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SUMMARY

Protein O-GlcNAcylation plays critical roles in many cellular events, and its dysregulation is 

related to multiple diseases. Integrating bioorthogonal chemistry and multiplexed proteomics, 

we systematically and site specifically study the distributions and dynamics of protein O-

GlcNAcylation in the nucleus and the cytoplasm of human cells. The results demonstrate 

that O-GlcNAcylated proteins with different functions have distinct distribution patterns. The 

distributions vary site specifically, indicating that different glycoforms of the same protein 

may have different distributions. Moreover, we comprehensively analyze the dynamics of O-

GlcNAcylated and non-modified proteins in these two compartments, respectively, and the 

half-lives of glycoproteins in different compartments are markedly different, with the median 

half-life in the cytoplasm being much longer. In addition, glycoproteins in the nucleus are 

more dramatically stabilized than those in the cytoplasm under the O-GlcNAcase inhibition. 

The comprehensive spatial and temporal analyses of protein O-GlcNAcylation provide valuable 

information and advance our understanding of this important modification.
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In brief

Xu et al. systematically and site specifically study the distribution and dynamics of O-

GlcNAcylated proteins in the nucleus and the cytoplasm. O-GlcNAcylated proteins with different 

functions have distinct distribution patterns. The half-lives of glycoproteins in the two cellular 

compartments are markedly different, with the much longer median half-life in the cytoplasm.

INTRODUCTION

Protein O-GlcNAcylation refers to the enzymatic modification of the serine and threonine 

residues with N-acetylglucosamine (GlcNAc). Unlike other types of glycosylation normally 

on proteins in the classical secretory pathway, O-GlcNAcylation mainly occurs on proteins 

in the nucleus and the cytoplasm (Alfaro et al., 2012; Hart et al., 2007). Since its discovery, 

O-GlcNAcylation has attracted great attention due to its importance in biological systems, 

including the regulation of gene expression and signal transduction (Hart et al., 2011; Torres 

and Hart, 1984; van der Laarse et al., 2018). Aberrant protein O-GlcNAcylation is directly 

related to multiple human diseases, such as diabetes and cancer (Chen et al., 2021; de 

Queiroz et al., 2016; Hart et al., 2011).

The dynamic nature of protein O-GlcNAcylation is regulated by two enzymes: O-GlcNAc 

transferase (OGT) and O-GlcNAcase (OGA), which catalyze the addition or removal of 

O-GlcNAc to or from protein substrates, respectively (Joiner et al., 2019; Li et al., 2017). 

It was reported that O-GlcNAcylation can regulate protein degradation (Levine et al., 
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2019; Yang et al., 2006). For example, O-GlcNAcylation can protect many proteins from 

proteasomal degradation, such as p53, C-myc, DOT1L, and Nrf1, through the crosstalk with 

phosphorylation and ubiquitination (de Queiroz et al., 2016; Han et al., 2017; Luanpitpong 

et al., 2020; Song et al., 2021), or by recruiting deubiquitinases (Baldini et al., 2016; Ruan 

et al., 2012). It can also prevent α-synuclein from aggregation and proteolytic cleavage by 

calpain (Levine et al., 2017; Marotta et al., 2015). In serum, O-GlcNAcylation was able to 

stabilize the synthetic peptides, even with the O-GlcNAcylation sites being 10–15 amino 

acids away from the cleavage site (Levine et al., 2019). Furthermore, O-GlcNAcylation can 

modify proteins in the 26S proteosome to inhibit the proteolysis (Zhang et al., 2003).

Besides protein dynamics, O-GlcNAcylation can regulate protein translocation, in which 

the subcellular localization of O-GlcNAcylated proteins is critical for their functions. 

For instance, O-GlcNAcylation can induce the translocation of the transcription factor 

neurogenic differentiation factor 1 (NeuroD1) to the nucleus under high glucose conditions 

to regulate the gene expression (Andrali et al., 2007). O-GlcNAcylation was also reported to 

activate the transcription factor nuclear factor κB (NF-κB) and promote its translocation to 

the nucleus (Yang et al., 2008). Moreover, O-GlcNAcylation at certain sequence motifs can 

help the binding of cargo proteins to importin α to facilitate their nuclear transport (Tan et 

al., 2021). Considering the importance of O-GlcNAcylation in cells, global and site-specific 

study of the spatial distribution and the dynamics of O-GlcNAcylation proteins will result in 

an in-depth understanding of this important modification.

In this work, we systematically and site specifically quantified the distribution and dynamics 

of O-GlcNAcylated proteins in the nucleus and the cytoplasm by integrating bioorthogonal 

chemistry and multiplexed proteomics. The results demonstrated that O-GlcNAcylated 

proteins with different functions have distinct distribution patterns. Benefitting from the 

site-specific analysis, unique O-GlcNAcylation sites were found to differentially regulate 

the distribution of the same protein. The half-lives of O-GlcNAcylated proteins in the 

two compartments were quantified along with those of non-modified proteins. The results 

revealed that the degradation of O-GlcNAcylated proteins in different compartments were 

markedly different, with the median half-life of O-GlcNAcylated proteins in the cytoplasm 

being much longer than that in the nucleus. The degradation rates of O-GlcNAcylated 

proteins are mostly slower than the non-modified counterparts in both compartments. 

Furthermore, to understand the effect of OGA on the dynamics of O-GlcNAcylated proteins, 

the half-lives of O-GlcNAcylated proteins in the two compartments were quantified under 

the OGA inhibition. Glycoproteins in the nucleus were more dramatically stabilized than 

those in the cytoplasm under the inhibition, indicating the more active removal of the glycan 

by OGA in the nucleus. Spatial and temporal investigation of protein O-GlcNAcylation in 

human cells provides valuable information about this important glycosylation.

RESULTS

Quantification of the distributions of O-GlcNAcylated proteins in the nucleus and the 
cytoplasm

We designed a method integrating metabolic labeling, bioorthogonal chemistry, and 

multiplexed proteomics to systematically quantify the distribution of O-GlcNAcylated 
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proteins in the nucleus and the cytoplasm (Figure 1A). The integration of metabolic labeling 

and bioorthogonal chemistry is very powerful to study protein glycosylation (Agatemor et 

al., 2019; Mahal et al., 1997; Qin et al., 2017; Suttapitugsakul et al., 2019, 2021a, 2021b; 

Vocadlo et al., 2003; Woo et al., 2015). Glycoproteins were metabolically labeled with 

N-azidoacetylgalactosamine-tetraacetylated (Ac4GalNAz) (Boyce et al., 2011; Xiao et al., 

2016), and labeled glycoproteins with the small azide group allowed for their selective 

enrichment through bioorthogonal chemistry (Hong et al., 2009). Subsequently, cells were 

harvested and lysed with a buffer containing a low concentration of a mild detergent that 

preserved the nuclear envelope. The nuclear and cytoplasmic fractions were separated by 

centrifugation, as reported previously (Martynova et al., 2021; Nabbi and Riabowol, 2015; 

Suzuki et al., 2010). To evaluate the separation of nuclear and cytoplasmic proteins, trypan 

blue staining and western blot experiments were performed. The results demonstrated the 

successful separation of proteins in the nucleus and the cytoplasm (Figure S1).

The azide-labeled glycoproteins were then tagged with the alkyne photocleavable (PC)-

biotin reagent. After tryptic digestion, glycopeptides with the biotin tag were enriched and 

released from the resins under UV radiation. The cleavage also generated an amine group 

on the glycan that facilitates the protonation of glycopeptides for mass spectrometry (MS) 

analysis. To quantify the relative amount of each O-GlcNAcylated protein in the nucleus and 

the cytoplasm, multiplexed proteomics was used. In the biological triplicate experiments, 

six samples (three nuclear samples and three cytoplasmic samples) were labeled with six 

channels of the tandem mass tag (TMT) reagents. After the labeling, six samples were 

mixed, purified, and fractionated before liquid chromatography (LC)-MS analysis.

