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Abstract: Zika virus (ZIKV) infections have caused a wide spectrum of neurological diseases, such as
Guillain-Barré syndrome, myelitis, meningoencephalitis, and congenital microcephaly. No effective
therapies currently exist for treating patients infected with ZIKV. MicroRNAs (miRNAs) are a
group of small RNAs involved in the regulation of a wide variety of cellular and physiological
processes. In this study, we analyzed digital miRNA and mRNA profiles in ZIKV-infected primary
mouse neurons using the nCounter technology. A total of 599 miRNAs and 770 mRNAs were
examined. We demonstrate that ZIKV infection causes global downregulation of miRNAs with
only few upregulated miRNAs. ZIKV-modulated miRNAs including miR-155, miR-203, miR-29a,
and miR-124-3p are known to play critical role in flavivirus infection, anti-viral immunity and brain
injury. ZIKV infection also results in downregulation of miRNA processing enzymes. In contrast,
ZIKV infection induces dramatic upregulation of anti-viral, inflammatory and apoptotic genes.
Furthermore, our data demonstrate an inverse correlation between ZIKV-modulated miRNAs and
target host mRNAs induced by ZIKV. Biofunctional analysis revealed that ZIKV-modulated miRNAs
and mRNAs regulate the pathways related to neurological development and neuroinflammatory
responses. Functional studies targeting specific miRNA are warranted to develop therapeutics for
the management of ZIKV neurological disease.
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1. Introduction

Zika virus (ZIKV) is an emerging mosquito-borne pathogen that is part of the Spondweni
serocomplex of the genus Flavivirus, family Flaviviridae. ZIKV is closely related to other pathogens
of public health importance including yellow fever virus (YFV), dengue virus (DENV), Japanese
encephalitis virus (JEV), and West Nile virus (WNV). The ZIKV genome is comprised of a
single-stranded, positive-sense 11-kb RNA that contains three structural and seven nonstructural
genes [1,2]. ZIKV is highly neurotropic in human fetal infections and has been linked to
the development of severe fetal abnormalities that include spontaneous abortion, stillbirth,
hydranencephaly, microcephaly, and placental insufficiency that may cause intrauterine growth
restriction [1]. An increased incidence of Guillain-Barré syndrome (GBS), neuropathy of the peripheral
nervous system, has also been reported in ZIKV-infected patients [3]. No effective therapies currently
exist for treating patients infected with ZIKV.
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ZIKV has been shown to replicate and induce cell death in neuronal cells of fetal mice as well
as in human neural progenitor cells and brain organoids, a mechanism thought to play an important
role in the pathogenesis of ZIKV neurological disease [4–7]. It is known that immunocompetent
adult mice are resistant to subcutaneous or intraperitoneal inoculation of ZIKV [8,9]. However, it has
been demonstrated that intracerebral inoculation of ZIKV in adult immunocompetent mice results in
neurological disease [10]. Additionally, several studies have reported that neonatal immunocompetent
mice inoculated with ZIKV via subcutaneously or intracerebral route develop ZIKV disease, and ZIKV
infection can be detected in the neurons [11–13]. It has also been demonstrated that ZIKV infection
during the period of maximal brain growth causes microcephaly and corticospinal neuron apoptosis in
wild-type mice [14]. However, to date the effect of ZIKV infection on microRNAs (miRNAs) expression
in primary mouse neurons has not been examined.

miRNAs are a group of small RNAs involved in the regulation of a wide variety of cellular and
physiological processes. miRNAs are considered novel diagnostic and interventional candidates due
to their biochemical structure [15]. They function by directly binding to the 3’ untranslated regions
(3’UTRs) of specific target mRNA, causing a block of translation or degradation of the target mRNA.
miRNAs have been demonstrated to play a crucial regulatory role in neurodegenerative diseases
such as Alzheimer and Parkinson [16]. miRNAs also play a critical role in the regulation of immune
response; including differentiation, proliferation, cell fate determination, function of immune cells,
and inflammatory mediator release as well as the intracellular signaling pathways [17,18].

miRNAs of infected cells can influence the ability of a virus to replicate or spread. It is known
that endogenous miRNAs inhibit replication of a number of RNA viruses including HIV-1, Ebola virus
and vesicular stomatitis virus [19–23]. For example, miR-28, miR-125b, miR-150, miR- 223, miR-198,
and miR-382 inhibit HIV replication in CD4 T cells by directly targeting HIV RNA or by modulating
cellular factors responsible for its replication [24]. Furthermore, miR-122 supports HCV replication
by enhancing colony formation efficiency of HCV [25], whereas miR-196 and miR-296 substantially
attenuate virus replication through type I interferon (IFN)-associated pathways in liver cells [26].
Over-expression of miRNA-30e, let-7c, and miRNA-126-5p inhibits DENV replication [27–29]. Cellular
miR-532-5p inhibits WNV replication via suppression of host genes SESTD1 and TAB3 required for
virus replication [30]. miRNA HS_154 contributes to WNV-mediated apoptosis in vitro in the human
neuronal cell line, SK-N-MC [31]. Moreover, incorporation of a target sequence for cellular microRNAs
expressed in the central nervous system (CNS) into the flavivirus genome alters the neurovirulence of
the virus and prevents the development of lethal encephalitis in mice [32].

