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Abstract

Summary: With the advancements of high-throughput single-cell RNA-sequencing protocols, there

has been a rapid increase in the tools available to perform an array of analyses on the gene expres-

sion data that results from such studies. For example, there exist methods for pseudo-time series

analysis, differential cell usage, cell-type detection RNA-velocity in single cells, etc. Most analysis

pipelines validate their results using known marker genes (which are not widely available for all

types of analysis) and by using simulated data from gene-count-level simulators. Typically, the im-

pact of using different read-alignment or unique molecular identifier (UMI) deduplication methods

has not been widely explored. Assessments based on simulation tend to start at the level of assum-

ing a simulated count matrix, ignoring the effect that different approaches for resolving UMI counts

from the raw read data may produce. Here, we present minnow, a comprehensive sequence-level

droplet-based single-cell RNA-sequencing (dscRNA-seq) experiment simulation framework.

Minnow accounts for important sequence-level characteristics of experimental scRNA-seq datasets

and models effects such as polymerase chain reaction amplification, cellular barcodes (CB) and

UMI selection and sequence fragmentation and sequencing. It also closely matches the gene-level

ambiguity characteristics that are observed in real scRNA-seq experiments. Using minnow, we ex-

plore the performance of some common processing pipelines to produce gene-by-cell count matri-

ces from droplet-bases scRNA-seq data, demonstrate the effect that realistic levels of gene-level se-

quence ambiguity can have on accurate quantification and show a typical use-case of minnow in

assessing the output generated by different quantification pipelines on the simulated experiment.

Contact: rob.patro@cs.stonybrook.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Over the past few years, advancement in massively parallel sequenc-

ing technologies has enabled analysis of genomes and transcriptomes

at unprecedented accuracy and scale by dramatically reducing the

cost of sequencing and assaying more properties of cells. These new

technologies are rapidly evolving, and new assays are constantly

being introduced. One of the most exciting and popular recent

developments has been the creation of experimental protocols for

assaying gene expression in thousands of individual cells

(Hashimshony et al., 2012), allowing scientists to capture a snap-

shot of the dynamic and complex biological systems at work.

Individual cells are fundamental units of biological structures

and functions, and understanding the dynamics of gene expression

patterns is essential for understanding cell types, cell states and line-

ages. Single-cell gene expression studies have proven useful for

unveiling rare cell types (Grün et al., 2015), abnormal cell states in

the development of disease (Trapnell, 2015) and transcriptional

stochasticity (Buganim et al., 2012), by giving unprecedented

insights into the dynamics of gene expression. Specifically, the accur-

acy, sensitivity and throughput of droplet-based single-cell RNA-

sequencing (dscRNA-seq) (Klein et al., 2015; Macosko et al., 2015;

Zheng et al., 2017) has been particularly useful to scientists for

understanding cellular dynamics through pseudo-time inference

(Qiu et al., 2017), estimation of splicing dynamics [i.e. RNA-

velocity (La Manno et al., 2018)], population balance analysis

(Klein et al., 2015), spatial reconstruction to identify marker gene

(Kiselev et al., 2017; Satija et al., 2015) and numerous other

analyses.

Most computational dscRNA-seq analyses pipelines work in

multiple phases, the first of which is the generation of a gene-by-cell

count matrix from raw sequencing data. This process includes iden-

tifying and correcting cellular barcodes (CBs) (to determine properly

captured cells), mapping and alignment of the sequencing reads to

the reference genome or transcriptome, and the resolution of unique
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molecular identifiers (UMIs) to determine the number of distinct

pre-polymerase chain reaction (PCR) molecules sequenced from

each gene within each cell. Subsequent downstream analysis of the

count matrix is then used for a variety of different purposes, such as

lineage estimation, clustering and cell-type identification, identifying

marker genes, estimating splicing rates, etc. Traditionally, gene-

count matrices have been used as a fundamental unit of measure-

ment for these analyses, and most research has been focused on

developing new tools and improving methods for higher-level analy-

ses [e.g. >90% of the tools described by Zappia et al. (2018) deal

with post-quantification analyses]. Implicitly, these methods assume

reliable and accurate input from the quantification phase.

Considerable research has been conducted into developing genera-

tive models of the gene-count matrices for a single-cell experiment, and

producing synthetic count data with known true phenotypes or labels.

Many models have been proposed to capture various characteristics of

single-cell experiments; e.g. modeling zero inflation (Pierson and Yau,

2015; Risso et al., 2017), characterizing heterogeneity (Finak et al.,

2015) and inferring dropout rates (Wei and Jingyi, 2018). Building

upon this modeling work, a number of different simulation tools for

single-cell RNA-seq data have been introduced. Count-level simulation

tools such as Splatter (Zappia et al., 2017) and powersimR (Vieth et al.,

2017) use these generative models to directly simulate the gene-by-cell

count matrices, and these simulators have been useful in developing and

evaluating new methods for analyzing scRNA-seq data. However, that

work has focused on simulating the gene-by-cell count matrices, rather

than the raw sequencing reads that, when processed, give rise to this

matrix. As such, these tools implicitly assume that the problem of esti-

mating gene counts accurately from the raw sequencing data is relative-

ly well-addressed. However, no principled tool is currently available for

simulating the raw cell barcoded and UMI-tagged read sequences for

validating and assessing the initial processing phases of dscRNA-seq

analysis. In contrast, numerous tools and methods have been proposed

(Frazee et al., 2015; Griebel et al., 2012; Li and Dewey, 2011) for read-

level simulation of bulk-RNA-seq experiments. Although no simulation

tool can perfectly recapitulate all of the characteristics and complexities

of experimental data, these tools have been crucial in helping to drive

the development of ever-more-accurate approaches for gene and

transcript-level quantification from bulk-RNA-seq data.