One example glycopeptide identified, LAPSFPS#PPAVSIASFVTVK (# denotes the 

glycosylation site), from pogo transposable element with ZNF domain (POGZ) is in Figure 

1B. The glycopeptide is confidently identified with an XCorr of 3.63, a mass accuracy 

of −1.69 ppm, and a ModScore of 22.49. The presence of a modified GlcNAc on the 

peptide is further supported by the fragment with m/z = 529.2932, which matches very 

well with the mass of the modified GlcNAc (protonated). To obtain the distributions of 

O-GlcNAcylated proteins, the ratios were calculated from the TMT reporter ion intensities 

for glycopeptides in the nucleus and the cytoplasm in each experiment. The reproducibility 

across these biological replicates was evaluated, and the correlations among the triplicates 

were reasonably high (Figure 1C).

Analysis of O-GlcNAcylated proteins enriched in the nucleus and the cytoplasm

To determine whether an O-GlcNAcylated protein was enriched in the nucleus or the 

cytoplasm, glycoproteins with the average protein ratio from the triplicate experiments 

greater than 1.5-fold are considered to be enriched in the nucleus, while those with the 

average ratio lower than 0.67-fold are enriched in the cytoplasm with p < 0.05 (the one-

sample t test, null hypothesis: mean = 0, two-tailed). Among 195 O-GlcNAcylated proteins 

quantified here, 36 were found to be enriched in the nucleus, 85 were in the cytoplasm, 

and 74 were not enriched in either compartment (Figure 2A; Table S1). The quantified 

glycoproteins in each group were clustered based on their Gene Ontology (GO) terms 

(Figures 2B–2D). GO terms including nucleoplasm, nuclear membrane, DNA binding, RNA 
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binding, and protein SUMOylation are significantly overrepresented among the nucleus-

enriched glycoproteins. On the contrary, among the cytoplasm-enriched glycoproteins, the 

terms including “cytoplasm,” “protein binding,” “focal adhesion,” “actin binding,” and 

“cadherin binding” are overrepresented. Glycoproteins that are not specifically enriched in 

either compartment are involved in RNA binding, transcription, and transcription repressor, 

indicating that many glycoproteins participating in transcription and mRNA processing are 

more equally distributed in both the nucleus and the cytoplasm. These observations reveal 

the different distributions of O-GlcNAcylated proteins with different functions in the nucleus 

or the cytoplasm.

To better understand the distributions of O-GlcNAcylated proteins, we performed further 

analyses. Glycoproteins with the “nucleoplasm” annotation have a significantly higher 

average ratio than those annotated with “cytosol” (Figure 3A). Alternatively, glycoproteins 

related to “nuclear membrane” have a significantly greater distribution in the nucleus 

than those related to “nucleoplasm.” This may be because the glycoproteins in the 

nuclear membrane are mostly structural components of the nuclear pore complex (NPC) 

(Ruba and Yang, 2016), yet some proteins in the nucleoplasm can more easily shuttle 

between the nucleus and the cytoplasm (Gama-Carvalho and Carmo-Fonseca, 2001). The 

O-GlcNAcylated transcription factors identified have a median ratio close to 1. Proteins 

related to “DNA binding” and “nucleotide binding” have much greater distributions in the 

nucleus than those annotated with “protein binding,” consistent with our finding that many 

glycoproteins enriched in the nucleus are involved in nucleic acid binding, while those 

enriched in the cytoplasm are related more to protein binding.

Unraveling the mechanisms of the regulation of protein distribution by O-GlcNAcylation

As O-GlcNAcylated proteins with various functions could have different distributions, it is 

interesting to determine how O-GlcNAcylated proteins are regulated to be transported in 

and out of the nucleus. Many proteins can shuttle between the nucleus and the cytoplasm 

through the NPC (Lamond and Earnshaw, 1998). For proteins to be transported into the 

nucleus, a certain exposed amino acid sequence called nuclear transport signal (NLS) of a 

protein could interact with the protein importin α, which is a part of the complex responsible 

for protein transportation into the nucleus (Lange et al., 2007). Conversely, nuclear export 

signal (NES) serves as a tag for proteins to be translocated back to the cytoplasm (Fu et al., 

2018). We compared the distribution ratios of glycoproteins with and without NLS or NES 

(Figure 3B), and the results demonstrate that glycoproteins with NLS are more enriched in 

the nucleus compared with those without NLS. On the contrary, no significant difference 

was observed when the distributions of glycoproteins with and without NES were compared.

Previous studies showed that other factors may play critical roles in the regulation of 

nuclear protein transportation, including protein post-translational modifications (PTMs) 

(Poon and Jans, 2005). For example, phosphorylation in the vicinity of NLS could diminish 

the sequence positive charge and reduce its binding to importin (Harreman et al., 2004). 

O-GlcNAcylation was found to mediate nuclear translocation of NF-κB by interrupting 

its interaction with IκBα (nuclear factor of kappa light polypeptide gene enhancer in B 

cells inhibitor, alpha) (Yang et al., 2008). Another mechanism for O-GlcNAcylation to 
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regulate the translocation of nuclear proteins is through its crosstalk with phosphorylation. 

For example, phosphorylation and O-GlcNAcylation regulate the nuclear or cytoplasmic 

localization of tau (Lefebvre et al., 2003). Given the potential effect of O-GlcNAcylation on 

protein translocation between the nucleus and the cytoplasm, we investigated the correlation 

between the number of O-GlcNAcylation sites and the protein distribution. Glycoproteins 

are separated into two groups based on the number of O-GlcNAcylation sites on each 

protein (i.e., single or multiple). Proteins identified with multiple sites have a significantly 

higher distribution in the nucleus than those with one site (Figure 3C), which suggests that 

more O-GlcNAcylation events are correlated with the higher distribution of glycoproteins in 

the nucleus.

Site-specific regulation of the protein distribution by O-GlcNAcylation

As O-GlcNAc on a certain site of proteins can affect their structures and interactions, 

different O-GlcNAcylation sites on a glycoprotein may distinctively regulate the 

glycoprotein distribution. Here, the results for the distribution based on unique 

glycopeptides and well-localized sites were calculated and plotted (Figures S2A and S2B), 

and the distributions of O-GlcNAcylated proteins based on well-localized sites are included 

(Table S2). All of the glycoproteins with more than one well-localized site were extracted, 

and a graphic view of the ratios measured for all of the glycosylation sites in each protein is 

displayed in Figure 3D.

Within each detected protein, we performed the two-sample t test for the ratios between 

every two different glycosylation sites measured in the biological triplicate experiments. 

Among 31 proteins tested, 17 have at least 2 glycosylation sites with significantly 

different ratios (Table S3), indicating that the same protein with different sites could have 

different distributions. For example, transcriptional repressor p66-alpha (GATAD2A) has the 

distribution ratio of T329 close to 8, while S625 and S629 have the ratio of approximately 

1, revealing that only the glycolform with the T329 site is highly enriched in the nucleus 

(Figure 3E). For another protein, the regulation of nuclear pre-mRNA domain-containing 

protein 2 (RPRD2), the glycosylation sites S593 and S596 have the ratios of approximately 

2, while T985 has a ratio near 1, demonstrating that the glycoforms of the protein with 

the S593 or S596 site have a higher nuclear distribution than the same protein with 

the glycosylated T985. On the contrary, NUP214 shows no significant difference in the 

distributions among all of the quantified sites. NUP214 is a subunit of the NPC, and the 

glycosylation of NUP214 is important for the functions of the complex (Zhu et al., 2016). 

However, it may have little effect on the protein distribution. These results provide valuable 

site-specific information for the distributions of O-GlcNAcylated proteins.