We have previously demonstrated the role of cellular miRNAs in the pathogenesis of WNV
encephalitis [33,34]. In this study, we analyzed miRNA and mRNA profiles in ZIKV-infected
neurons using the nCounter system. Unlike other platforms (such as microarray and next generation
sequencing), the nCounter platform enables high throughput, sensitive, quantitative, and reproducible
gene expression analysis without the need of enzymatic target amplification. This technology utilizes
100 nucleotide molecular bar codes which measure gene quantities without an amplification step [35].
To our knowledge, this is the first study to evaluate the modulation of miRNAs following ZIKV
infection using relevant cells, primary neurons.

2. Materials and Methods

2.1. Neuronal Cultures

Mouse cortical neuron cultures were prepared from one-day old pups of either gender
(approximately equivalent numbers) obtained from established colonies of wild-type C57BL/6J mice
as described previously [36]. The neurons were plated onto poly-D-lysine-coated 6-well or 24-well
plates in serum Neurobasal A medium. The cultures were maintained in serum-free Neurobasal A
medium supplemented with B27 for seven days prior to infection [36,37]. This study was carried out
in accordance with the recommendations of the National Institutes of Health and the Institutional
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Animal Care and Use Committee (IACUC). The protocol was approved by the University of Hawaii
IACUC (protocol number 17-2721) and Georgia State University (protocol number A19005).

2.2. ZIKV Infection and Plaque Assay

In this study, we used a low cell-culture-passaged and sequence-verified ZIKV strain, PRVABC59
(BEI Resources, NR-50240). Virus strain was amplified once in Vero E6 cells and had titers of 5 × 106

plaque-forming units (PFU)/mL. Cells were infected with ZIKV or PBS (Mock) at multiplicity of
infection (MOI)-1 and supernatants and cell lysates were harvested at 12, 24, 48, and 72 h after
infection [38]. ZIKV titers were measured in cell supernatants using plaque assay [38,39]. Experiments
were repeated to obtain four biological replicates of mock- and ZIKV-infected neurons at each time
point for the NanoString analysis (n = 4 per group per time point).

2.3. Indirect-Immunofluorescence Microscopy

Neuronal cell monolayers were grown on coverslips in 24-well plates and infected with ZIKV
or PBS at MOI-1. Cells were fixed in 4% paraformaldehyde (PFA) and immunostained using mouse
anti-dsRNA (1:1000) antibody followed by secondary antibody conjugated with Alexa Fluor 555
(Millipore, Burlington, MA, USA) as described previously [40].

2.4. NanoString nCounter® Gene Expression

Total RNA was isolated using miRNeasy Mini Kit (Qiagen, Hilden, Germany) as described
previously [33]. Genomic DNA contamination was eliminated by digesting the RNA with RNase-free
DNase (Ambion, Cambridge, MA, USA). RNA was quantitated using Nanodrop (Thermo Scientific,
Waltham, MA, USA), and the 28S/18S RNA ratios of all RNA samples were between 1.8 and
2.0. RNA quality was analyzed using the Bioanalyzer [33,41]. For miRNA analysis, we used the
nCounter® Mouse miRNA Expression Panel (NanoString, Seattle, WA, USA, Cat: CSO-MMIR15-12).
Raw data was normalized using the geometric mean values of the top 100 expressed miRNA in each
sample using the nSolver Analysis Software (NanoString), according to the manufacturer’s guidelines.
For mRNA analysis, we utilized the nCounter® Mouse PanCancer Immune Profiling Panel to count
770 immune-related genes (NanoString, Cat: XT-CSO-MIP1-12). Raw data was normalized with a set
of housekeeping genes and analyzed using the nSolver Analysis Software (NanoString), according to
the manufacturer’s guidelines.

2.5. qRT-PCR

Total RNA was isolated using miRNeasy Mini Kit, and cDNA prepared using a miScript II
RT Kit (Qiagen) [33,34]. qRT-PCR was performed using specific miRNA primer (Qiagen), and the
miScript SYBR green PCR kit (containing Universal reverse primer) [33]. For mRNA analysis, cDNA
was prepared using iScript™ cDNA Synthesis Kit (Bio-Rad, Hercules, CA, USA), and qRT-PCR was
conducted as described previously [41,42]. The primer sequences used for qRT-PCR are listed in
Table 1.

Table 1. Primer sequences used for qRT-PCR.

Gene (Accession No.) Primer Sequence (5’-3’)

IFIT1 (NM_008331)

Forward GTTGTTGTTGTTGTTCGT

Reverse CAGCAGGAATCAGTTGTG

IL6 (NM_031168)

Forward ATCCAGTTGCCTTCTTGGGACTGA

Reverse TAAGCCTCCGACTTGTGAAGTGGT
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Table 1. Cont.

Gene (Accession No.) Primer Sequence (5’-3’)

IFIT3 (NM_010501)

Forward GTCCTCTCTACTCTTTGG

Reverse CATCCTCTGTCTTCTCTC

Caspase1 (NM_009807)

Forward GGAAGCAATTTATCAACTCAGTG

Reverse GCCTTGTCCATAGCAGTAATG

Dicer-1 (NM_148948)

Forward TGTCATCTTGCGATTCTA

Reverse TCTCTTCCAATTCCTCTG

DROSHA (NM_001130149)

Forward CTTCAACAGTTACCAGAAC

Reverse CCTTTGGGAGTGAGTATG

AGO1 (NM_001317174)

Forward CCTGTGTATGATGGAAAGA

Reverse CACTTGATGGAGACCTTAA

AGO2 (NM_153178)

Forward GGAGAACAATCAAACTACAG

Reverse CAGATTCTTCCTTCCATCA

DGCR8 (NM_033324)

Forward CAGATAAGAAGGATGAGGAA

Reverse GCTCCAAATTGTCAGTAAA

miR-155 (MIMAT0000165)

Forward UUAAUGCUAAUUGUGAUAGGGGUA

miR-203 (MIMAT0000236)

Forward GUGAAAUGUUUAGGACCACUAG

miR-29a (MIMAT0000535)

Forward UAGCACCAUCUGAAAUCGGUUA

miR-124-3p (MIMAT0000134)

Forward UAAGGCACGCGGUGAAUGCC

2.6. Measurement of Cytokines and Chemokines

The levels of cytokines and chemokines were measured in the cell supernatants by multiplex
immunoassay using MILLIPLEX MAP mouse Cytokine/Chemokine magnetic panel as per
manufacturer’s instructions (Millipore) [43,44].