In this paper, we present minnow, a comprehensive framework to

generate read-level simulated data for dscRNA-seq experiments.

Minnow accounts for many important aspects of tagged-end single-cell

experiments, and models these effects at the sequence level. It models

the process of UMI and CB tagging, molecular PCR amplification

(including PCR errors and deviations from perfect efficiency), molecu-

lar fragmentation and sequencing. Minnow can generate synthetic

sequencing reads that mimic other important aspects of experimental

data, such as realistic degrees of gene-ambiguous sequencing fragments.

Using the minnow simulation framework, we demonstrate how various

dscRNA-seq quantification pipelines perform in generating gene-by-

cell count matrices when validated on synthetic data with known

ground truth. We describe and analyze the effect of modeling import-

ant characteristics of real experimental dscRNA-seq data, and show

how sequence-level ambiguities like those present in real experimental

dscRNA-seq data pose quantification challenges to existing pipelines.

2 Materials and methods

2.1 The minnow framework
For droplet-based protocols (Klein et al., 2015; Macosko et al.,

2015; Zheng et al., 2017), mRNA molecules are attached to a CB

and an UMI. After reverse transcription within a droplet, the

barcoded, tagged-end complementary DNA (cDNA) undergoes

amplification and fragmentation, followed by sequencing in a short

read sequencing machine (illumina). Due to the small amount of

biological material in each cell, such protocols typically undergo

many cycles of PCR, making PCR sampling effects considerable and

necessitating the use of UMIs to discard reads sequenced from dupli-

cate molecules (those that derive from the same pre-PCR transcript).

The sequence files generated by such protocols result in paired-end

reads and have two core components. One end (typically read 1) of

each read pair contains the concatenated nucleotide sequence of the

CB and UMI, while the other end (typically read 2) is the cDNA rep-

resentation of the mRNA molecule, usually as sequenced from the 30

end (Zheng et al., 2017). In essence, the scRNA-seq experiment is

actually much like a single end RNA-seq protocol, where the CB

contains the cell specific information and the UMI is used to identify

PCR duplicates.

The core of minnow can be described as a composition of three

steps; (i) selection of transcript, concordant with the target count

matrix and properties of experimental data, for the initial pool of

simulated molecules, (ii) simulation of CB and UMI tagging and (iii)

simulation of PCR, fragmentation and sequencing. Minnow starts

by consuming a gene-count matrix as input that provides the esti-

mated number of distinct molecules within the sample correspond-

ing to each gene within each cell. Then, based on a carefully chosen

distribution of transcript isoforms, minnow distributes simulated

molecules (transcripts) to each gene within each cell. Taking these as

the initial biological pool of molecules to be sequenced, minnow

then tags these molecules with cell barcodes and UMIs. Finally, it

simulates the PCR, fragmentation and sequencing process. In gen-

eral, since PCR is an exponential stochastic branching process, it

generates more amplified molecules than reads obtained in a real ex-

periment. We simulate the sequencing process by subsampling from

the final amplified pool of PCR generated molecules to a sequencing

depth specified by the user. During this generation process, we have

tried to capture core attributes of single-cell RNA-seq at different

levels, such as preserving the proportion of ambiguously mapped

reads, simulating the PCR amplification bias, introducing sequence

error using different error models, etc. It is important to note that

minnow does not contain a generative model in itself, and depends

on the matrix given as input. Therefore if a count matrix produced

from a simple generative model is used, minnow will produce read

sequences consistent with those counts while if an experimental

count matrix is provided as input, artifacts such as doublets, empty

droplets, etc. are likely to be reflected in the generated reads. While

the development of a generative model that accounts for all of the

nuances of experimental droplet-based scRNA-seq data are still an

active area of research, minnow focuses, principally, on how to gen-

erate a realistic set of sequencing reads consistent with the provided

count matrix. To the best of our knowledge at the time of writing

this tool, minnow is the only comprehensive framework that simu-

lates droplet-based scRNA-seq dataset at read level.

Presently, minnow focuses only on droplet-based single-cell pro-

tocols. So, for the rest of the paper, we refer to such datasets as

scRNA-seq data. Following the general principle of common bulk-

RNA-seq simulators (Frazee et al., 2015; Li and Dewey, 2011), min-

now follows a two-step process of simulation. If the experimental

data (the raw FASTQ files) is provided, then we use alevin (Patro

et al., 2017; Srivastava et al., 2019) to obtain mapping and quantifi-

cation results, and to learn a number of other auxiliary parameters

that we use to generate a realistic simulation. To be specific, alevin

generates a gene-by-cell count matrix, and other parameters, that

minnow (invoked in alevin-mode) can directly consume. In the
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absence of a specific experimental dataset, minnow makes use of the

Splatter (Zappia et al., 2017) tool to generate a gene-by-cell count

matrix (when invoked in splatter-mode). While in the present

manuscript, we have considered the results related to Splatter, we

note that minnow can be paired with any such method (Wang et al.,

2018) that realistically generates cell to gene-count matrix.

Additionally, minnow accepts other attributes of a scRNA-seq ex-

periment, starting from a set of pre-specified cell barcodes, UMIs,

the number of per-cell molecules and cell-level cluster information.

