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Abstract

Lytic polysaccharide mono-oxygenases (LPMOs) are a recently discovered class of enzymes 

capable of oxidizing recalcitrant polysaccharides. They currently attract much attention due to 

their potential use in biomass conversion, notably in the production of biofuels. Past work has 

identified two discrete sequence-based families of these enzymes termed AA9 (formerly GH61) 

and AA10 (formerly CBM33). Here we report the discovery of a third family of LPMOs. Using a 

chitin-degrading exemplar from Aspergillus oryzae, we show that the 3-D structure of the enzyme 

shares some features of the previous two classes of LPMOs, including a copper active centre 

featuring the histidine brace active site, but is distinct in terms of its active site details and its EPR 

spectroscopy. The new AA11 family expands the LPMO clan with the potential to broaden both 

the range of potential substrates and the types of reactive copper-oxygen species formed at the 

active site of LPMOs.

Biopolymers such as cellulose, chitin and diverse marine polysaccharides are widespread 

and abundant. They offer the potential to become the primary feedstocks in the production 

of biofuels and/or sustainable commodities.1 Notwithstanding this potential however, the 

chemical and mechanical resistance of these biopolymers constrains their commercial 

viability to a significant extent. In this regard the recent discovery of a class of enzymes now 

known as lytic polysaccharide mono-oxygenases is a breakthrough. Formerly classified as 

GH61 and CBM33 in the CAZy database,2 LPMOs are part of the consortium of enzymes 

secreted by organisms that obtain their energy from dead biomass. What marks out LPMOs 

is their unique oxidative mode of action, differing from that of canonical glycoside 

hydrolases. As seminally demonstrated on a chitin-active LPMO from the bacterium 

Serratia marcescens, this mode of action is an oxidation of the polysaccharide chain which 

cleaves the chains at the surface of the crystalline polymer, thus disrupting the structure to 
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such an extent that it becomes tractable to further enzymatic action and eventual 

degradation.3 In a discovery with important consequences for the future of biofuels, this 

oxidative mode of action was subsequently also shown on cellulose for a GH61 enzyme4,5 

and a CBM33 enzyme,6 leading to a reclassification of LPMOs in the CAZy database of 

carbohydrate active enzymes (www.cazy.org) from families GH61 and CBM33 to 

“Auxiliary Activity” families AA9 and AA10 respectively.7

LPMOs studied thus far have an active site that is located near the center of an extended flat 

face, where the face is presumed to interact with the crystalline surface of the substrate (Fig. 

1a). Following initial AA98 and AA103 3-D structure solutions, X-ray crystallographic 

structural details of the Cu-active site were first fully shown in a cellulose-active fungal 

LPMO from Thermoascus aurantiacus in which a single copper ion is chelated by two 

nitrogen atoms of the N-terminal histidine (through the NH2 terminus and an N-atom of the 

side chain) and a further nitrogen atom of another histidine side chain in an overall T-shaped 

N3 configuration coined as the histidine brace (Fig. 1b).5 It was further demonstrated that 

additional differences exist between the fungal AA9 and bacterial AA10 versions, where the 

fungal AA9 enzymes have a tyrosine residue adjacent to the copper coordination sphere and, 

when expressed in filamentous fungal systems, carry an unusual methylation on the τ-N 

atom of the N-terminal histidine.9 The methylation is not essential for activity, as non-

methylated versions expressed in Pichia pastoris are known to be active,10,11 but its exact 

role is yet to be defined. In a further refinement, a classification of LPMOs based upon 

whether the principal site of oxidation is C1 or C4 has been proposed,9 while oxidation at 

C6 has been proposed for some AA9 LPMOs. 5,10

LPMOs have major industrial significance, highlighted by the two-fold reduction in total 

enzyme load and cost for cellulose degradation when AA9 is incorporated.12 Indeed, the 

initial work on chitin degradation showed a greater than six-fold increase in the release of 

chitobiose when an AA10 was co-incubated with a β-chitin nanowhisker substrate in the 

presence of ascorbic acid (reducing agent) and an endochitinase. 3 Given their demonstrated 

commercial potential in the enhancement of biomass degradation there is great interest in the 

discovery and analysis of LPMOs. This interest extends to revealing further details of their 

oxidative modes of action, which promises to uncover more of the diversity of biological 

copper-oxygen chemistry (recently reviewed in ref 13.13) In this context we now report a 

new LPMO family, to be termed AA11 in the CAZy classification (www.cazy.org), that is 

phylogenetically distinct from the previous AA9 and AA10 families. The AA11 example 

described here, from Aspergillus oryzae [hereafter Ao(AA11)], has activity on chitin and 

shares some structural and spectroscopic characteristics with AA9s and with AA10. This 

new family thereby extends the structural range of LPMOs and adds to the complexity of 

active site variations which LPMOs exhibit.