2.7. Ingenuity Pathways Analysis (IPA)

Target prediction and pathway analysis were conducted using IPA (Ingenuity Systems Inc.,
Redwood City, CA, USA) as described previously [33,34,41]. Fisher’s exact test, using IPA, was used
to calculate the cut-off point of significance. p < 0.05 is considered significant. We also conducted
correlation pairing with mRNA expression data and significantly modulated miRNAs using IPA.
For multiplex immunoassay analysis, unpaired Student’s t-test using Graph Pad was used to calculate
p values.
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3. Results

3.1. ZIKV Can Infect Primary Mouse Cortical Neurons

ZIKV infection of neuronal cells plays an important role in the pathogenesis of ZIKV neurological
disease. Therefore, we used primary neurons for our experiments. We first determined ZIKV infection
and replication kinetics in primary mouse cortical neurons by plaque assay. Mouse cortical neuron
cultures were infected with ZIKV (PRVABC59 strain) or PBS (Mock) at MOI-1 and supernatants were
collected at 12, 24, 48, and 72 h after infection. High ZIKV replication was observed as early as 12 h
after infection. Viral titers peaked at 48 h (log 7–8 PFU/mL) followed by a slight decline at 72 h after
infection (Figure 1A). Immunofluorescence staining of ZIKV-infected neurons demonstrated robust
dsRNA staining in the cytoplasm. Based on a total of 5,000 cells counted in 10 independent fields,
dsRNA was detected in approximately 60% of cells at 48 h after infection (Figure 1B,C).
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Figure 1. Zika virus (ZIKV) infection of the primary mouse neurons. Mouse cortical neuron cultures
were prepared from one-day old pups. Neurons were infected with ZIKV (PRVABC59 strain) or PBS
(Mock) at multiplicity of infection (MOI)-1. (A) ZIKV titers in culture supernatant were determined
by plaque assay. Viral titers are expressed as plaque forming units (PFU)/mL of supernatant. Data
represents the mean ± SEM. Neurons grown and fixed on coverslips at 48 h after infection were
stained with anti-dsRNA antibody (red) and counterstained with DAPI (blue). (B) Mock-infected
cells. 20× magnification. (C) ZIKV-infected cells demonstrate robust virus staining in the cytoplasm.
20× magnification.

3.2. ZIKV Infection Modulates Cellular miRNA Expression

Neurons were infected with ZIKV (PRVABC59 strain) or PBS (Mock) at MOI-1 and cell lysates
were harvested at 24 and 48 h after infection. We used nCounter® Technology (NanoString) to evaluate
the global miRNA expression profiles in the mock-and ZIKV-infected neurons at 24 and 48 h after
infection (n = 4 per group per time point). Among 599 miRNAs present on the array, 67 and 45
miRNAs were significantly modulated at 24 and 48 h, respectively. miRNAs that were altered at least
2-fold were considered significant. While 62 miRNAs were significantly downregulated (between 2- to
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4-fold), only five miRNAs were upregulated (between 2 to 18-fold) in ZIKV-infected neurons when
compared to mock-infected neurons at 24 h (Tables 2 and 3). Similarly, 40 miRNAs were significantly
downregulated (between 2- to 6-fold), and only five were upregulated (between 2 to 10-fold) at 48 h
(Tables 2 and 4). As depicted in the Venn diagram (Figure 2A), three upregulated and 26 downregulated
miRNAs were common in both 24 and 48 h-infected neurons. Among upregulated miRNAs; miR-155,
miR-29a, and miR-29b were induced at both 24 and 48 h. miR-3471 and miR-2145 were upregulated
only at 24 h, and miR-203 and miR-1902 were upregulated only at 48 h. The miRNAs with the highest
induction during the course of infection were miR-155 (18.2-fold), miR-3471 (4.9-fold), and miR-203
(4.6-fold) (Table 2). Among downregulated miRNAs, miR-124-3p was the highest downregulated
miRNA at both 24 (4-fold) and 48 (6.6-fold) h. Other miRNAs with high downregulation were
miR-883a-3p (3.9-fold) and miR-2137 (2.9-fold). We also conducted qRT-PCR to confirm the expression
changes of a selected number of differentially expressed miRNAs. Similar to the NanoString data,
miR-155, miR-29a, and miR-203 were significantly upregulated, and miR-124-3p was downregulated
in ZIKV-infected neurons (Figure 2B).
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Figure 2. ZIKV infection of the primary mouse neurons causes changes in cellular miRNA expression.
Neurons were infected with ZIKV (PRVABC59 strain) or PBS (Mock) at MOI-1. (A) Venn diagram
showing the number of differentially expressed miRNAs at 24 and 48 h after infection. Sets of
upregulated miRNAs are represented by upward red arrows and sets of downregulated miRNAs are
represented by downward green arrows. Pairs of arrows in the intersection refer to the number of
miRNAs upregulated (double red arrows) or down regulated (double green arrows) at both 24 and 48 h
after infection. (B) qRT-PCR was conducted on RNA extracted from mock and ZIKV-infected neurons
to determine fold-change in miR-155, miR-203, miR-29a, and miR-124-3p expression. Changes in the
levels of each miRNA were first normalized to the snoRNA and then the fold-change in ZIKV-infected
cells was calculated in comparison to corresponding mock-infected cells. Data represents the mean
± SEM. (C) qRT-PCR was conducted on RNA extracted from mock and ZIKV-infected neurons to
determine fold-change in Dicer-1, Drosha, DGCR8, AGO1, and AGO2 expression. Changes in the levels
of each mRNA were first normalized to the β-actin and then the fold-change in ZIKV-infected cells
was calculated in comparison to corresponding mock-infected cells. Data represents the mean ± SEM.
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Table 2. Upregulated miRNAs in Zika virus (ZIKV)-infected neurons at 24 h and 48 h.