Subsequently, minnow generates the paired-end FASTQ files, along

with the ‘true’ gene-count matrix, cell names and gene names. The

FASTQ files follow the common 10�-chromium (Zheng et al., 2017)

(compatible with both versions 2 and 3) format, and can be con-

sumed by any downstream tool capable of processing such files.

2.1.1 Sampling from gene-count matrix

The main input to minnow is the gene-count matrixM, where each

element mij denotes the number of UMIs (either estimated or simu-

lated by a count-level simulator) for gene gj in cell i. How the gene-

count matrix is used to select transcripts depends upon whether the

provided input is estimated empirically from an experimental data-

set or is a simulated count matrix.

Minnow takes the complete expression of a particular cell as a

vector, and treats the normalized values as the parameters

ai ¼ ðai1; . . . ; aiMÞ of a multinomial distribution fi. The probability

aij denotes the total probability of selecting some pre-PCR transcript

to derive from gene gj in this simulated cell. Then, minnow samples

ci such molecules from the distribution fi, where ci ¼
P

j mij. This

characterization allows the input matrix to have either integral or

non-integral abundances—the former is important in the case that

the count matrix is derived from a tool such as alevin, that may yield

non-integral gene counts when attempting to account for gene multi-

mapping reads. After this sampling step, minnow ends up with a

ground truth gene-count matrix of integral counts that we denote as

T ðMÞ.
A major challenge for generating simulated sequences from gene

counts is the lack of information about the transcript-level expres-

sion for a particular gene. Simulating the amplification and fragmen-

tation of molecules and sequencing of fragments requires selecting

which specific molecules (i.e. transcripts) contribute to the expres-

sion of each gene. Since most genes have multiple isoforms, which

can share exons and vary widely in their sequence composition,

there is no such thing as the canonical sequence at the level of a

gene. However, the molecules selected for amplification,

fragmentation and sequencing can have a tremendous impact on the

specific characteristics of the simulated dataset (e.g. how many reads

map ambiguously back to the genome, and the resulting difficulty of

quantification). Full-length scRNA-seq protocols [such as SMART-

seq (Picelli et al., 2013)], aim to achieve uniform coverage over tran-

scripts, meaning that numerous reads covering distinctive splice

junctions are often sequenced, and transcript-level abundances can

often be assessed (Arzalluz-Luque and Conesa, 2018). This means

that bulk-RNA-seq simulators (Frazee et al., 2015; Li and Dewey,

2011), though by no means a perfect match for such protocols, can

plausibly be used for generating read-level simulated data. On the

contrary, for tagged-end protocols, such frameworks do not seem to

replicate the fundamental properties of real data (Westoby et al.,

2018).

Minnow addresses this challenging problem in one of two ways,

depending upon whetherM is an empirical estimate or a simulated

count matrix. When the relevant parameters are trained from an

experimental dataset, minnow follows an empirical estimation

method to determine individual counts for candidate isoforms as

described in Section 2.1.4. On the other hand, when the experimen-

tal data are not present (e.g. when using Splatter to generateM), it

uses previously estimated measures of sequence-level ambiguity

from similar experiments in the same species. Alternatively, when

neither of the above cases apply, minnow can optionally use a

Weibull distribution, with a pre-specified shape parameter 0.44 and

scale parameter 0.6 to determine the individual dominance of candi-

date isoforms [motivated by Hu et al. (2017)].

2.1.2 Indexing inherent sequence ambiguity using read-length de

Bruijn graphs

To replicate the gene-level ambiguity present in real scRNA-seq

datasets (Srivastava et al., 2019), minnow constructs an index that

maps segments of the underlying transcriptome to the number of

distinct transcripts (and genes) in which they occur. This allows

selecting transcripts for amplification and fragmentation in a man-

ner that will lead to realistic levels of ambiguity in the resulting

simulated reads.

Specifically, minnow starts with a pre-constructed de Bruijn

graph (Zerbino and Birney, 2008), with a k-mer size set to the read

length, built over the reference transcriptome. The de Bruijn graph is

commonly specified as a graph G ¼ ðV;EÞ, built over the collection

of k-mers (strings of length k) from an underlying set of sequences S

(in the case of minnow, the set of transcripts), with an assumption

that all members of S are at least of length k. Given a specified k, the

set of vertices of G are k-mers from the members of S. An edge exists

between two nodes of G if and only if there exists a ðkþ 1Þ-mer in

any of the underlying sequences of S containing both of these k-

mers. Given such a representation, any sequence in S can be spelled

out as a path in G.

Rather than the de Bruijn graph, minnow makes use of the com-

pacted de Bruijn graph. In a compacted de Bruijn graph Gc, unlike

in the de Bruijn graph, an edge can be of length greater than ðkþ 1Þ,
and is obtained by compressing or compacting non-branching paths

in G to form unitigs [for detail, see Minkin et al. (2016)). We

adopted TwoPaCo (Minkin et al., 2016) to efficiently construct the

compacted colored de Bruijn graph, which can be directly converted

to a graphical fragment assembly (GFA) file. The color in the com-

pacted de Bruijn graph also captures the label of the reference se-

quence (transcript) as an attribute (color) of the k-mer, and only

paths having the same color are compacted into unitigs. The GFA

file represents the compacted edges as a set of unitigs U , and stores

the relation between the set of transcript sequences T and U by

describing how each transcript is spelled out by a path of the enum-

erated unitigs. Specifically ti can be represented by an ordered list

(i.e. path) of unitigs: PðtiÞ ¼ ðhuk1
ok1
i; huk2

ok2
i; . . . ; hukn

okn
iÞ, where

uki
2 U and oki

2 fþ;�g. The ‘þ’ and ‘–’, respectively, specify the

orientation of the unitig as traversed in the path, with ‘þ’ meaning

the unitig appears unchanged and the ‘–’ meaning the unitig appears

in the reverse-complement orientation within the path. When con-

catenated with proper strandedness (and accounting for the length k

overlap between successive unitigs), the series of unitigs in PðtiÞ
reconstructs the sequence of ti exactly. Given any ordered list PðtiÞ,
we observe that the locations of occurrence and orientation of a uni-

tig within PðtiÞ can be trivially extracted.