Spatial-resolved investigation of the dynamics of O-GlcNAcylated proteins in the nucleus 
and the cytoplasm

Due to the heterogeneity of the microenvironment in cells, the same glycoprotein may 

have distinct dynamics in different cellular compartments, but the spatial and systematic 

study of the dynamics of O-GlcNAcylated proteins remains to be explored. In addition, 

O-GlcNAcylation could protect a wide range of proteins from degradation, but the effect 

on the proteome scale is rarely explored. Here, we simultaneously quantified the dynamics 
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of proteins with and without O-GlcNAcylation in the nucleus and the cytoplasm by a pulse-

chase method (Figure 4A). Cells grew in the normal culture medium with Ac4GalNAz. 

During the chase period, Ac4GalNAz was substituted by Ac4GalNAc, while light amino 

acids (K0 and R0) were replaced with heavy amino acids (K8 and R6). Then, cells from 

different time points were split into nuclear and cytoplasmic fractions, and each fraction 

was further separated for O-GlcNAcylated protein and whole proteome analyses. The 

peptide samples were labeled with TMT before mixing, and the degradation profiles of 

O-GlcNAcylated/non-modified proteins over time (0, 3, 6, 9, 12, and 24 h) were recorded.

The site-specific and spatial quantification of glycoproteins reveals their independent 

degradation rates in both the nucleus and the cytoplasm. For some sites of the same proteins, 

the degradation rates are very similar in the two compartments. For example, glycosylation 

at S395 on TAB1 has very similar half-lives in the nucleus and the cytoplasm (Figure 

4B), and the same is true for S403 on GMEB2 (Figure S3A). In contrast, some sites have 

dramatically different degradation rates in the two compartments. For instance, S297 from 

POGZ is very stable in the cytoplasm, while the same site of the same protein has a much 

higher degradation rate in the nucleus (Figure 4C). Similarly, S410 on LDB1 (Figure 4D) 

and S1154 on NFRKB (Figure 4E) have much higher degradation rates in the nucleus than 

in the cytoplasm.

For many O-GlcNAcylated proteins, all of the glycosylation sites from the same protein 

have longer half-lives in the cytoplasm than in the nucleus, such as different sites on ZFR 

and SMG7 (Figures 4F and S3B). On the contrary, for ADRM1, the two sites have longer 

half-lives in the nucleus than in the cytoplasm (Figure 4G). For some proteins with multiple 

sites, their degradation rates may be similar among these sites in both compartments. For 

instance, three sites on ATF7IP have very similar half-lives (Figure 4H).

The half-lives of O-GlcNAcylated proteins in the nucleus and the cytoplasm were quantified 

in the duplicate experiments. The overlap between the duplicate experiments is reasonably 

high (Figure S4A). In total, 244 O-GlcNAcylated proteins were identified from the nucleus 

and 212 from the cytoplasm (Figure 5A; Tables S4 and S5). Among these proteins, 139 

glycoproteins were identified only in the nucleus, while 107 were identified exclusively 

in the cytoplasm. Moreover, 105 glycoproteins were identified in both compartments. The 

half-life distributions of O-GlcNAcylated proteins in the nucleus and the cytoplasm from 

the duplicate experiments are very similar (Figures 5B and 5C). Overall, the current results 

demonstrate that O-GlcNAcylated proteins in the cytoplasm are generally more stable than 

the nuclear proteins, but the differences can vary for each individual glycoprotein and even 

for each glycosylation site.

The glycoproteins quantified in each compartment were subsequently ranked based on 

their half-lives and separated into three groups with an equal number of proteins (short, 

medium, and long). Those proteins associated with repressor, transcription, viral process, 

DNA binding, and sequence features including polyalanine, proline, serine, and threonine-

rich are enriched among the short-lived glycoproteins in the cytoplasm. Conversely, proteins 

related to RNA binding, zinc ion binding, and LIM domain, and with sequence features 

like asparagine-rich, are overrepresented in the long-lived cytoplasmic glycoproteins (Figure 
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5D). Similar analyses were performed for the nuclear O-GlcNAcylated proteins, and it was 

found that the chromatin regulators and the proteins with glutamine and threonine-rich 

sequences are highly enriched for the short-lived proteins. In contrast, glycoproteins related 

to nucleotide binding, mRNA splicing, nuclear envelope, and with poly-alanine sequence are 

overrepresented among the long-lived glycoproteins in the nucleus (Figure 5E).

The half-lives of the same glycoproteins quantified in both compartments were plotted in 

Figure S4B. To investigate whether the half-life differences of glycoproteins in different 

compartments are correlated with their nuclear-cytoplasmic distributions, we used the data 

for the glycoprotein distributions quantified earlier (Table S1). The glycoproteins were 

separated into three groups based on the difference of the half-lives in the nucleus and the 

cytoplasm for each protein. We found that the group with longer nuclear half-lives had a 

significantly higher cytoplasmic distribution (Figure 5F).

Systematic study of the effect of O-GlcNAcylation on protein degradation

It was reported that O-GlcNAcylation can prevent some proteins from degrading (Ruan 

et al., 2013), but a systematic study of this effect at the proteome scale remains to be 

studied. We simultaneously recorded the degradation profiles of the O-GlcNAcylated and 

non-modified forms of proteins in the nucleus and the cytoplasm, respectively (Figure 

4A). In each compartment, the proteins quantified with both the O-GlcNAcylated and non-

modified forms were used for comparison to study the effect of O-GlcNAcylation on protein 

dynamics. With this approach, 217 and 174 proteins in the nucleus and the cytoplasm were 

quantified for the modified and non-modified forms (Table S6). The median half-lives of 

O-GlcNAcylated proteins were dramatically longer than the non-modified forms in the two 

compartments. In the cytoplasm, the median half-life of the non-modified forms is 18.4 

h, while that of the glycosylated forms is >2 times longer (38.8 h). The same trend was 

found in the nucleus (i.e., 15.0 versus 22.5 h [non-modified versus glycosylated]), but the 

increased magnitude is smaller (Figures 6A and 6B). The current results demonstrate that 

the protective effect is stronger for proteins in the cytoplasm than in the nucleus.

Next, we investigated the effect of O-GlcNAcylation on the degradation of proteins in 

different protein complexes. The extent of O-GlcNAcylation altering protein half-lives was 

represented by the log2 ratio of the half-life of an O-GlcNAcylated protein divided by that of 

the corresponding non-modified protein. Proteins in the NPC are heavily O-GlcNAcylated, 

and it was reported that the knockdown of OGT led to faster turnover of the NPC proteins 

due to increased ubiquitination and proteasomal degradation (Mizuguchi-Hata et al., 2013; 

Zhu et al., 2016). We found that all quantified O-GlcNAcylated proteins in the NPC have 

longer half-lives than their non-modified forms (Figure 6C), including both the peripheral 

nucleoporins (NUPs) (e.g., NUP153, NUP214) and the scaffold NUPs (NUP93), which is in 

accordance with the previous report (Zhu et al., 2016).

O-GlcNAcylation was identified on many splicing factors (Mckay and Johnson, 2010) and 

can control detained intron splicing (Tan et al., 2020). Here, we found that O-GlcNAcylation 

also stabilized the proteins in the spliceosome (Figure 6C). The majority of O-GlcNAcylated 

proteins quantified in the nucleolus have longer half-lives than the corresponding non-

modified ones, which is consistent with previous reports about some nucleolar proteins 
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being stabilized by O-GlcNAcylation (Chen et al., 2021). O-GlcNAcylation extensively 

modifies histone “writers” and “erasers” to modulate their activities, and one critical means 

is by mediating the protein stability. For example, histone-lysine N-methyltransferase EZH2 

(EZH2) (Lo et al., 2018) and lysine N-methyltransferase 2E (MLL5) (Ding et al., 2015) 

were stabilized by O-GlcNAcylation to facilitate their activities. Similarly, we also found 

many chromatin regulators stabilized by glycosylation (Figure 6C). Nevertheless, some 

glycoproteins have shorter half-lives compared with the corresponding non-modified form. 