miRNA Fold-change (24 h) miRNA Fold-change (48 h)

miR-155 18.29 miR-155 10.61

miR-3471 4.96 miR-203 4.61

miR-2145 2.33 miR-1902 2.95

miR-29a 2.09 miR-29b 2.1

miR-29b 2.05 miR-29a 2.08

Table 3. Downregulated miRNAs at 24 h.

miRNA Fold-change miRNA Fold-change

miR-124-3p −4.02 miR-144 −2.15

miR-M1-1 −2.97 miR-201 −2.15

miR-1892 −2.85 miR-764-5p −2.15

miR-883a-3p −2.7 miR-1895 −2.13

miR-879 −2.69 miR-871 −2.12

miR-669g −2.65 miR-m108-1 −2.12

miR-654-3p −2.62 miR-1928 −2.11

miR-339-3p −2.52 miR-1941-5p −2.11

miR-1960 −2.51 miR-759 −2.11

miR-207 −2.51 miR-1187 −2.1

miR-2861 −2.51 miR-666-3p −2.1

miR-412 −2.48 miR-1966 −2.09

miR-741 −2.47 miR-1942 −2.08

miR-770-5p −2.41 miR-1946a −2.08

miR-673-5p −2.38 miR-1967 −2.08

miR-1941-3p −2.37 miR-m01-1 −2.07

miR-493 −2.33 miR-383 −2.06

miR-465a-3p −2.31 miR-186 −2.05

miR-1956 −2.26 miR-323-5p −2.05

miR-1194 −2.25 miR-M1-3 −2.05

miR-709 −2.25 miR-433 −2.04

miR-m107-1-5p −2.25 miR-767 −2.04

miR-877 −2.23 miR-1188 −2.03

miR-331-5p −2.22 miR-694 −2.03

miR-483 −2.22 miR-665 −2.02

miR-675-5p −2.2 miR-2139 −2.02

miR-1957 −2.19 miR-883a-5p −2.02

miR-M23-1-3p −2.19 miR-1943 −2

miR-1898 −2.18 miR-346 −2

miR-1940 −2.17 miR-764-3p −2

miR-1894-5p −2.16 miR-710 −2
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Table 4. Downregulated miRNAs at 48 h.

miRNA Fold-change miRNA Fold-change

miR-124-3p −6.68 miR-m21-1 −2.15

miR-883a-3p −3.93 miR-335-3p −2.14

miR-2137 −2.92 miR-1957 −2.12

miR-2133 −2.74 miR-764-5p −2.11

miR-714 −2.56 miR-1194 −2.08

miR-669g −2.54 miR-683 −2.08

miR-467g −2.5 miR-509-5p −2.07

miR-1188 −2.41 miR-463 −2.06

miR-879 −2.33 miR-741 −2.06

miR-760 −2.25 miR-761 −2.05

miR-298 −2.21 miR-710 −2.03

miR-m01-3 −2.21 miR-346 −2.01

miR-764-3p −-2.2 miR-882 −2.01

miR-370 −2.18 miR-1898 −2.01

miR-1892 −2.16 miR-759 −2

miR-m01-2 −2.16 miR-433 −2

miR-133b −2.15 miR-709 −2

miR-1894-5p −2.15 miR-1956 −2

miR-666-3p −2.15 miR-483 −2

miR-877 −2.15 miR-1941-5p −2

3.3. ZIKV Infection Results in Downregulation of miRNA Processing Enzymes

Flaviviruses have been shown to induce downregulation in the expression of cellular miRNAs by
targeting miRNA processing enzymes [45–48]. Our data also demonstrated a trend toward decrease
in miRNA expression in ZIKA-infected cells. Therefore, we next evaluated the expression of miRNA
processing enzymes in ZIKV-infected neurons. mRNA expression levels of Dicer-1, Drosha, AGO1,
and AGO2 were downregulated in ZIKV-infected neurons as compared to mock-infected neurons at
both 24 and 48 h (Figure 2C). mRNA expression of DGCR8 increased slightly at 24 h followed by a
decrease in the expression at 48 h.

3.4. Functional Analysis of ZIKV-Modulated miRNAs and Their Predicted Targets

Biofunctional analysis of ZIKV-modulated miRNAs and their targets revealed organismal injury
and abnormalities, immunological disease, inflammatory response, neurological disease, and nervous
system development and function as the top pathways in signaling pathways category (Table 5).
Since ZIKV infection is associated with a wide spectrum of neurological and immunological diseases,
these miRNAs may play an important role in the development of brain abnormalities following
ZIKV infection.

Table 5. Top biological functions regulated by significantly modulated miRNAs.