With respect to minnow, the relevant information from the GFA

file is a combination of the two sets; the set of unitigs U and the set

of transcript sequences T (stored as paths of unitigs). Given the set

of unitigs U , minnow only considers the unitigs that occur within a
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MAX_FRAGLEN base pair distance (1000 bp by default) from the 30

end of at least one transcript. This imposes a primary constraint of

the tagged-end scRNA-seq protocol, and restricts minnow to gener-

ate fragments no longer than MAX_FRAGLEN. The intuition behind

fixing an MAX_FRAGLEN arises from the fragment length limit of a

real illumina sequencer (Bronner et al., 2013).

Minnow uses P and U to construct a unitig-level mapping,

describing which transcripts contain each unitig, and how the unitig

covers the transcript in terms of its position and orientation. Recall

that for the de Bruijn graph construction we select the size of each

k – mer to be the read length. This implies that each unitig is at least

as long as a read and therefore, capable of generating a sequencing

read that could then align back to all the transcripts containing that

unitig. The mapping for a particular unitig u 2 U is given as

EUðuÞ ¼ Eu ¼ tu, where tu is set of triplets of the form hti; pi; oii and

8hti; pi;oii 2 tu, we observe hu; oii 2 PðtiÞ. Then 8htipioii 2 tu we

have that ti½pi : pi þ lenðuÞ� ¼ uoi , where uoi is simply the sequence

of unitig u when written in orientation oi. In other words, the map-

ping contains the information about the set of transcripts that con-

tain the unitig u at least once and how the unitig u appears within

those transcripts. We refer to the set of mappings for all unitigs as

EUð�Þ. This representation of EUð�Þ is helpful for two reasons. First, it

is independent of any particular experiment and can be prepared

just with the reference annotation and a specified read length.

Second, it naturally implies the positional intervals that are globally

shared between reference sequences, allowing the selection of inter-

vals that give rise to the desired degree of sequence multimapping.

Moreover, the structure of EUð�Þ is gene oblivious, but can be readily

induced for the set of genes given the known transcript to gene

mapping.

2.1.3 Learning realistic sequence-level ambiguity

While gene-by-cell count matrices are broadly used for almost all

analyses downstream of scRNA-seq quantification, we recognize

that they fail to capture many important characteristics of a real ex-

periment, e.g. the UMI level ambiguity, potential UMI collisions,

transcript and further gene-level multimapping, etc. On the other

hand, the raw FASTQ files obviously encode all of the subtle charac-

teristics of an experiment, but are often enormous in size and are

also massively redundant. As shown in the recently introduced tool

alevin (Srivastava et al., 2019), accounting for gene-level ambiguity

in the sequencing data can have important implications for the

resulting quantification estimates. UMI graphs (Smith et al., 2017)

or parsimonious UMI graphs (referring to the graphs as constructed

by alevin, and which we denote as PUGs, details presented in

Supplementary Section 1) (Srivastava et al., 2019), succinctly encode

most of the relevant characteristics of the experiment, while being

much more concise than the set of raw reads. The construction of

PUGs in alevin depends upon the structure of equivalence classes of

transcripts and UMIs, which themselves depend upon the manner in

which the UMI-tagged sequencing reads within a cell map to the

underlying transcriptome [detail can be found in Srivastava et al.

(2019)].

We use this intermediate structure to estimate the level of se-

quence ambiguity that is present in a particular experiment. We ex-

tract gene-level ambiguity information from the structure, and use it

to help simulate fragments that simultaneously match the observed

gene count and also display a realistic level of gene-level sequence

ambiguity. Specifically, given a particular gene, we only look for

equivalence classes from all cells that contain at least one transcript

from that gene. As depicted in Figure 1b, we are interested in two

quantities from such equivalence classes: (i) the equivalence class

cardinality, i.e. the length of the set of transcripts and (ii) the equiva-

lence class frequency, i.e. the number of reads that belong to that

class. For an equivalence class EUðuÞ ¼ Eu, these are termed as label

count [lenðEuÞ] and read count [freqðEuÞ], respectively, in Figure 1b.

The label count signifies the degree of multimapping, and the read

count captures the frequency of such multimapping. We note that

both of these pieces of information are specific to a particular ex-

periment. This transcript equivalence class level information about

label count and read count can be transferred directly to the gene

level. Given the gene gi, we first single out the equivalence classes

such that at least one of the transcripts in the equivalence class label

belongs to gi. Then, we produce a probability vector Pgi
defined

from these equivalence classes, where the random variables are the

label counts and the probabilities are normalized read counts corre-

sponding to them. This provides a representation that allows us to

select specific transcripts for amplification and sequencing that sim-

ultaneously match both the gene-level counts in the input count ma-

trix as well as the degree of sequence-level gene ambiguity that we

observe in experimental data.