BCL-6 corepressor (BCOR) was found to be destabilized by O-GlcNAcylation, which is 

not surprising, as some proteins destabilized by O-GlcNAcylation were already known 

(Cheng et al., 2016; Srikanth et al., 2010). The average half-life change of glycoproteins 

as chromatin regulators is significantly less than those of the glycoproteins in other nuclear 

complexes (Figure 6C), which may be due to glycoproteins related to the regulation of 

transcription being more dynamic. The log2 ratios of the glycoproteins containing different 

domains for the transcription regulation were compared (Figure 6D). The average log2 ratios 

for the proteins with C2H2 zinc finger and leucine zipper are significantly higher than those 

with winged helix-turn-helix and homeodomain-like domains. Our results demonstrate that 

O-GlcNAcylation has diverse effects on regulating the dynamics of proteins involved in 

transcription.

Cytoplasmic O-GlcNAcylated proteins are vital in cell homeostasis partly by modulating 

the functions of the mitochondrion (Zhao et al., 2016) and centrosome (Yuan et al., 2021). 

It was found that O-GlcNAcylation extensively stabilized proteins in these two organelles 

(Figure 6E). O-GlcNAcylation was reported to regulate mitochondrial response to oxidative 

stress through protecting the proteins from degradation (Ngoh et al., 2011; Zachara et al., 

2004). Hyper-O-GlcNAcylation on the centrosomal proteins can interfere with centrosome 

separation and disrupt the cell cycle (Liu et al., 2020). Here, we found that several 

O-GlcNAcylated proteins in the centrosome had a longer half-life than its corresponding 

non-modified form (Figure 6E).

Effect of O-GlcNAcylation on protein dynamics is related to local structures and the 
interactions with degrons

To investigate the factors contributing to the effect of O-GlcNAcylation on protein 

dynamics, we studied the correlation between the half-life differences and protein 

properties, local structures, and potential crosstalk with other modifications. The nuclear 

O-GlcNAcylated proteins were ranked based on the half-life ratio between the glycosylated 

and non-modified forms of each protein. We separated the quantified glycoproteins into 

three groups with equal numbers. Q1 contains glycoproteins with the lowest log2 ratio 

(glycosylated forms with half-lives shorter than or close to the corresponding non-modified 

ones), while Q3 has the highest ratio. The values for some protein property indices were 

normalized and compared between the groups (Figure 6F). The glycoproteins with the 

lowest log2 ratios (Q1) were significantly more hydrophobic, were more negatively charged, 

and had fewer protein interactions compared with those having the highest log2 ratios (Q3) 

(p < 0.05). O-GlcNAc can mediate protein interactions with other molecules (Tarbet et al., 

2018). As longer half-lives of proteins are often associated with more protein interactions 

Xu et al. Page 9

Cell Rep. Author manuscript; available in PMC 2022 June 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(Li et al., 2021), it is expected that the glycan can stabilize proteins while regulating protein 

interactions with other biomolecules.

The log2 ratios were also calculated based on the half-lives of well-localized glycosylation 

sites compared with the corresponding non-modified proteins. The relationships between 

the effect of O-GlcNAcylation on protein dynamics among the nuclear glycoproteins with 

disorderedness and solvent accessibility were examined site specifically (Figure 6G). It was 

found that O-GlcNAcylation sites on ordered and buried regions play a more important 

role in enhancing the protein stability. Next, nuclear O-GlcNAcylation sites were clustered 

based on whether their positions were adjacant to (±10 amino acid residues) or within a 

domain, and their log2 ratios were compared (Figure 6H). The sites close to a domain 

show a significantly higher stabilizing effect than those far from any domain. These results 

demonstrate that the locations of the sites are critical for stabilizing glycoproteins.

O-GlcNAcylation was reported to be involved in the crosstalk with other modifications, 

such as ubiquitilation and phosphorylation, and the crosstalk may be relevant to the 

dynamics of proteins (Ruan et al., 2013). The nuclear O-GlcNAcylation sites were clustered 

based on whether they have nearby ubiquitination sites or have both ubiquitination and 

phosphorylation sites nearby (±10 amino acid residues). Compared with those without an 

adjacent ubiquitination site, O-GlcNAcylation sites with known ubiquitination sites nearby 

significantly further extended their half-lives. As phosphorylation can induce ubiquitination 

(Hunter, 2007), the O-GlcNAcylation sites adjacent to the both modifications were grouped, 

and their log2 ratios were also significantly higher than those with no ubiquitination sites 

nearby (Figure 6I). These results agree with the previous observation that O-GlcNAcylation 

had extensive crosstalk with phosphorylation and ubiquitination to regulate the protein 

degradation through the proteasome (Ruan et al., 2013).

PEST is a polypeptide sequence that is enriched with proline (P), glutamic acid (E), serine 

(S), and threonine (T). The sequence was reported to serve as a signal for fast proteolysis 

(Rechsteiner and Rogers, 1996). The average log2 ratio of those close to the PEST sequence 

is higher than those far away, suggesting that O-GlcNAcylation could protect proteins 

by modulating the function of the PEST sequence (Figure S5). Caspase is a cysteine 

protease that is activated in apoptosis (Li and Yuan, 2008). O-GlcNAcylation may also 

be involved in the proteolytic cleavage process by caspases. The caspase cleavage sites were 

predicted among the glycoproteins, and the nuclear O-GlcNAcylation sites were grouped 

based on whether they are adjacent to (±10 amino acid residues) any caspase cleavage sites. 

O-GlcNAcylation sites near the cleavage sites catalyzed by caspase 2 (CASP2), caspase 3 

(CASP3), and caspase 7 (CASP7) have higher average log2 ratios (Figure 6J), suggesting 

that O-GlcNAcylation may prevent proteins from degradation by caspases. Overall, the 

current results demonstrate that O-GlcNAcylation can protect proteins through various 

mechanisms.

Effect of OGA on the dynamics of O-GlcNAcylated proteins

The turnover of O-GlcNAcylated proteins can be due to either the enzymatic removal 

of O-GlcNAc by OGA or protein backbone degradation. To study the effect of OGA on 

the dynamics of O-GlcNAcylated proteins, we performed an experiment to quantify the 
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degradation rates of O-GlcNAcylated proteins in the nucleus and the cytoplasm with the 

inhibition of OGA by Thiamet G (Yuzwa et al., 2008). In total, the half-lives of 228 and 232 

O-GlcNAcylated proteins were quantified in the nucleus and the cytoplasm, respectively, 

with the treatment of Thaimet G (Figure S6A; Tables S7 and S8). With the Thiamet G 

treatment, the median half-lives of O-GlcNAcylated proteins in both the nucleus and the 

cytoplasm became longer (Figure 7A), with the half-lives of nuclear glycoproteins becoming 

>2 times longer (22.2 versus 47.4 h), and a relatively smaller increase for cytoplasmic 

glycoproteins (38.8 versus 49.1 h). The results indicate that OGA makes more contributions 

to the turnover of glycoproteins in the nucleus than those in the cytoplasm.

One critical function of O-GlcNAcylation is to regulate gene transcription. For the 

transcription factors quantified here, the half-lives of the O-GlcNAcylated and the non-

modified forms, with or without the Thiamet G treatment, are included in Figures 7B and 

7C. For most transcription factors quantitated here, their half-lives in the nucleus are much 

shorter than in the cytoplasm. With the treatment of the OGA inhibitor, the half-lives of 

many nuclear transcription factors were increased dramatically, but many of those in the 

cytoplasm underwent little or no change.