Biological Process/Pathway p-Value Number of miRNAs

Cancer 4.02 × 10−10 18

Organismal Injury and Abnormalities 4.02 × 10−10 23

Reproductive System Disease 4.02 × 10−10 18
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Table 5. Cont.

Biological Process/Pathway p-Value Number of miRNAs

Immunological Disease 6.98 × 10−10 13

Inflammatory Disease 6.98 × 10−10 13

Inflammatory Response 6.98 × 10−10 11

Neurological Disease 6.98 × 10−10 10

Connective Tissue Disorders 1.46 × 10−8 10

Respiratory Disease 1.46 × 10−8 7

Nervous System Development and Function 7.20 × 10−7 6

3.5. ZIKV Infection Induces Dramatic Upregulation of Anti-Viral, Inflammatory, and Apoptotic Genes
in Neurons

We next analyzed the mRNA expression of key anti-viral, inflammatory, and apoptotic genes
in the ZIKV-infected neurons to examine whether differentially expressed miRNAs could regulate
their target mRNAs. Mouse cortical neuron cultures were infected with ZIKV (PRVABC59 strain) or
PBS (Mock) at MOI-1 and cell lysates were harvested at 24 h and 48 h after infection. We utilized the
nCounter® Mouse PanCancer Immune Profiling Panel to count 770 immune-related genes. mRNA
expression profiles for ZIKV-infected neurons were compared with mock-infected neurons. Only
mRNAs that were altered at least 2-fold were considered significant. Figure 3A demonstrates total
numbers of up- and downregulated differentially expressed mRNAs in ZIKV-infected neurons at 24
and 48 h. The number of differentially expressed mRNAs was higher at 48 h after infection, which
correlates with significantly higher viral load observed at 48 h as compared to 24 h (Figure 1A). At 24 h,
65 mRNAs were upregulated with fold change values ranging from 2.0 to 26 (Table 6). mRNAs
were not downregulated at 24 h. At 48 h, 116 mRNAs were upregulated with fold change values
ranging from 2.0 to 244 (Tables 6 and 7) and 12 mRNAs were downregulated (Table 8). 62 upregulated
mRNAs were common in both 24 and 48 h- infected neurons (Table 6). MMP9, SOCS3 and IFI27 were
upregulated only at 24 h. 54 mRNAs were upregulated only at 48 h (Table 7).
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Figure 3. ZIKV infection of the primary mouse neurons causes changes in cellular mRNA expression.
Neurons were infected with ZIKV (PRVABC59 strain) or PBS (Mock) at MOI-1. (A) Venn diagram
showing the number of differentially expressed mRNAs at 24 and 48 h after infection. Sets of
upregulated mRNAs are represented by upward red arrows and sets of downregulated mRNAs
are represented by downward green arrows. Pairs of arrows in the intersection refer to the number
of mRNAs upregulated (double red arrows) or down regulated (double green arrows) at both 24 and
48 h after infection. (B) qRT-PCR was conducted on RNA extracted from mock and ZIKV-infected
neurons to determine fold-change in IFIT1, IFIT3, IL6, and Caspase1 expression. Changes in the levels
of each mRNA were first normalized to the β-actin and then the fold-change in ZIKV-infected cells
was calculated in comparison to corresponding mock-infected cells. Data represents the mean ± SEM.
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Table 6. Upregulated mRNAs in ZIKV-infected neurons at 24 and 48 h.

mRNA Fold-Change
(24 h)

Fold-Change
(48 h) mRNA Fold-Change

(24 h)
Fold-Change

(48 h)

Rsad2 26.44 244.24 Ccl2 3.91 14.32

Cxcl10 22.31 113.73 Ifna4 2.85 14.02

Ifit3 21.63 103.85 Nlrc5 3.42 13.39

Ifi44 18.36 103.12 Psmb10 3.13 12.78

Irf7 12.53 96.42 Stat2 5.55 12.37

Ifit1 24.52 75.06 H2-K1 2 12.34

Isg15 20.58 69.08 Cfb 2.04 12.04

Lcn2 27.07 68.88 Ifi35 4.05 11.3

Zbp1 13.57 55.1 Ddx58 3.84 10.56

Gbp5 12.51 44.43 Psmb9 2.4 10.03

Ifit2 2.53 41.91 Tap1 2.77 9.85

Ccl5 24.11 37.65 C3 3.29 9.22

Oas2 10.64 37.13 Casp1 2.76 7.63

Oasl1 5.15 34.55 Socs1 2.13 6.63

Usp18 9.7 32.04 H2-Ab1 2.21 5.82

Isg20 5.57 30.07 Cxcl1 3.49 5.5

H2-T23 3.61 28.33 Ifitm1 3.94 5.39

Ifih1 6.11 25.37 Ccl12 3.68 5.38

Ddx60 7.87 23.88 Pml 2 5.38

Stat1 6.92 21.99 Vcam1 2.23 5.24

Bst2 4.92 21.62 Myd88 2.38 4.87

Mx2 7.55 20.85 Cxcl9 2.83 4.7

Psmb8 4.31 20.39 Il6 2.07 3.63

Ccl7 2.71 19.98 Ptgs2 2.02 3.32

Cd274 4.02 19.34 Cxcl2 2.68 3.27

Cmpk2 4.01 18.95 Sbno2 3.05 2.86

Xaf1 8.02 18.06 Ccl4 2.52 2.84

Herc6 3.68 17.33 Lif 2.75 2.47

Ifnb1 2.97 16.75 Il13ra1 2.01 2.33

Tlr3 3.84 16.4 Runx1 2 2.15

Irgm2 6.29 15.13 Litaf 2 2.01
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Table 7. Upregulated mRNAs in ZIKV-infected neurons at 48 h only.