Alternatively, instead of defining the label count probability vec-

tor Pgi
for a gene globally over an entire experiment, minnow also

supports defining cluster-local probability vectors when such infor-

mation is given. Specifically, instead of normalizing over all cells, we

normalize over all cells within a cluster (e.g. predicted cell type),

deriving a probability vector PhCi ;gii, for each expressed gene gi in a

cluster Ci. This allows accounting for the fact that, due to changes in

the underlying transcript expression that vary between clusters, the

probability of observing (and hence generating) gene-ambiguous

fragments may also change.

2.1.4 Assigning probabilities to EU
Given the EUð�Þ as defined in Section 2.1.2, and PhCi ;gii or Pgi as

defined in Section 2.1.3, we finally map the probability for each uni-

tig from EUð�Þ. Formally, we define a function fgi
: n! R, for all uni-

tigs within gene gi, as

fgi
ðuÞ ¼ p‘i if lenðEuÞ ¼ ‘i and Pgi

ð‘iÞ¼ p‘i
0 otherwise

�

Qualitatively, fgi
ðuÞ represents the probability of sampling unitig

u from gene gi to be equal to the empirically observed probability pli

of equivalence classes containing gi that share u’s label count li.

When provided, the cluster specific information can also be used

here to derive an analogous function fhCi ;gii based on the cluster spe-

cific gene-level probability vector PhCi ;gii.

Both EUð�Þ and fi, when used in conjunction with each other, give

minnow the ability to sample the reads from references in a realistic

manner. Given a gene g with count x, the selection process of candi-

date transcripts and underlying unitigs is as follows. Minnow first

selects the set of unitigs that are part of the candidate transcripts.

When there are multiple unitigs that can be potentially used, min-

now initializes a multinomial distribution with parameters accord-

ing to fg, where the random variable is the unitig to be selected next.

Under this distribution, after x such random draws, x unitigs are

selected (with replacement). For each such unitig, minnow randomly

assigns the unitig to a corresponding transcript within that gene by

scanning EUð�Þ. In this composite selection process, while EUð�Þ and

U determine the possible reference interval from which to sample, fi
determines the probability of such sampling and, finally, mi;j dictates

the sample size.
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2.2 Generating RNA-seq sequences
2.2.1 Generation of cell barcodes and UMIs

Generating reads that match empirical degrees of gene-level ambigu-

ity is one part of realistic single-cell RNA-seq data generation.

Another main component is the generation of CB and UMI sequen-

ces, properly affected by amplification and sequencing errors. In

minnow we concentrated on mimicking the process as it occurs in

10� data, though the modular nature of the tool makes designing

modules for other droplet-based protocols straightforward. The

length of the CB and UMI sequences can be provided by the user, by

default we follow 10� v2 protocol for generating the CB and UMI

sequences. Given the number of unique molecules (present in the ex-

periment) provided in terms of the gene-count matrix, and the ran-

domly generated UMI sequences, we perform a random assignment

between UMIs and molecules. Once generated, a complete unit of

sequence that undergoes PCR consists of a concatenated string of

CB, UMI and the corresponding reference molecule (i.e. transcript)

as sampled from EUð�Þ.

2.2.2 PCR amplification and imputing sequence error

Once the set unique molecules are prepared, we simulate amplifying

the molecules through multiple PCR cycles to generate a realistic

distribution of PCR duplicates. We follow the standard protocol for

PCR simulation (Best et al., 2015; Orabi et al., 2018). The PCR

model in minnow can be described as a set of unbalanced probabilis-

tic binary trees. The stochasticity of the model is determined by the

probability of capture efficiency peff that can be externally set (de-

fault peff ¼ 0.98). At each cycle, with probability peff, molecules are

chosen for duplication. In each duplication step, a nucleotide in the

molecule is mutated with probability perror (default perror ¼ 0.01).

At the end of simulating the PCR cycles, minnow randomly samples

an appropriate number of molecules from the (duplicated) pool of

molecules. Apart from providing this simple model, minnow also

allows an optional flag to mimic the empirically supported model of

PCR [described as Model 6 in Best et al. (2015)], where the effi-

ciency of individual molecules is allowed to vary and is sampled

from a normal distribution Nðl; rÞ (default values

l ¼ 0:45; r ¼ 0:2), and subsequently all the duplicated molecules

inherit the efficiency from their parent. This step is highly stochastic,

and can be customized to simulate PCR amplification given the un-

even distribution of capture efficiency for individual molecules. We

have implemented several optimizations, described in

Supplementary Section 2, to reduce the computational burden asso-

ciated with simulating PCR sequence duplication.

2.2.3 Start position sampling

Given the set of sampled duplicated PCR-ed molecules, minnow

simulated the sequencing process of actual reads. As discussed in

Section 2.1.4, minnow utilizes the precise location of the unitig on

the transcript from which the read is drawn. The unitig acts as a

seed for sampling read sequences from the reference. Given a unitig

u, with offset position p and length l on a transcript t, we resort to

two different mechanisms for determining start position. If the user

chooses to use the empirical distribution Pfld of fragment lengths,

then we randomly sample a fragment from a closed interval ½p�
slack;pþ slack� where probability of each fragment length is

(a) (b)

Fig. 1. Overview of the minnow pipeline: On the right-hand side (a), the construction of unitig-based equivalence classes is depicted based on the compacted de