RESULTS

Discovery of the AA11 Family

Family AA11 was identified by “module walking”, in which potential activity as a 

carbohydrate-active enzyme is probed via analysis of the component domains, “walking” 

from one example to another. Many carbohydrate active enzymes are multi-modular with, in 
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addition to catalytic modules, one or more additional domains which are often substrate-

targeting carbohydrate binding modules (CBMs).14,15 CBM modularity of LPMOs has also 

been explicitly analysed by Horn et al.16 Within this context, an analysis of family AA9 

LPMO sequences reveals that several of them carry a short conserved domain of unknown 

function (termed herein X278) characterized by the conservation of 4 cysteines and 1 

aromatic residue (X278 sequence alignment in supplementary information, Supplementary 

Results, Supplementary Fig. 1). A search for other proteins that contain the X278 domain 

then retrieved a large number of secreted modular proteins in addition to those 

corresponding to the starting AA9s, hinting that some of these proteins may be 

carbohydrate-active enzymes. Furthermore, a subset of the X278-containing proteins was 

found to possess a conserved N-terminal region commencing with an N-terminal histidine 

(as indicated by signal peptide analyses, such as with SignalP17) but exhibited no significant 

sequence similarity to LPMOs of families AA9 and AA10.

Analysis of the sequences in this candidate new LPMO family shows that these proteins 

exist either appended to X278 or as a single module, Fig. 2. The AA11 domain of 

BAE61530.1 was used as the query sequence for a BLAST search (23 September 2013) on 

the non-redundant protein sequence database of the NCBI, and this retrieved approximately 

450 sequences of the putative AA11 family with e-values better than 4 × 10−4 (data not 

shown). Only three of the several hundred known AA9 sequences were found in the BLAST 

report, but with e-values worse than 10−3, the commonly accepted threshold of significance. 

Similarly a Pfam search on the server of the Sanger Institute (pfam.sanger.ac.uk) with the 

sequence of A. oryzae AA11 (GenBank BAE61530) failed to identify a significant hit with 

the profile “glyco_hydro_61” corresponding to family AA9, whereas a search conducted 

with the bona fide A. oryzae AA9 protein (GenBank BAE64395) gave a significant match 

(e-value of 3.9 × 10−80) with this profile. Collectively this indicates that AA11 defines a 

sequence family separate from AA9 and one which already contains several hundred fungal 

proteins (Supplementary Data Set). An alignment of thirty AA11 sequences derived from 

finished genomes is shown in Supplementary Fig. 2. Furthermore, we identified three 

metazoan AA11 genes in the recently published genome of the bdelloid rotifer Adineta vaga 

(PMID=23873043).18 The asexual reproductive biology of this organism has been shown to 

be accompanied by large amounts of horizontal gene transfers (HGT) from bacteria, plants 

and fungi.18 Notably all polysaccharide lyase and 40% of all glycoside hydrolase genes in A. 

vaga are from HGT. It is very likely therefore that the three AA11 genes in A. vaga have a 

fungal origin.

Expression and characterization of Ao(AA11)

Sequence alignments of diverse AA11 and X278 domains indicated that the AA11 catalytic 

domain could be delineated, encompassing approximately 220 residues from His20 to 

Cys235 (in the case of Ao(AA11), below, data not shown). Initially, a panel of 

representative AA11 domains was cloned and expressed using E. coli as the initial 

expression host. Of these, the Ao(AA11) domain from sequence BAE61530.1 was 

successfully cloned and over-expressed, via periplasmic secretion, as a soluble protein to 

high levels in E.coli.
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Previous studies on AA94,5 and AA1019,20 have shown that these LPMOs are copper-

dependent enzymes which bind copper with tight binding constants. Accordingly, isothermal 

titration calorimetry on apo-Ao(AA11) exhibited the same tight binding of copper with 

binding too tight to be determined accurately and thus estimated to have a KD < 1 nM (data 

not shown). Accurate determination of the copper binding constant was achieved by 

displacement calorimetry21 in which a weaker binding and kinetically labile metal, Zn2+ 

(KD 8 μM at pH 5 with Ao(AA11), data not shown), was first bound to apo-Ao(AA11) and 

then the Cu2+ binding titrated competitively, allowing accurate determination of a 

dissociation constant, KD, for Cu-Ao(AA11) of 790 ±150 pM at pH 5, Fig. 3a.