mRNA Fold-Change mRNA Fold-Change

Cxcl11 17.69 Slamf7 2.81

C2 9.88 Tnfrsf14 2.76

Tnfsf10 9.53 Fcgr4 2.6

Cxcl13 9.29 Mill2 2.59

Cd74 8.49 Ptprc 2.59

C1ra 7.96 H2-Dma 2.57

H2-D1 7.64 Nfkbia 2.52

H2-Aa 7.35 Tnfaip3 2.51

Tap2 6.53 Cxcl5 2.47

Ccl11 5.49 A2m 2.46

Fcgr1 5.32 Ifna1 2.38

H2-M3 5.25 Il3ra 2.36

Ccrl2 4.9 Ctss 2.34

Cd47 4.2 Ripk2 2.34

Tapbp 3.97 H2-DMb1 2.28

C4b 3.96 Lck 2.27

Ifna2 3.96 Cd80 2.26

Irf1 3.88 Cxcl16 2.19

Tlr2 3.87 Cybb 2.19

C1s1 3.56 Icosl 2.18

Lbp 3.44 Cfi 2.14

Il7 3.3 Irf2 2.1

Irf5 3.03 Nod1 2.02

Cd69 2.99 Atm 2

Serping1 2.91 Axl 2

Flt3l 2.87 H2-Eb1 2

Bid 2.85 Relb 2

Table 8. Downregulated mRNAs in ZIKV-infected neurons.

mRNA Fold-Change (48 h) mRNA Fold-Change (48 h)

Cd36 −2 Cd207 −2.19

Elane −2 Timd4 −2.22

Il17f −2 Xcl1 −2.31

Ticam2 −2 Card9 −2.65

Pax5 −2.02 Sh2d1b1 −2.76

Il1rapl2 −2.15 Mpped1 −2.87

Genes associated with virus sensing and type 1 IFN signaling were the most upregulated genes
after ZIKV infection. ZIKV infection also induced a strong upregulation of multiple cytokines and
chemokines in the neurons. Most of the chemokines and cytokines were significantly upregulated
after ZIKV infection, including CXCL10, CCL5, CCL7, CCL2, CXCL1, CCL12, CXCL9, CXCL2, CCL4,
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CXCL11, CXCL13, CCL11, CXCL5, IL6, IL7, PTGS2, and LIF. Several genes involved in cell death
(CASP1, TNFSF10, RIPK2, and BID) were also activated upon ZIKV infection (Tables 6 and 7). We also
validated the expression of selected upregulated mRNAs using qRT-PCR. Similar to the NanoString
data, IFIT1, IFIT3, IL6, and Caspase1 were significantly upregulated in the ZIKV-infected neurons as
compared to mock-infected neurons at both 24 and 48 h (Figure 3B). To examine that this increase in
mRNA expression also lead to increased protein levels, we measured protein levels of key chemokines
and cytokines in the cell culture supernatants using multiplex immunoassay. Similar to the mRNA
expression, protein levels of the key chemokines such as CCL2, CCL4, CCL5, CCL11, CXCL1, CXCL2,
CXCL9, and CXCL10, and cytokines such as IL6 and LIF were significantly increased in ZIKV-infected
neurons as compared to mock-infected neurons (Figure 4).
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Figure 4. Enhanced production of cytokines and chemokines in ZIKV-infected neurons. Mouse cortical
neuron cultures were infected with ZIKV (PRVABC59 strain) or PBS (Mock) at MOI-1 and supernatants
were collected at 24 and 48 h after infection. Levels of chemokines and cytokines as noted in the figure
were measured in cell supernatants using multiplex immunoassay and are expressed as the mean
concentration (pg/mL) ± SEM. *p < 0.05, **p < 0.001.

3.6. Functional Analysis of ZIKV-Modulated mRNAs

To investigate the biological interactions of differentially expressed mRNAs and identify important
functional networks, significantly modulated mRNAs were imported into the IPA tool. The highest
activated networks (high z-score) were identified using IPA. Figure 5 depicts the top 10 activated
canonical pathways after ZIKV infection. The topmost activated canonical pathway after ZIKV
infection was ‘Neuroinflammation Signaling’. In addition, key players in inflammation and innate
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immunity, such as ‘Activation of IRFs by Cytosolic Pattern Recognition Receptors (PRR)’, ‘Role of PRR
in Recognition of Viruses and Bacteria’, and ‘IFN Signaling’ were also highly activated (positive z-score).
To further understand the role of these differentially activated canonical pathways, we generated the
network maps of ‘PRR in Recognition of Viruses and Bacteria’ and ‘IFN Signaling’.
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Figure 5. Core functional pathway analysis of ZIKV-modulated mRNAs using IPA. Top canonical
signaling pathways regulated by significantly modulated mRNAs. Threshold bar indicates cut-off
point of significance p < 0.05, using Fisher’s exact test. Range of activation z-score is also depicted in
the figure. The color of the bars indicates predicted pathway activation based on z-score (orange =
activation; blue = inhibition; gray = no prediction can be made; white = z-score close to 0). Orange line
represents the ratio = number of genes in dataset/total number of genes that compose that pathway.