It is expected that the faster that OGA removes the glycan from glycoproteins, the larger the 

half-life changes upon the inhibitor treatment. To test this further, nuclear O-GlcNAcylation 

sites quantified under both the treated or untreated conditions were extracted, and the 

21-mers with their adjacent sequences (±10 amino acids) were constructed. The sites were 

equally separated into three groups (P1, P2, and P3) based on the half-life changes with 

the OGA inhibition. Glycoproteins in P1 contained the sites with the smallest changes after 

the inhibitor treatment, while those in P3 had sites with the largest changes. The greater 

half-life changes were found to be correlated with more acidic and less polar residues near 

the glycosylation sites (Figure 7D). The sequence motif of the 21-mers from each group 

was generated to further evaluate the differences between the groups at certain positions 

(Figures S6B–S6D). P and V were overrepresented at −2 and −1, respectively, for all three 

groups. From +2 to +10, S and T were enriched for many residues in P1 and P2, but 

some of them were substituted by A and V in P3. The comparison results suggest that 

the half-lives of O-GlcNAcylation sites could be more dramatically extended by the OGA 

inhibition if hydrophobic amino acid residues instead of S or T were more enriched near 

glycosylation sites. The OGA substrate recognition was reported to be affected by the 

flanking residues around the glycosylation sites (Elbatrawy et al., 2020; Li et al., 2017). 

These results demonstrate further that the flanking residues around the glycosylation sites 

affect the glycan removal by OGA and the glycoprotein degradation rates.

DISCUSSION

Recently, investigation of the spatial distributions of proteins at the proteome level has 

provided invaluable information to understand their interactions and functions (Lundberg 

and Borner, 2019). Protein PTMs play critical roles in their translocation, interactions, and 

dynamics. Previously, the distribution of modified proteins was constantly measured at the 

single-protein level (Wu et al., 2014). O-GlcNAcylation is the only known type of protein 

glycosylation in the nucleus and the cytoplasm, but the distributions of O-GlcNAcylated 
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proteins in these two compartments have yet to be systematically investigated. Here, we 

systematically and site specifically studied the distributions of O-GlcNAcylated proteins in 

the nucleus and the cytoplasm. The integration of metabolic labeling and bioorthogonal 

chemistry allows for the selective enrichment of glycopeptides (Chen et al., 2015; 

Suttapitugsakul et al., 2020; Xiao et al., 2018). Benefitting from a cleavable linker, enriched 

glycopeptides were cleaved to generate a smaller mass tag for MS analysis. The distributions 

of many O-GlcNAcylated proteins were quantified using multiplexed proteomics. We found 

that O-GlcNAcylated proteins enriched in the nucleus or the cytoplasm have distinct 

functions. For instance, many nuclear-enriched glycoproteins are associated with nucleic 

acid binding, while many cytoplasmic-enriched glycoproteins are related to protein binding.

Site-specific analysis unravels the distributions of O-GlcNAcylated proteins with respect 

to the glycosylation sites. For example, GATAD2A with the O-GlcNAcylation site at 

T329 has a much higher nuclear distribution than the S625 or the S629 site, while no 

significant difference was found for the distribution of NUP214 with different sites. These 

results may be due to the fact that the O-GlcNAcylation can regulate protein translocation. 

Alternatively, the difference can be interpreted as some sites having regulatory roles and 

being preferentially modified in a certain compartment but others are not (Crook et al., 

2020). This method advances our understanding of protein O-GlcNAcylation and can be 

used to study the distributions of proteins with other types of modifications.

Previously, the subcellular dynamics of the whole proteome and the phosphoproteome 

were quantified (Larance et al., 2013; Olsen et al., 2006), but studies focused on protein 

O-GlcNAcylation have not been reported. Here, the half-lives of O-GlcNAcylated proteins 

in the nucleus and the cytoplasm were quantified. The median half-life of O-GlcNAcylated 

proteins in the nucleus is 22.5 h, while that in the cytoplasm is approximately 2 times 

longer (38.8 h). The possible reason for the higher dynamics of nuclear glycoproteins is 

that the glycan may be more actively removed in the nucleus, as supported by the results 

from the experiment with the treatment of the OGA inhibitor. The median half-life for 

glycoproteins in the nucleus increased >2 times with the OGA inhibition—much more 

than the half-life changes for glycoproteins in the cytoplasm. Another possibility for the 

longer-lived cytoplasmic glycoproteins could be related to the effect of co-translational 

O-GlcNAcylation preventing the ubiquitination of nascent polypeptides (Zhu et al., 2015), 

as protein translation occurs in the cytoplasm. Finally, we found the correlation between 

the distribution and the dynamics of O-GlcNAcylated proteins. Glycoprotein tends to have 

the higher cytoplasmic distribution when its half-lives in the nucleus and the cytoplasm are 

closer.

To demonstrate the effect of O-GlcNAcylation on protein turnover on a global scale, 

we simultaneously quantified the half-lives of the glycosylated and the non-modified 

forms of proteins. The results revealed that the majority of O-GlcNAcylated protein 

had longer half-lives than their non-modified counterparts in both the nucleus and the 

cytoplasm. Further analyses indicate that the O-GlcNAcylation sites located in the buried 

and ordered regions and next to a protein domain have stronger stabilizing effects against 

degradation. Previous studies showed that O-GlcNAcylation has the extensive crosstalk with 

phosphorylation and ubiquitination (Butkinaree et al., 2010). Accordingly, we also observed 
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that O-GlcNAcylation sites adjacent to ubiquitination and phosphorylation sites further 

delayed protein degradation compared with those far from these sites. A similar effect was 

also found for O-GlcNAcylation sites close to the caspase cleavage sites. The present work 

further demonstrates the different mechanisms for the protective effect of O-GlcNAcylation 

on proteins.

Limitations of the study

To enrich the low-abundance O-GlcNAcylated proteins, the cells were treated with 

Ac4GalNAz containing an azide group that enables the following selective enrichment. 

However, the azido group causes slight structural differences for the sugar analog from the 

original GlcNAc. Despite the slight difference, the azido-sugar is a good mimic to study the 

distribution and dynamics of protein O-GlcNAcylation for the following reasons: First, the 

azido group is very small and biologically inert, and it has minimal cytotoxicity (Sletten 

and Bertozzi, 2009, 2011). Second, the incorporation of the azido group does not prevent 

O-GlcNAz to be added and removed by OGT and OGA, respectively, which are the only 

known enzymes for regulating the cycling of O-GlcNAcylation on protein substrates (Li et 

al., 2016; Zaro et al., 2011).

When an O-GlcNAcylated protein is very stable, the calculated half-life may not be very 

accurate, as the chase period is 24 h. Therefore, when the half-life was calculated to be >200 

h, it was assigned as “stable.” In this case, it provides some information about the stability, 

but not the accurate half-life.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents 

should be directed to and will be fulfilled by the lead contact, Ronghu Wu 

(ronghu.wu@chemistry.gatech.edu).

Materials availability—This study did not generate new unique reagents.

Data and code availability

• The raw files of proteomics data generated by MS are available in a publicly 

accessible website (MassIVE, massive.ucsd.edu) with the accession number of 

MSV000089413 (ftp://massive.ucsd.edu/MSV000089413/).

• This paper does not report original code.

• Any additional information required to reanalyze the data reported in this work 

paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Jurkat cells (from American Type Culture Collection, ATCC) were grown in RPMI-1640 

medium (Sigma-Aldrich) containing 10% fetal bovine serum (FBS, Thermo) in a humidified 

incubator at 37°C with 5.0% CO2. The cell density was monitored regularly.
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METHODS DETAILS

Cell culture, metabolic labeling, and nucleus/cytoplasm isolation—When the 

density of Jurkat cells reached 2 × 106 cells/mL, the medium was replaced with the 

one containing 100 μM N-azidoacetylgalactosamine-tetraacetylated (Ac4GalNAz, Click 

Chemistry Tools) and the cells were further cultured for 48h. For the experiment to 

analyze the distribution of O-GlcNAcylated proteins, the cells were harvested directly by 

centrifugation. For the experiments to quantify the dynamics of O-GlcNAcylated proteins, 

the medium with light lysine (K0) and arginine (R0) was replaced with heavy lysine 

(K8) and heavy arginine (R6). Ac4GalNAz was replaced with 100 μM N-acetylglucosamine-

tetraacetylated (Ac4GalNAc, Synthose). The cells were further cultured for 0, 3, 6, 9, 12, 

or 24 h, respectively, before being harvested. For the experiment with the OGA inhibitor 

treatment, Thiamet G (50 μM) was added to the media during the chase period to inhibit the 

removal of O-GlcNAc by OGA.

