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Editorial on the Research Topic

Homeostasis and Allostasis of Thyroid Function

CUrrENt CHallENGES iN tHYroidoloGY

A basic understanding of thyroid control involving pituitary thyrotropin (TSH) has become a cor-
nerstone for the contemporary diagnosis of thyroid disorders. However, long-held simplistic inter-
pretations of the classical feedback concept fall short of the elusive goal of a universally applicable 
and reliable diagnostic test. Diagnostic ambiguities may arise from the dynamic nature of thyroid 
homeostasis. Concentrations of TSH and T3 are governed by circadian (1) and, additionally for  
TSH, ultradian rhythms (2). Plasticity of the hypothalamic–pituitary–thyroid axis in form of adaptive 
responses may promote misdiagnosis, especially in pregnancy and critical illness (3, 4). Diagnosis  
of subclinical dysfunction is also dependent on the mode of statistical analysis (5–9).

Consequently, the clinical care of thyroid patients faces major challenges, foremost ill-defined 
reference ranges for TSH and thyroid hormones (THs), and persistently poor quality of life in a 
substantial subset of treated hypothyroid patients (10). Divergent criteria by guidelines for defining 
thyroid disease and guiding therapeutic intervention have further added to the confusion. It remains 
unclear, if patients with subclinical hypothyroidism benefit from treatment and which are sensible 
targets of substitution therapy (11, 12).

By addressing predictive adaptation, the rather new theory of allostasis complements the estab-
lished concept of homeostasis. In situations of strain and stress, allostasis ensures stability through 
change by modifying setpoints and parameters of feedback control (13–15). Despite being a basically 
beneficial reaction allostasis may also expose the organism to a new kind of strain referred to as 
allostatic load, which may result in even life-threatening diseases.

This research topic focusing on homeostasis and—still understudied—allostasis of thyroid func-
tion was initiated with the goal that deeper physiological insights in pituitary–thyroid feedback 
control may aid in solving the aforementioned problems. A series of articles summarizes the state of 
current scientific knowledge, and delivers new perspectives, as significant progress has been made 
in that regard.

tHYroid HoMEoStaSiS—UNEXPECtEd CoMPlEXitiES  
iN a ClaSSiC ENdoCriNE FEEdBaCK looP

A review article by the editors (Hoermann et al.) provides an overview of homeostatic mechanisms 
in the light of recent research. The classical “short feedback” structure (Astwood-Hoskins loop) (16) is 
now complemented by additional motifs, an “ultrashort” autocrine loop, where TSH inhibits its own 

https://www.frontiersin.org/Endocrinology/
https://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2018.00287&domain=pdf&date_stamp=2018-06-05
https://www.frontiersin.org/Endocrinology/archive
https://www.frontiersin.org/Endocrinology/editorialboard
https://www.frontiersin.org/Endocrinology/editorialboard
https://doi.org/10.3389/fendo.2018.00287
https://www.frontiersin.org/Endocrinology/
https://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:johannes.dietrich@ruhr-uni-bochum.de
mailto:johannes.dietrich@ruhr-uni-bochum.de
https://doi.org/10.3389/fendo.2018.00287
https://www.frontiersin.org/Journal/10.3389/fendo.2018.00287/full
https://www.frontiersin.org/Journal/10.3389/fendo.2018.00287/full
https://loop.frontiersin.org/people/238877
https://loop.frontiersin.org/people/245496
https://loop.frontiersin.org/people/244229
https://www.frontiersin.org/researchtopic/4262
https://doi.org/10.3389/fendo.2015.00177


2

Dietrich et al.

Frontiers in Endocrinology | www.frontiersin.org June 2018 | Volume 9 | Article 287

Editorial: Thyroid Homeostasis and Allostasis

secretion, and a TSH-T3 shunt relaying stimulation from pituitary 
to intrathyroidal step-up deiodinases. Although documented for 
decades on a biochemical level (17, 18), the clinical importance 
of the TSH-T3 shunt has only recently been recognized (19–23).

Newly identified non-classical processing structures add 
to the complexity of the control system. They explain both 
pulsatile thyrotropin release and significant deviations from a 
log-linear relationship between FT4 and TSH concentrations 
[Hoermann et al.; (24–26)]. In onset hypothyroidism, rising TSH 
concentrations stimulate T3 formation (22), thereby maintaining 
thyroid signaling and unburdening the thyroid from T4 synthesis 
(Hoermann et al.).