Bruijn graph constructed from reference sequences. Unitigs u1 and u2 are discounted as they are more than MAX_FRAGLEN bp away from 30 end of transcripts t1

and t2. Further the equivalence class is constructed as discussed in Section 2.1.3. On the right-hand side (b), the transcript-level equivalence class structure

obtained from alevin is used to derive a per-gene probability vector. Finally, the probabilities are mapped directly to the unitig labels
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dictated by Pfld, and slack variable is set with proportional to the

read len. While it is highly recommended to use an empirically

derived read start position distribution (which comes packaged with

minnow), in absence of such quantity, minnow samples from a trun-

cated normal distribution Nðl; rÞ with l ¼ ðL� l=2Þ and a user

defined r (default set to 10). The intuition behind using such a distri-

bution is to simultaneously use the ambiguity information while

avoiding sampling reads from the same exact region again and

again. This variance in sampling is important, since fragmentation

occurs after the majority of amplification in the protocols we are

simulating, and so ‘duplicate’ reads (reads from the same pre-PCR

molecule) will tend to arise from different positions. Moreover, this

framework creates an option for user to tune the r in order to move

away from unitig dependent sampling. Upon selecting the sequence

minnow can be instructed to impute sequencing error in the sampled

sequence. Minnow can accept a variety of error model for substitut-

ing nucleotides, and follows the same format of error model as used

in Frazee et al. (2015).

3 Results

3.1 Assessing quantification tools using minnow
As its output, minnow produces the true abundance matrix T ðMÞ,
along with the raw FASTQ files containing the simulated reads. This

enables rigorous testing of different quantification tools such as

Cell-Ranger (Zheng et al., 2017), UMI-tools (Smith et al., 2017),

etc. Hence, it is important to validate if the simulated reads gener-

ated by minnow are able to reproduce some of the challenges faced

by these tools while consuming experimental data. One such factor

that contributes to the performance of these tools is the mechanism

by which they deduplicate UMI sequences (Srivastava et al., 2019).

We observe that when we stratify the genes with respect to their

gene uniqueness, the divergence between different tools start to

emerge. As a proof of concept, we have run the popular quantifica-

tion tools Cell-Ranger (2.1.0 and 3.0.0) and UMI-tools on minnow-

simulated data. The UMI-tools-based pipeline we used is a custom

one, which uses STAR (Dobin et al., 2013) for alignment, UMI-tools

(Smith et al., 2017) for UMI resolution and featureCounts (Liao

et al., 2014) for deduplicated UMI counting—we refer to this as the

naı̈ve pipeline.

The estimated abundances are correlated (Spearman and

Pearson) with the true gene count provided by minnow. We note

that number of cells detected by a downstream tool varies from

what is initially present in the raw FASTQ files. Therefore, while cal-

culating a cell specific local correlations, we consider only the subset

of the cells that are predicted by all tools.

Minnow accepts a host of different input parameters, such as

PCR-related mutation error, sequencing error, predefined custom

error model for substitution, UMI pool size, number of PCR cycles,

etc. As Cell-Ranger takes considerable time to finish (4–6 h for 4000

cells), we have limited ourselves to one run of 4 K cells of all tools,

demonstrating the variance of different tools in the data. We observe

that minnow scales efficiently with increasing numbers of cells. That

is, the bottleneck in our assessments was the time required by the

quantification tools, as minnow can simulate millions of reads in a

few minutes. Thus, for demonstrating other effects (e.g. how the

choice of different degrees of sequence ambiguity in mapping

Splatter-generated counts to specific genes affects quantification ac-

curacy), we have limited our assessment to smaller simulated data-

sets consisting of 100 cells each. An assessment of the

computational performance of minnow is provided in Table 2.

3.2 Datasets
We have used two different datasets for benchmarking. For a global

analysis, in terms of downstream quantification accuracy, we have

used the publicly available peripheral blood mononuclear cells data-

set, referred to as pbmc 4k dataset (Zheng et al., 2017), obtained

from the 10� website. As discussed in Section 2.1, we first used al-

evin to estimate the gene-count matrix and the relevant auxiliary

parameters, such as the equivalence classes. The gene-count matrix

along with the auxiliary files are then used as an input to minnow.

Minnow is run with two different configurations. First, we consider

the ‘basic’ configuration, where no information other than the gene-

count matrix from alevin is used. In the other configuration, referred

to as ‘realistic’, we have made use of the equivalence classes pro-

duced by alevin, in addition to the compacted de Bruijn graph built

on the transcript by TwoPaCo. The ‘realistic’ configuration also

used the empirical fragment length distribution. In both the cases,

we have used normal mode for PCR with fixed capture efficiency.

The other datasets we used are generated by Splatter (Zappia

et al., 2017). Splatter accepts multiple parameters as input, including

the generative model to use, the number of cells, the number of

genes to express, etc. We used the splat model from Splatter to gen-

erate the gene-count matrix with default parameters. To manage the

time consuming tools (Cell-Ranger-2 and 3), the analysis is

restricted to 100 cells and 50 000 genes.

3.3 The presence of gene-level ambiguity drives the

difficulty of UMI resolution and shapes the accuracy of

downstream tools
With moderate numbers of fragments being sequenced per-cell and

realistic diversity in the UMIs available to tag the initial molecules,

existing pipelines appear to do a reasonable job of estimating the

number of distinct molecules sampled from each gene within a cell.

Yet, one major factor that appears to affect the accuracy of these dif-

ferent approaches is the level of sequence (specifically gene-level)

ambiguity present in the simulated data. This is not particularly sur-

prising, as neither Cell-Ranger (either version) nor the naı̈ve pipeline

are capable of appropriately handling such situations (i.e. to where

should an UMI be assigned if its corresponding read maps equally

well between multiple genes?). However, understanding this effect

seems important, as the degree of gene-ambiguous reads in a typical

scRNA-seq ranges from �13% to 23% of the total reads (Srivastava

et al., 2019).