The harvested cells were washed with phosphate buffered saline (PBS) twice. Nucleus 

isolation was performed following previous publications (Nabbi and Riabowol, 2015; Wang 

et al., 2016). Briefly, the cells were resuspended into a nucleus isolation buffer containing 

50 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), pH = 7.4, 60 mM 

KCl, 50 μM Thiamet-G (Cayman chemical), 1 tablet/10 mL EDTA-free protease inhibitor 

(Roche), and 0.1% NP-40 (Sigma-Aldrich). The cell suspension was gently triturated for 

5 times, incubated on ice for 3 min, and centrifuged at 500 g for 3 min. The pellets 

were separated from the supernatant and washed with the nucleus isolation buffer without 

NP-40. After centrifugation, the nuclear fraction was collected. For the cytoplasmic part, the 

supernatant was centrifuged at 500 g for 3 min and the precipitate, if any, was discarded. The 

supernatant was the cytoplasmic fraction. The cell nuclei were lysed in a buffer containing 

50 mM HEPES, pH = 7.4, 150 mM NaCl, 0.5% SDC, 0.1% SDS, 1% NP-40, 50 μM 

Thiamet G, 50 units/mL Benzonase® nuclease (Millipore) and 1 tablet/10 mL EDTA-free 

protease inhibitor for 2 h at 4°C. After lysis, 5% of the cell lysate from each sample 

was separated for the whole proteome degradation analysis, and the rest were used for 

O-GlcNAcylated protein dynamics analysis.

Glycoprotein enrichment and digestion—O-GlcNAcylated proteins labeled with 

the azido group in the lysates were tagged through the copper(I)-catalyzed azide-alkyne 

cycloaddition (CuAAC) reaction. Briefly, 250 μM photocleavable (PC)-biotin-alkyne (Click 

Chemistry Tools), 1 mM CuSO4, 5 mM Tris(3-hydroxypropyltriazolylmethyl) amine 

(THPTA, Click Chemistry Tools), and 5% DMSO were added to the lysate. After thorough 

mixing, freshly prepared 15 mM sodium L-ascorbate (Sigma) and 15 mM aminoguanidine 

hydrochloride (Sigma) were added to initiate the reaction. The reaction was protected from 

light and lasted for 2 h at room temperature. Then, the reaction was quenched, and the 

proteins were purified using the methanol-chloroform precipitation method.

Proteins were digested with sequencing grade modified trypsin (Promega) with the ratio 

of protein: trypsin = 100: 1 in the digestion buffer (50 mM HEPES, pH = 8.6 and 1.6 M 

urea) at 37°C for 16 h. After protein digestion, the peptides were desalted using a tC18 

Sep-Pak cartridge (Waters). Then the purified peptides were enriched with high-capacity 
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NeutrAvidin™ agarose resins (Thermo) according to manufacturer’s protocol. The peptides 

were incubated with the NeutrAvidin resins for 1 h at room temperature. The resins were 

then transferred to a spin column, washed 10 times with 100 mM PBS and 2 times with 

water. Finally, the resin was resuspended in water, and transferred to a glass vial, and 

the enriched glycopeptides were eluted under UV radiation at 350 nm for 1 h at room 

temperature. The eluent was frozen, lyophilized, and stored at −80°C for future use.

Proteins in the cell lysates for the whole proteome degradation were precipitated using 

the methanol-chloroform precipitation method, and then they were digested with trypsin 

for 16 h at 37°C. The digestion was quenched by adding trifluoroacetic acid (TFA) to a 

final concentration of 0.4%. The resulting peptides were desalted using the SepPak tC18 

cartridges (Waters) and freeze-dried before TMT labeling.

TMT labeling and peptide fractionation—For the analysis of O-GlcNAcylated protein 

distribution, three nuclear samples from the triplicate experiments were labeled with the 

first three channels (126, 127, and 128) of the TMT sixplex reagents (Thermo), and three 

samples of the cytoplasmic fractions were labeled with the other three channels (129, 

130, and 131), respectively. The TMT labeling approach was adopted from the reported 

protocol with slight modification (Zecha et al., 2019). Briefly, the lyophilized peptides were 

resuspended in 33 μL of 100 mM HEPES, pH = 8.5 and 10 μL ACN. Each tube of the TMT 

labeling reagent was dissolved in 41 μL anhydrous ACN and then 10 μL of the solution 

was transferred to the designated sample. The labeling was performed for 1 h at room 

temperature, and the reaction was quenched by adding 4 μL of 10% hydroxyamine. The 

samples were mixed, lyophilized, and fractioned using the stage-tip method.

For the experiment to quantify the dynamics of O-GlcNAcylated proteins, the nuclear 

fractions and the cytoplasmic fractions at the six time points were separately labeled by one 

set of the TMT reagents. After the reaction, the six samples from the nuclear fraction were 

mixed as the nucleus sample (“Nuc”) and the cytoplasmic ones were mixed as the cytoplasm 

sample (“Cyto”). The glycopeptides were further purified using stage-tip and fractionated 

into six samples for LC-MS analysis. The TMT labeling for quantifying the dynamics of 

the non-modified proteins was the same as for the O-GlcNAcylated proteins. After labeling 

and mixing, the samples were fractionated into 40 fractions using high-pH reversed-phase 

high performance liquid chromatography (HPLC) with a 40-min gradient of 5–55% ACN in 

10 mM ammonium formate (pH = 10). The fractions were combined into 20 samples and 

purified by stage-tip before LC-MS analysis.

LC-MS/MS analysis—The peptides were resuspended in a solution containing 5% ACN 

and 4% FA, and 4 μL was loaded to a Dionex WPS-3000TPLRS autosampler (UltiMate 

3000 thermostatted Rapid Separation Pulled Loop Wellplate Sampler) onto a microcapillary 

column packed with C18 beads (Magic C18AQ, 3 μm, 200 Å, 75 μm × 16 cm, Michrom 

Bioresources). The peptides were separated by reversed-phase HPLC using an UltiMate 

3000 binary pump with a 120 min gradients of 2–32% ACN (with 0.125% FA). A hybrid 

dual-cell quadrupole linear ion trap - Orbitrap mass spectrometer (LTQ Orbitrap Elite, 

ThermoFisher, with Xcalibur 3.0.63 software) was coupled to HPLC for the identification 

and quantification of glycopeptides. The analysis was performed under a data-dependent 
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Top15 method. For each cycle, a full MS scan with a resolution of 60,000 was followed 

by up to 15 tandem MS scans for the most intense ions at the resolution of 15,000. Both 

full and tandem MS were recorded in the Orbitrap cell with high resolution and high mass 

accuracy. The selected ions were excluded from further sequencing for 90 seconds. Ions with 

singly or unassigned charges were not selected for fragmentation. Higher-energy collision 

dissociation (HCD) with 34% normalized energy was employed to fragment the precursors.

Database search and data filtering—The raw files were converted into mzXML files, 

and searched against the human (Homo sapiens) proteome database from UniProt using 

the SEQUEST algorithm (version 28) (Eng et al., 1994). The following parameters were 

used during the search: 20 ppm precursor mass tolerance; 0.025 Da product ion mass 

tolerance; up to two missed cleavages; up to three modifications on each peptide; fixed 

modifications: oxidation of methionine (+15.9949 Da), TMT modification of lysine and 

the peptide N-terminus (+229.1629 Da); variable modifications were used for glycopeptide 

search: glycosylation on serine, threonine, and cysteine (modified GlcNAc, +528.2859 Da). 

