virtual Screen Against Acetylcholinesterase. We began by downloading from
the chemical vendor Enamine the “diverse set” of 15 million compounds
representative of their REAL database (732 million compounds). For each
compound, we used OMEGA (96) to generate 300 low-energy conformers,
and used FRED (64) to dock these against the crystal structure of human
AChE solved in complex with potent inhibitor donepezil (PDB ID 4ey7) (102).
We carried forward the top 20,000 complexes (on the basis of FRED score)
for Rosetta minimization, and used each of these minimized models as input
for vScreenML.

For each of the top 100 complexes (as ranked by vScreenML), we extracted
the ligand and used this to query the Enamine database for analogs. Each
query returned 210 analogs; because 787 of these were redundant, this led to
a new collection of 20,213 unique compounds for the second stage of
screening. Each of the compounds in this new library was used to build 300
conformers, and ROCS was used to select the conformer that allowed for
optimal alignment onto the ligand in the complex from the first round of
screening. The resulting models were energyminimized in Rosetta, then used
as input for vScreenML.

Models from both the first and second rounds of screening were collected
together, and the top-ranked models from vScreenML were identified, and
the top-scoring 32 compounds were requested for synthesis. Of the requested
compounds, 23 were successfully synthesized and delivered for testing.

AChE Inhibition Assay. Compounds were tested for inhibition of human AChE
using a colorimetric assay (103). Acetylthiocholine is provided as substrate,
which is hydrolyzed by AChE to thiocholine; the free sulfhydryl then reacts
with Ellman’s reagent [5,5′-dithiobis-(2-nitrobenzoic acid) (DTNB)] to yield a
yellow product that we detected spectrophotometrically at 410 nm. AChE,
acetylthiocholine, and DTNB were acquired together as the Amplite colori-
metric assay kit (AAT Bioquest). Assays were carried out in 0.1 M sodium
phosphate buffer (pH 7.4), 1% DMSO, with 0.01% Triton. Assays were carried
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out in 96-well plates in reaction volumes of 100 μL, and absorbance was
monitored for 30 min. The rate of product formation was determined by
taking the slope of the absorbance as a function of time, and normalized to
that of DMSO alone to yield percent inhibition for each well.

IC50 values were obtained from dose–response curves spanning inhibitor
concentrations from 10 nM to 50 μM. To determine Ki, we first determined
the Km value for substrate acetylthiocholine under our assay conditions. This
allowed the Cheng–Prusoff equation (104) to be used for obtaining Ki from
IC50, assuming classic competitive inhibition.

Novelty of AC-Series Compounds as AChE Inhibitors. For each of the target
identificationmethods [SEA (74), SwissTargetPrediction (75, 76), and PharmMapper
(77, 78)], we used the corresponding web servers to generate predictions.

To find the most similar known AChE ligands, we searched ChEMBL (105)
for AChE and downloaded all 2,742 hits in SDF format. We then used
ChemAxon’s Standardizer tool to remove counterions from compounds
in salt form. Using RDKit, we generated Morgan fingerprints with radius of

2 for each of the ChEMBL ligands, then evaluated the Dice similarity of these
fingerprints relative to each AC-series compound. We also used RDKit
to evaluate the maximum common substructure between AC6 and
each of the ChEMBL ligands, setting ringMatchesRingOnly = True and
completeRingsOnly = True. We ranked the resulting matches based on
the number of atoms and bonds in the common substructure.
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