To study the effect of gene-level ambiguity on quantification

pipelines, we have stratified the global correlation plot with respect

to the uniqueness score of a gene. The uniqueness score is specified

by the ratio of two quantities: number of k-mers unique to a gene

(i.e. only appearing within transcripts of this gene) to the total

number of distinct k-mers present in the gene. According to this

metric, the most-unique gene will have a score of 1 and the least a

score of 0. The stratified plots (Figs 2 and 3) demonstrates that in

the ‘basic’ simulation, the performance of all three tools are global-

ly high. Interestingly, we note that Cell-Ranger-3 does slightly bet-

ter than Cell-Ranger-2 (which in turn performs better than the

naı̈ve pipeline) for non-unique genes, despite the fact that it does

not have a specific mechanism for resolving such cases. On the

other hand, in the ‘realistic’ simulation, where gene-level sequence

ambiguity was sampled to match the degree observed in even the

most unique experimental data (this dataset exhibits �10% gene-

level multimapping meaning over 10% sequencing reads map to

multiple genomic loci), the global performance decreased. One

possible interpretation of such a considerable performance gap
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between different tools can be the specific method each method

uses to categorize alignments [though all pipelines use STAR

(Dobin et al., 2013) as their aligner], as well as differences in the

algorithms they use to resolve UMIs. It is clear, however, that fail-

ing to resolve the multimapped reads can have a detrimental effect

the accuracy of all of the quantification pipelines. The performance

gap is magnified when we increase the fraction of reads sampled

from less-unique gene sequences. Thus, it should be noted that fail-

ing to model empirically observed levels of sequence ambiguity can

result in the simulation of unrealistic sequenced fragments, that

fail to capture important characteristics of real data, and where the

variability of different tools are hard to spot. Thus, to create more

realistic and representative simulated data, it appears to be

important to carefully match the degree of gene-level multimap-

ping observed in experimental data.

In the Splatter-based simulations, we have explored the perform-

ance of quantification pipelines on data representing a spectrum of

degrees of sequence-level ambiguity. Splatter uses generative models

to produce the gene-count matrix. Therefore, while the distribution-

al characteristics of the simulated counts are designed to accord

with experimental data, there is no specific relationship between the

generated counts and specific gene present in an organism. While

this presents a challenge—different mappings of simulated counts to

different genes will result in different quantification performance—

it also presents a degree of freedom to explore how the performance

of tools changes as we hold the counts fixed, but alter the mappings

between counts and specific genes. We use this freedom to model ex-

treme situations, and to explore the sensitivity of different quantifi-

cation pipelines as we alter how counts are mapped to specific

genes. Specifically, we considered three different scenarios. First, we

use the gene uniqueness scores defined above to sort the set of genes

in increasing order (from least to most unique). Then, we assign the

gene with lowest uniqueness score to the highest expressed gene

label (aggregated over all cells) from the Splatter-obtained matrix

and so on. This biased allocation purposefully increases the chal-

lenge of resolution for downstream tools. We call this configuration

‘adversarial’. In the second configuration, we have selected a ran-

dom set of genes and followed the ‘realistic’ configuration by using

the reference-based compacted de Bruijn graph and learned gene-

level ambiguity distribution (as discussed in Section 2.1.2), follow-

ing the same convention. We call this simulation ‘realistic’. Finally,

the third configuration repeats the process of ‘adversarial’ but in re-

verse order, i.e. assigning the most-unique gene to the most abun-

dant gene label. This final configuration is a situation where we

expect to see minimum level of ambiguously mapped reads, thereby

making the quantification challenge relatively easy for all down-

stream tools. We call this configuration ‘favorable’.

Fig. 2. Performance of quantification tools, stratified by gene uniqueness,

under a ‘basic’ configuration (based on pbmc 4k dataset)

Fig. 3. Performance of quantification tools, stratified by gene uniqueness,

under a ‘realistic’ configuration (based on pbmc 4k dataset).

Table 2. Timing and memory required by minnow to simulate data

with various parameters

Reads Cells PCR cycles Threads Time (hh: mm: ss) mem. (KB)

100M 1000 4 8 0: 10: 44 7 556 108

100M 1000 4 16 0: 5: 39 11 163 216

100M 1000 7 8 0: 16: 56 8 723 320

100M 1000 7 16 0: 9: 01 13 449 888

800M 8000 4 8 0: 56: 28 28 249 676

800M 8000 4 16 0: 31: 18 31 855 624

800M 8000 7 8 1: 43: 32 29 246 148

800M 8000 7 16 0: 53: 15 34 217 500

Table 1. Spearman correlation and MARD are calculated with re-

spect to ground truth under three different configurations based

on the same gene-count matrix produced by Splatter

Configuration Correlation (Spearman) MARD

CR2 CR3 naı̈ve CR2 CR3 naı̈ve

Adversarial 0.811 0.809 0.723 0.075 0.076 0.107

Realistic 0.920 0.915 0.880 0.043 0.046 0.076

Favorable 0.957 0.952 0.936 0.031 0.035 0.047

Note: CR2 and CR3 stand for Cell-Ranger-2 and Cell-Ranger-3,

respectively.
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Table 1 shows the global correlation between three tools for all

the above scenarios. We have also plotted (see Supplementary Fig.