False discovery rates (FDR) of glycopeptide and glycoprotein identifications were evaluated 

by the target-decoy method (Elias and Gygi, 2007). Linear discriminant analysis (LDA) was 

employed to control the quality of glycopeptide identifications using multiple parameters, 

including XCorr, ΔCorr, missed cleavages, mass accuracy, peptide length and charge state. 

Peptides with fewer than seven amino acid residues were discarded. The FDRs of peptides 

were controlled to <1%, and the dataset was restricted to glycopeptides when determining 

FDRs for glycopeptides quantification.

Glycosylation site localization—The confidence of glycosylation site localization was 

determined by ModScore, which is similar to Ascore. It employs a probabilistic algorithm 

that considers all possible glycosylation sites in a glycopeptide and uses the presence of 

experimental fragment ions unique to each site to find the best match (Beausoleil et al., 

2006). Sites with ModScore > 13 (p < 0.05) were considered as confidently localized. In 

the earlier work published by our group, it was found that when cells were labeled with 

per-acetylated sugar analogs, protein S-glycosylation could occur, which may interfere with 

the identification of O-GlcNAcylation (Xiao and Wu, 2017). To remove S-glycosylation 

sites, we applied the following stringent criteria. First, during database search, serine, 

threonine, and cysteine were listed as possible glycosylation sites, and any glycopeptides 

with the modified GlcNAc localized on the cysteine residues were removed. Additionally, 

any identified O-GlcNAcylated peptides with a cysteine residue and the ModScore value 

of the site less than 13 (i.e., GlcNAcylation site not well-localized on S or T) were also 

removed. Eventually, only confidently identified glycopeptides with the glycan on the serine 

or threonine residue were kept.

Peptide and glycopeptide quantification—For the quantification of the O-GlcNAc 

distribution, the ratios were calculated based on the intensities of the TMT reporter ions 

from the triplicate experiments (126/129, 127/130, and 128/131). The distribution ratio of 

each identified glycopeptide was the average value of the three ratios from the triplicate 

experiments. Furthermore, the protein distribution ratio was the average of three ratios from 
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the triplicate experiments, which were calculated based on the median value of all peptide 

ratios from the same protein in each sample.

For the quantification of protein dynamics, the intensities of the reporter ions in the last 

five channels were used to calculate the ratios against the first one (126). For every 

unique glycopeptide, the ratio for each channel is the median of all ratios from the same 

peptides quantified here. For every glycoprotein, the ratio for each channel is the median 

of all ratios from all the peptides belonging to this protein. To calculate the half-lives of 

O-GlcNAcylated proteins, the six ratios were fitted using the exponential decay equation(p = 

p0 *e−kt). The half-life of any protein with k < 0, or with half-lives longer than 200 h were 

assigned as “stable” as their degradation rates cannot be accurately determined in the chase 

period of 24 h.

Bioinformatic analysis—Protein functional annotation information was obtained from 

UniProt (UniProt, 2019) (https://www.uniprot.org/) and analyzed using the Database for 

Annotation, Visualization and Integrated Discovery (DAVID (Huang et al., 2009), https://

david.ncifcrf.gov/). The list of human transcription factors was extracted from the Human 

Transcription Factors (Lambert et al., 2018) (http://humantfs.ccbr.utoronto.ca/). Only well-

localized sites with the ModScore value of >13 were selected to perform the motif analysis 

using the online software (pLogo (O’Shea et al., 2013), https://plogo.uconn.edu/). Protein 

abundance information was found from the PAXdb database (Wang et al., 2015). Domain 

analysis was carried out using available information from the InterPro (Hunter et al., 

2009) database, UniProt database, and the online prediction software SUPERFAMILY 

(Pandurangan et al., 2019). Protein secondary structures of the identified O-GlcNAcylated 

proteins were predicted by NetSurfP 1.1 (Petersen et al., 2009). Information of nuclear 

localization signal (NLS) was extracted from NLSdb (Bernhofer et al., 2018), and leucine-

rich nuclear export signal (NES) was predicted by NetNES 1.1 (la Cour et al., 2004). The 

illustrations of chromatin, nuclear pore complex and spliceosome C complex were generated 

by BioRender (https://app.biorender.com/biorender-templates). Annotations of spliceosomal 

proteins were extracted from Spliceosome Database (Cvitkovic and Jurica, 2013). 

Transcription factors were annotated to different transcription factor families by InterPro 

(Mitchell et al., 2019). The information for protein physiochemical properties was extracted 

from the R package “Peptides” (https://github.com/dosorio/Peptides/). Ubiquitination and 

phosphorylation sites were extracted from the online website PhosphoSitePlus (https://

www.phosphosite.org) (Hornbeck et al., 2015). The caspase cleavage sites were predicted by 

DeepCleave (Li et al., 2020). PEST sequences were predicted by SitePrediction (Verspurten 

et al., 2009).

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis was performed using Excel and OriginLab. The statistical details of the 

experiments can be found in the Results section and in figure legends. Significance was 

defined when p value was <0.05, and p values were calculated using the two-tailed Student’s 

t test, two-tailed, unless otherwise stated.
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Highlights

• O-GlcNAcylated proteins with different functions have distinct distributions

• The distributions of O-GlcNAcylated proteins vary site specifically

• Cytoplasmic O-GlcNAcylated proteins are generally more stable than nuclear 

proteins

• Glycoproteins are more stabilized in the nucleus under the OGA inhibition
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Figure 1. Quantification of the distributions of O-GlcNAcylated proteins in the nucleus and the 
cytoplasm
(A) Experimental procedure for analyzing the distributions of O-GlcNAcylated proteins in 

the nucleus and the cytoplasm.

(B) Example MS/MS spectrum of an O-GlcNAcylated peptide identified. The inset shows 

the reporter ion intensities. The peak with m/z = 529.2932 is from the protonated modified 

GlcNAc moiety.

(C) Reproducibility of the results from the biological triplicate experiments. Each data 

point represents the log2(ratio) for the distribution of a unique glycopeptide quantified in 2 

replicates.

See also Figure S1.
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Figure 2. Analysis of the distributions of O-GlcNAcylated proteins in the nucleus and the 
cytoplasm
(A) Distributions of O-GlcNAcylated proteins enriched in the cytoplasm, the nucleus, or 

neither compartment (n = 3 biological replicates). p values were determined using the one 

sample t test, null hypothesis: mean = 0, two-tailed.

(B–D) The proteins in each category were clustered based on cellular compartment, 

biological process, and molecular function. The results for the cytoplasm-enriched proteins 

are in (B), the nucleus-enriched proteins in (C), and those not enriched in either 

compartment are in (D). The size of the circles is proportional to the number of proteins 

in each category. p values were determined using Fisher’s exact test, 1-tailed in (B)–(D).

See also Figure S2 and Table S1.
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Figure 3. Regulation of the protein distribution by O-GlcNAcylation
(A) Comparison of the distribution of O-GlcNAcylated proteins related to different clusters 

based on cellular compartment, biological process, and molecular function. The results are 

displayed as boxplots, with each component separated by the dashed lines. Center line: mean 

value. Box: 25th/75th percentiles. Whiskers: upper/lower inner fences. The gray dots behind 

each box: the log2(ratio) of each protein in this category.

(B) Comparison of the distribution of O-GlcNAcylated proteins with or without NLS and 

NES.

(C) Distribution of O-GlcNAcylated proteins with single or multiple O-GlcNAcylation sites 

on each protein. Box: 25th/75th percentiles. Center line: mean value.

(D) Graphic view of the log2(ratio) measured for each quantified O-GlcNAcylation site. 

Each tick on the horizontal axis represents an O-GlcNAcylated protein.

Xu et al. Page 27

Cell Rep. Author manuscript; available in PMC 2022 June 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(E) Example proteins from (D) with quantified O-GlcNAcylation sites (data are represented 

as means ± SEMs, n = 3 biological replicates). The differences are assessed by the 2-sample 

t test, 2-tailed, and the significance levels are labeled *p < 0.05, **p < 0.01, and ***p < 

0.001.