3.6.1. Pattern Recognition Receptors

Our data demonstrate that ZIKV infection induces the expression of all three major PRR;
retinoic-acid-inducible gene-I (RIG-I)-like receptors (RLR), toll-like receptors (TLR), and the nucleotide
oligomerization domain (Nod)-like receptors (NLR) (Figure 6A). The RLR are a family of cytosolic
RNA helicase proteins comprised of three members: RIG-I, myeloma differentiation antigen 5 (MDA5),
and LGP2 [49]. Both RIG-I and MDA5 were upregulated after ZIKV infection. The importance of
the RLR signaling pathway in protection against flaviviruses has been validated by several studies
in vivo [49–51]. The TLR family is composed of more than 10 members, with each acting as a sensor of
conserved microbial component, that drive the induction of immune response [52]. Our data show that
ZIKV infection induces the expression of TLR2, TLR3, and adaptor molecule MYD88. NLR are soluble
or cytosolic receptors in the mammalian cell cytoplasm [53]. Activation of NOD1 and NLRC5 was
observed following ZIKV infection. In addition to RLR, TLR, and NLR; PKR and OAS are classes of
IFN-inducible PRR that can recognize dsRNA and restrict a number of viruses. Our data demonstrate
the activation of OAS after infection with ZIKV. Furthermore, we observed increased levels of type 1
interferons and several pro-inflammatory mediators after ZIKV infection in neurons, which correlate
with PRR activation in these cells.
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Figure 6. Pathway analysis for PRR and IFN signaling. Genes associated with (A) PRR and (B) IFN
signaling activated by ZIKV infection are shown. Differentially expressed mRNAs are highlighted in
color. Color intensity indicates the degree of upregulation (red) relative to the mock-infected neurons.
Solid lines represent direct interactions and dashed lines indirect interactions. Shading intensity
indicates the degree that each mRNA was upregulated.

3.6.2. IFN Signaling

ZIKV infection induced strong upregulation of genes associated with IFN signaling such as
IFNα, IFNβ, STAT1, and STAT2 (Figure 6B). Interferon-stimulated genes (ISG) such as MX2, IFIT1,
IFIT3, IFITM1, IFI35, and RSAD2 (Viperin) were significantly upregulated after ZIKV infection.
The IFN response is central to the innate defense mechanisms of the host against flavivirus infection.



Viruses 2019, 11, 162 15 of 22

The paracrine and autocrine secretion of IFN creates an anti-viral state by inducing several genes
including ISG [49,54].

3.7. Network Analysis of Expression of miRNAs and mRNAs From ZIKV-Infected Neurons

We next sought to determine whether mRNA expression changes might be influenced by the
differential expression of cellular miRNAs during ZIKV infection. To analyze the direct and indirect
miRNA–mRNA interactions, we conducted IPA expression pairing analysis with mRNA expression
data and significantly modulated miRNAs. Several miRNAs were found to directly or indirectly
target multiple mRNAs analyzed in our study and demonstrated an inverse correlation with mRNA
expression induced by ZIKV. These targets are predicted by TargetScan. miR-124-3p was the highest
downregulated miRNA. Our data demonstrated increased expression of all the predicted targets of
miR-124-3p including IL7, CCL2, LITAF, IRF1, and SBNO2 in ZIKV-infected neurons (Figure 7A). Other
known targets of miR-124 includes SOCS5, TLR6, STAT3, TNF, and NF-kB [55]. Similarly, miR-654-3p
was downregulated and its predicted targets—CD69, FLT3LG, IFIT1, TLR2, ZBP1, LITAF—were
upregulated in ZIKV-infected neurons (Figure 7B). These targets involve genes belonging to anti-viral
and inflammatory response signaling pathways. Furthermore, downregulation of miR-331-5p and
miR-509-5p was inversely correlated to their predicted targets IL7, CD274, HLA-DRB5, XAF1, IL13RA1,
TAP1, and CD80 (Figure 7C,D). Our data further indicate that miR-335-3p may play an important role
in regulating inflammatory and apoptotic genes in the neurons following ZIKV infection. miR-335-3p
targets Caspase1, CCL5, CXCL3, PTPRC, and GBP5. These genes play significant roles in mediating
inflammation and cell death (Figure 7E). We also show an increase in the protein levels of the target
genes such as CCL2, CCL5, and CXCL10 (Figure 4). It is interesting to see the correlation between
ZIKV-modulated miRNAs and target genes at both mRNA and protein level, which is consistent with
the miRNA–mRNA–protein triad and demonstrate the functional importance of our results.
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Figure 7. Networks of the interactions of the miRNA target genes. IPA tool was used to
generate the miRNA-mRNA interaction network of (A) miR-124-3p, (B) miR-654-3p, (C) miR-331-5p,
(D) miR-509-5p, and (E) miR-335-3p and mRNAs significantly modulated in neurons after ZIKV
infection. Red (increased expression) and green (decreased expression).

4. Discussion

In this study, we used nCounter technology to identify miRNAs and mRNAs modulated by
ZIKV infection in neurons. Our data demonstrate that ZIKV infection causes global downregulation
of miRNAs with only few upregulated miRNAs. ZIKV infection also results in downregulation of
miRNA processing enzymes. Upregulated miRNAs including miR-155, miR-203, and miR-29a have
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been previously shown to play critical role in flavivirus infection and anti-viral immunity [22,56–60].
ZIKV infection in the neurons significantly induced the expression of anti-viral, inflammatory and
apoptotic genes. Biofunctional analysis revealed that ZIKV-modulated miRNAs and their target
genes regulate the pathways related to neurological development and neuroinflammatory responses.
Furthermore, our data show an inverse correlation between ZIKV-modulated miRNAs and target host
immune mRNAs induced by ZIKV infection.