A balancing concept for TSH, FT4, and FT3 is introduced under 
the term relational stability [Hoermann et al.; (22)]. Importantly, 
it is lacking in athyreotic patients and suspended when treatment 
with L-T4 reduces TSH concentration—an important argument 
against universal L-T4 substitution in subclinical hypothyroidism.

The novel clinical concepts feed back to theory. Berberich et al. 
describe an expanded physiology-based mathematical model of 
thyroid homeostasis that incorporates the rediscovered TSH-T3 
shunt. This model extends a rich tradition of related “parametri-
cally isomorphic” models (27–35), demonstrating that circadian 
variations of FT3 concentrations are well explained by TSH action 
and shedding a fresh light on the evolution of subclinical thyroid 
diseases (Berberich et al.).

Interpretation of thyroid function tests can be severely affected 
by homeostatic time constants resulting in hysteresis effects (36), 
as reviewed by Leow, extending implications to antithyroid treat-
ment and LT4 substitution.

tECHNoloGiCal adVaNCEMENtS aNd 
NoVEl diaGNoStiC toolS

Although sensitive for primary hypothyroidism, TSH measure-
ment has low specificity and is unable to detect dysfunctions of 
central origin. Isolated TSH measurements may be misleading in 
certain physiological (37) and allostatic conditions (38), includ-
ing non-thyroidal illness (39).

In a short perspective article, we summarize methodological 
principles and clinical trial results (Dietrich et  al.) for novel 
diagnostic approaches based on mathematical modeling, such 
as functional thyroid reserve capacity and step-up deiodinase 
activity. These calculated parameters deliver estimates for “hid-
den” structure parameters of thyroid homeostasis and provide 
early indicators of thyroid failure. Reconstructing the individual 
equilibrium point (the so-called set point) of thyroid homeostasis 
is facilitated by new tools and may prove useful as a personal 
target for L-T4 dosage titration (40, 41). Mathematical modeling 
can further improve interpretation of L-T4 absorption tests (42).

tHE ENiGMatiC rolE oF NoN-
ClaSSiCal tH

The world of THs is composed of more than T4 and T3. Today, 
we know 27 metabolites derived from the thyronine skeleton, 

some of them being hormonally active [Hoermann et al.; (43)]. 
Thyronamines have received special attention, binding to trace 
amine-associated receptors (44) and acting as functional antago-
nists of iodothyronines (45, 46).

Glossmann et  al. critically appraise suggested pharmaco-
logical uses of 3-monoiodothyronamine (3-T1AM), e.g., for 
therapy of stroke or in long-lasting space flights. Based on 
its pleiotropic effects they question if 3-T1AM can be a safe 
cryogenic drug. Some of the inconsistencies in reported serum 
concentrations may result from plasma protein binding, potential 
role of gut microbiota in the formation of thyronamines from 
iodothyronines or conversion of 3-T1AM to 3-iodothyroacetic 
acid (3-TA1), a possible major mediator of thyronaminergic  
signaling (47).

HYPotHalaMUS–PitUitarY–tHYroid 
aXiS—aN oPEN aNd dYNaMiC 
SYStEM

The traditional view of pituitary–thyroid feedback control hold-
ing T4 plasma concentration constant close to a fixed set point 
(48) has been challenged by variable concentrations of TSH and 
THs in certain physiological situations beyond thyroid disease 
(38, 49–55). Thyroid allostasis delivers a unified theory for a 
plethora of adaptive processes spanning from fetal life, pregnancy, 
starvation, exercise, obesity, aging, and general severe illness 
to psychiatric disorders. In strain and stress, type 1 and type 2 
allostasis affect thyroid function in different ways, creating each 
distinctly recognizable patterns (Chatzitomaris et al.).

ProSPECtUS

Deeper insights in the physiology of thyroid function and its 
homeostatic control warrant a rethinking of diagnostic practice. 
The old paradigm employing TSH in the center of diagnostic 
work-up has to be replaced by a relational concept, where TSH 
is interlocked with FT4 and FT3, and multivariable distributions 
represent homeostatic equilibria (9, 30). This new approach 
allows for personalized interpretation of thyroid function and 
understands physiological influences as constituents of homeo-
static/allostatic control modes (Hoermann et al.).
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