See also Tables S2 and S3.
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Figure 4. Systematic quantification of the dynamics of the glycosylated and non-modified forms 
of proteins in the nucleus and the cytoplasm
(A) Experimental design to systematically quantify the dynamics of the glycosylated and 

non-modified forms of proteins in the 2 cellular compartments.

(B–E) Examples of the glycopeptide degradation. Data are represented as means ± SEMs (n 

= 2 biological replicates).

(F–H) Examples of site-specific quantification of the half-lives of O-GlcNAcylated proteins 

in the nucleus and the cytoplasm.

See also Figure S3.
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Figure 5. Evaluation of the half-lives of O-GlcNAcylated proteins in the nucleus and the 
cytoplasm
(A) Overlap of O-GlcNAcylated proteins quantified in the nucleus and the cytoplasm from 

the duplicate experiments.

(B and C) Half-life distributions of O-GlcNAcylated proteins in the nucleus (B) and the 

cytoplasm (C) from the duplicate experiments.

(D and E) Analysis of O-GlcNAcylated proteins with different half-lives in the cytoplasm 

(D) and the nucleus (E) based on cellular compartment, biological process, molecular 

function, and sequence feature.

(F) Comparison of the half-life differences with the distributions of O-GlcNAcylated 

proteins. The glycoproteins are separated into 3 groups based on the comparison of their 

half-lives in the nucleus and the cytoplasm of each protein. Glycoproteins with longer 

half-lives in the nucleus are included in the group “Tnuc > Tcyto.” Those with cytoplasmic 

half-lives >2 times longer than the nuclear half-lives are included in “Tcyto> 2*Tnuc.” The 

rest is in the group “in between.” Center line: mean value. Box: 25th/75th percentiles. 

Whiskers: upper/lower inner fences. The differences between the groups are calculated by 

the 2-sample t test, 2-tailed, and the significance levels are labeled *p < 0.05, **p < 0.01, 

and ***p < 0.001.

See also Figure S4 and Tables S4 and S5.
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Figure 6. Effect of O-GlcNAcylation on protein dynamics
(A and B) Half-life distribution of O-GlcNAcylated proteins and the corresponding non-

modified form in the nucleus (A) and the cytoplasm (B). The area under the curve (AUC) 

represents the number percentage of the proteins with the half-lives in the range.

(C) Effect of O-GlcNAcylation on the dynamics of glycoproteins quantified in different 

protein complexes in the nucleus.

(D) Effect of O-GlcNAcylation on the dynamics of proteins with different chromatin-

binding domains.

(E) Effect of O-GlcNAcylation on protein dynamics in the mitochondrion and the 

centrosome in the cytoplasm.

(F) Heatmap of Z scores transformed from the average of the protein property-related 

values. Hydrophobicity: GRAVY hydrophobicity index; charge: the net charge of a protein; 

Boman: potential protein interaction index based on protein sequences (the higher the value, 
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the higher the binding potential); InstaIndex: prediction of protein stability. The values of 

each protein property were compared for proteins in Q1, Q2, and Q3 and examined by the 

2-sample t test.

(G) Evaluation of the correlation between the effect of O-GlcNAcylation on protein 

dynamics with the protein secondary structures

(H–J) Comparison of the effect of the O-GlcNAcylation on protein dynamics with whether 

the glycosylation sites are adjacent to protein domains (H), near the ubiquitination and 

phosphorylation sites (I), and near the caspase cleavage sites (J). The boxplots followed the 

same settings. Center line: mean value. Box: 25th/75th percentiles. Whiskers: upper/lower 

inner fences. The differences between the groups were calculated by the 2-sample t test, 

2-tailed, and the significance levels are labeled *p < 0.05, **p < 0.01, and ***p < 0.001.

See also Figure S5 and Table S6.
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Figure 7. Investigation of the effect of OGA on the dynamics of O-GlcNAcylated proteins
(A) Distribution of the half-lives of O-GlcNAcylated proteins in the nucleus and the 

cytoplasm with or without the treatment of the OGA inhibitor.

(B and C) Comparison of the half-lives of O-GlcNAcylated transcription factors in the 

nucleus (B) and the cytoplasm (C) with or without the OGA inhibitor treatment.

(D) Evaluation of the effect of the adjacent residues on the half-life change for the nuclear 

O-GlcNAcylation sites. The acidic residues in P3 are significantly more than those in P1, 

while the polar residues are significantly less. The differences between the groups were 

calculated using the 2-sample t test, 2-tailed, and the significance levels are labeled *p < 

0.05.

See also Figure S6 and Tables S7 and S8.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

N-azidoacetylgalactosamine-tetraacetylated Click Chemistry Tools Cat#1086; CAS 653600-56-7

N-acetylglucosamine-tetraacetylated Synthose Cat#AL363; CAS 3006-60-8

Thiamet-G Cayman chemical Cat#13237; CAS 1009816-48-1

cOmplete™, Mini, EDTA-free protease inhibitor 
cocktail

Sigma-Aldrich Cat# 11836170001

photocleavable (PC)-biotin-alkyne Click Chemistry Tools Cat#1118

Tris(3-hydroxypropyltriazolylmethyl) amine Click Chemistry Tools Cat#1010; CAS 760952-88-3

sodium L-ascorbate Sigma-Aldrich Cat#A7631; CAS 134-03-2

aminoguanidine hydrochloride Sigma-Aldrich Cat#396494; CAS 1937-19-5

sequencing grade modified trypsin Promega Cat#V5113

Pierce™ high-capacity NeutrAvidin™ agarose Thermo Fisher Scientific Cat#29204

TMTsixplex™ Isobaric Label Reagent Set Thermo Fisher Scientific Cat#90066

hydroxylamine hydrochloride Sigma-Aldrich Cat#159417; CAS 5470-11-1

Experimental models: Cell lines

Jurkat, Clone E6–1 ATCC Cat#TIB-152; RRID: CVCL_0367

Software and algorithms

Xcalibur™ Thermo Fisher Scientific CAT#OPTON-30965

SEQUEST (Eng et al., 1994) https://pubs.acs.org/doi/10.1021/jasms.8b00502

Ascore (Beausoleil et al., 2006) https://www.nature.com/articles/nbt1240

pLogo (O’Shea et al., 2013) https://plogo.uconn.edu/

PAXdb (Wang et al., 2015) https://pax-db.org/

SUPERFAMILY (Pandurangan et al., 2019) http://supfam.org/

NetSurfP 1.1 (Petersen et al., 2009) http://www.cbs.dtu.dk/services/NetSurfP-1.1/

NLSdb (Bernhofer et al., 2018) https://rostlab.org/services/nlsdb/

NetNES 1.1 (la Cour et al., 2004) http://www.cbs.dtu.dk/services/NetNES/

Spliceosome Database (Cvitkovic and Jurica, 2013) http://spliceosomedb.ucsc.edu/

SitePrediction (Verspurten et al., 2009) https://www.dmbr.ugent.be/prx/bioit2-public/
SitePrediction/index.php

Deposited data

Proteomics raw files This study MassIVE (MSV000089413)

proteomes - Homo sapiens (Human) UniProt https://www.uniprot.org/proteomes/UP000005640

Database for Annotation, Visualization and Integrated 
Discovery (DAVID)

(Huang et al., 2009) https://david.ncifcrf.gov/home.jsp

list of human transcription factors (Lambert et al., 2018) http://humantfs.ccbr.utoronto.ca/

InterPro (Hunter et al., 2009) https://www.ebi.ac.uk/interpro/

Others

UltiMate WPS-3000TPL RS Autosampler Dionex Cat#5826.0020

UltiMate 3000 Rapid Separation Binary System Thermo Fisher Scientific Cat#IQLAAAGABHFAPBMBEZ

Orbitrap Elite™ Hybrid Ion Trap-Orbitrap Mass 
Spectrometer

Thermo Fisher Scientific Cat#IQLAAEGAAPFADBMAZQ
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