Flaviviruses have been shown to induce downregulation in the expression of cellular miRNAs by
targeting miRNA processing enzymes [33,45–48,61]. It has been reported that depletion of Dicer and
Drosha by siRNA-mediated silencing results in increase in flavivirus replication [46,47,61]. We also
observed a trend towards decrease in miRNAs expression in ZIKA-infected cells. Similar to our
data, ZIKV infection in human astrocytes induces global downregulation of miRNAs [62]. It has
been demonstrated that ZIKV infection in Aedes aegypti mosquitoes downregulates expression of host
miRNAs [63]. In this study, we also show that ZIKV infection results in downregulation of miRNA
processing enzymes. Downregulation of genes involved in miRNA processing enzymes including
Dicer-1 was also reported in ZIKV-infected astrocytes [62]. Similarly, ZIKV infection in HepG2 cells led
to a decrease in DGCR8, Ago1, and Ago3 expression [64]. It is known that non-coding, subgenomic
RNA (sfRNA) of WNV and DENV can interfere with miRNA biogenesis pathway. WNV sfRNA is
processed by Dicer and suppresses RNAi [33,45–48,61]. Future experiments are warranted to elucidate
whether this sfRNA function holds for all flaviviruses including ZIKV. Since miRNAs negatively
regulate mRNA expression, decrease in cellular miRNA expression results in increase in apoptotic and
inflammatory genes associated with flavivirus infection [27,30,31,33,41]. Our data also demonstrate
that ZIKV infection is associated with dramatic upregulation of several anti-viral, apoptotic and
inflammatory genes.

We observed significant upregulation of miR-155, miR-203, miR-29a, and miR-29b in
ZIKV-infected neurons. These miRNAs have been shown to play an important role in viral
infection [19–21,65,66]. miR-155 is multifunctional and widely reported to modulate different
stages of innate immune response during inflammation and infection [21,22,56]. miR-155 not only
modulates TLR-mediated innate immune response, but also targets complement regulatory proteins
and facilitate complement activation [56,57]. This phenomenon is critical to eliminate the virus
from infected cells. Several published studies have demonstrated the essential role of miR-155 in
viral infections caused by Epstein–Barr, Borna disease, and reticuloendotheliosis viruses [19,20,56,65].
For example, overexpression of miR-155 significantly suppressed human HIV infection in activated
macrophages [21]. Similarly, miR-155 suppresses JEV replication in microglial cells and regulates
JEV-induced inflammatory response in mice brain [22,67]. Studies have shown that miR-203 is also
involved in regulating the anti-viral immune response [59,60]. It has been demonstrated that miR-29b
regulates JEV-induced neuroinflammation [58]. Since these miRNAs are known to have a role in
anti-viral immunity, upregulation of these miRNAs might play a role in controlling ZIKV infection
and associated neurotoxicity. A recent study identified upregulation of miR-30e-3p, miR-30e-5p, and
miR-17-5p in ZIKV infection of human astrocytes [62]. However, we did not observe upregulation of
these miRNAs in ZIKV-infected mouse neurons. This could be due to the difference in the neural cell
type and species studied.

In our study, miRNAs with the highest downregulation were miR-124-3p, miR-883a-5p and
miR-2137. miR-124 is the most abundant miRNA in the brain and affects a broad spectrum of
biological functions in the CNS [55,68–70]. miR-124 has been reported to participate in chronic
stress, neurodegeneration, alcohol/cocaine neuroadaptation, synapse morphology, neurotransmission,
long-term potentiation, neurodevelopment, myeloid cell function, and hematopoiesis. In mammalian
neurons, miR-124 suppresses the levels of many non-neural genes, which contributes to the acquisition
and maintenance of neuronal identity [69]. Furthermore, when miR-124 is aberrantly expressed,
it contributes to pathological conditions involving the CNS [68–70]. It has also been shown to be
useful as a diagnostic and prognostic indicator of CNS disorders, such as brain tumors and stroke [68].
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miR-883a has been demonstrated to be involved in inflammatory pathways, and target genes belonging
to the TLR signaling pathway as well as the VEGF and chemokine signaling pathways [71]. miR-2137
is involved in the pathogenesis of traumatic brain injury [72]. IPA analysis also revealed that individual
miRNA including miR-124a-3p, miR-654-3p, miR-331-5p, miR-335-3p, and miR-509-5p can modulate
multiple upstream regulatory genes. There was an inverse correlation between these miRNAs and
target host immune mRNAs induced by ZIKV infection. Since these miRNAs are known to have a
role in brain injury and inflammatory responses, downregulation of these miRNAs following ZIKV
infection possibly resulted in upregulation of neuroinflammatory and apoptotic genes. However,
further experiments are required to validate their biological functions in ZIKV infection.

This study has few limitations. First, we only analyzed the mRNA expression of genes primarily
involved in immune response, which introduce a bias in the analysis towards anti-viral response.
Second, additional experimental studies are warranted to validate the interplay between miRNA,
mRNA, and ZIKV replication, which includes knockdown of individual miRNA and its effect on the
expression levels of its target mRNAs and virus titers.

In conclusion, this is the first study to evaluate the modulation of miRNAs following ZIKV
infection in neurons. ZIKV-modulated miRNAs in neurons are also known to play a role in the
pathogenesis of other flaviviruses and anti-viral immune response. In this study, the utility of the
nCounter system enabling rapid miRNA and mRNA expression analysis was also demonstrated.
Collectively, these data suggest that miRNAs regulate downstream gene expression, important in ZIKV
disease pathogenesis, and can be targeted in the future to develop therapeutics for the management of
ZIKV neurological disease.
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