S1) the distribution of these metrics for all 100 cells in the simula-

tion, to show the shift in global mean in both spearman correlation

and mean absolute relative differences (MARD). In Supplementary

Figure S1, we observe that for the ‘adversarial’ data, the perform-

ance of all pipelines is considerably depressed. Conversely, for the

‘favorable’ dataset (bottom row), the performance of all pipelines is

considerably improved—and the gap between the different versions

of Cell-Ranger and the naı̈ve pipeline is reduced. The ‘realistic’

simulation falls nicely between these two extremes, suggesting that,

while not as pronounced as one observes in the ‘adversarial’ scen-

ario, the discarding of gene-ambiguous reads can have a consider-

able effect on quantification accuracy, even under realistic degrees

of gene-level sequence ambiguity.

3.3.1 Minnow maintains global structure in the simulated data

To compare the internal structure of the minnow generated data, we

have compared the data matrices that are given to and produced by

minnow. As shown in Supplementary Figures S2 and S3, we can see

the number of clusters remains the same while some of the clusters

are perturbed. This indicates that the minnow produced data can be

effectively used for cell type specific analysis. Additionally, we have

calculated variation of information (VI) (Meil�a, 2007) as a metric to

measure the distances between the clusters obtained by running

Seurat’s clustering (Butler et al., 2018) algorithm on the count matri-

ces produced by different methods, with respect to the clustering

produced on the true count matrix, as output by minnow. The VI

distances are 0.589, 0.613 and 0.632 for clusterings on the matrices

produced by Cell-Ranger-3, Cell-Ranger-2 and naı̈ve, respectively.

While all of the tools do reasonably well, as expected, Cell-Ranger-

3-derived clusters are closer to the truth than the other methods.

The t-SNE plots shown in Supplementary Section 4 are plotted with

the same seed after processing with Seurat.

3.3.2 Speed and memory of simulated sequence generation

The execution of minnow proceeds in two phases. First, it loads the

gene-count matrix (as either a compressed binary or plain-text file)

in a single thread. Then, it spawns multiple parallel threads (as

many as specified by the user) to simulate reads deriving from differ-

ent cells. This mechanism enables the most computationally inten-

sive process (simulating PCR and generating read sequences) to

happen independently and in parallel for each cell. This enables min-

now to scale well with the number of threads when writing millions

of reads to the disc. In Table 2, we have varied a number of parame-

ters to test the computational requirements of minnow for generat-

ing simulated datasets of various sizes. Namely, we have varied the

number of PCR cycles, the total number of cells simulated and num-

ber of threads used. The total wall clock time and peak resident

memory reported using /usr/bin/time. We have limited the

highest number of reads (default is 100 000) to be sampled and writ-

ten to FASTQ file by minnow for each cell. This results in the ap-

proximate number of reads shown in the first column of Table 2. It

should be noted that experiments containing more than �10 000

cells are often generated from two or more separate experiments,

concatenating the resulting count matrices after analyzing the sam-

ples in an independent manner. This can be achieved by running

multiple instances of minnow. The performance is such cases would

scale in a linear fashion as expected.

Simulated reads were generated on a server running ubuntu

16.10 with an Intel(R) Xeon(R) CPU (E5-2699 v4 @2.20 GHz with

44 cores), 512 GB RAM and a 4 TB TOSHIBA MG03ACA4 ATA

HDD.

4 Conclusion

Single-cell sequencing has enabled scientists to gain a better under-

standing of complex and dynamic biological systems, and single-cell

RNA-seq has been one of the pioneering biotechnologies in the field.

Droplet-based assays, in particular, have proven very useful because

of their high-throughput and ability to assay many cells. Driven by

these exciting biotechnology developments, hosts of different meth-

ods have been developed in a relatively small time-frame to analyze

the gene-by-cell count matrices that result from the initial quantifi-

cation of these single-cell assay. Previously, various models have

been proposed for simulating realistic count matrices (Zappia et al.,

2017). These approaches implicitly assume that, apart from some

fundamental limitations due to the biotechnology (e.g. cell capture,

molecule sampling from small finite populations, etc.), the problem

of ascertaining accurate gene counts from raw sequencing data by

aligning reads and deduplicating UMIs is essentially solved.

Consequently, the effect of the failures of these quantification pipe-

lines to produce accurate gene expression estimates is not accounted

for in the assessment of downstream analysis methods using this

simulated data.

In this paper, we introduced minnow, which covers an important

gap in existing methods for single-cell RNA-seq simulation

(Westoby et al., 2018)—the read-level simulation of sequencing data

for droplet-based scRNA-seq assays. We demonstrate the use of

minnow to assess the accuracy of the single-cell quantification meth-

ods under different configurations of sequence-level characteristics,

ranging from adversarial, to realistic, to favorable. We propose a

framework for the simulation of synthetic dscRNA-seq data, which

simulates the CB, UMI and read sequences, while accounting for the

considerable effects of PCR and realistic sequence ambiguity in gen-

erated reads. Further as a flexible framework minnow can be easily

used to create a variety of possible configurations, such as changing

fragment length distribution, sequencing error, collision rate, etc., to

do robust testing of computational tools. We believe minnow will

help the community to develop the next generation of quantification

tools for droplet-based scRNA-seq data. It provides the first compre-

hensive framework to simulate such data at the sequence level,

allowing users to validate the accuracy of different methods and pro-

viding useful feedback to determine future directions for improving

quantification algorithms. Minnow is an open-source tool, devel-

oped in Cþþ14, and is licensed under a BSD license. It is available

at https://github.com/COMBINE-lab/minnow.
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