The substrate specificity of Ao(AA11) was determined through incubation of the Cu-loaded 

enzyme (the copper was kept slightly sub-stoichiometric to avoid any free-copper catalysed 

side reactions) with various polysaccharide substrates in the presence of ascorbate as the 

electron donor. MALDI-TOF analysis of the products shows that the E. coli-expressed Cu-

Ao(AA11) enzyme is chitinolytic, Fig. 3b and Supplementary Fig. S3, but has no activity on 

other substrates including diverse mannans, cellulose and starch (data not shown). As with 

AA10 the product mass is consistent with a primary chain cleavage to yield predominantly 

aldonic acid oligosaccharides with even-numbered degrees of polymerization (DP = 

4,6,8,10…).3 In contrast to AA10, however, there is also significant presence of unmodified 

oligosaccharides (DP = 5,6,7,8,9…) and species with a mass difference of −2 Da, which 

could represent unopened lactones, or perhaps C4 oxidation products.22

Ao(AA11) structure and its comparison with AA9 and AA10

Screening for crystallization conditions for apo-Ao(AA11) identified a condition containing 

10 mM ZnCl2 (see methods) which gave diffraction quality crystals. The resulting structure 

was solved by single wavelength anomalous dispersion at λ = 1.282 Å, optimising the f” 

component of the zinc anomalous scattering. The Zn-Ao(AA11) structure was refined to a 

final resolution of 1.55 Å (Supplementary Table 1) with a single Zn2+ ion in the active site. 

The necessity for Zn2+ in the crystallisation condition was revealed by the direct 

coordination to the zinc ion by the side chain of Glu74 from a symmetry-related molecule, 

thereby augmenting the packing interaction between adjacent AA11 molecules. The 

structure of Cu-Ao(AA11), Fig. 4a, was obtained via soaking of the Zn-crystal in cryo-

protectant containing 2 mM Cu2+. Consistent with the ITC described above and the expected 

relative binding constants of zinc and copper from the Irving-Williams series, this allowed 

access to the Cu-bound form of AoAA11. Structural analysis of Cu-Ao(AA11) at 1.4 Å 

(Supplementary Table 1) shows that it has a similar tertiary structure to the AA9 and AA10 

classes of LPMOs. The core of the protein is formed by a largely antiparallel β-sandwich 

fold and is stabilised by three disulfide bonds. In both Zn-Ao(AA11) and Cu-Ao(AA11) 

structures, residues 99–109 and 151–169 are highly disordered and have not been modelled 

in the final structure. The intact nature of the enzyme was confirmed however by 

electrospray mass spectrometry of apo-Ao(AA11). Both of these mobile regions are adjacent 

to the C-terminal region of the structure where the AA11 domain was truncated to remove 

the X278 module. It is possible that these regions will be ordered in the intact multi-domain 

protein.
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The Cu-Ao(AA11) structure is similar to the previous Cu-LPMO structures from families 

AA9 and AA10. As with AA9 and AA10 classes the N-terminal copper active site in 

Ao(AA11) sits near the center of an extended flat face, albeit one that is slightly convex in 

AA11, Fig. 4a. Unlike AA9s the face is free of aromatic residues resembling more the 

binding face of AA10s with residues capable of forming hydrogen-bonds to a potential 

polysaccharide substrate. The active site N-terminus lies at the end of a small strand which 

itself interacts in a face-to-face manner with a central four-stranded beta sheet that is the 

structural core of all LPMOs. Structural similarity searches using PDBeFold23 (with the 

default PDBeFOLD Q-score as the criteria) show that the closest structural match is with the 

AA9 enzyme from Thielavia terrestris (PDB: 3eii). This structure yields a Q-score of 0.31 

and shows 17% sequence identity and over 145 aligned residues with a Cα r.m.s deviation 

of 2.6 Å (Fig. 4b). On the whole, AA10 structures match fewer residues in the structural 

overlaps with AA11, with the closest AA10 structure (Q score 0.28) the Enterococcus 

faecaelis enzyme (PDB: 4alt) which has 118 residues overlapping with a Cα r.m.s deviation 

of 2.3 Å (Fig. 4c).

In light of the fact that LPMOs are oxidoreductases, there has been focus in recent 

publications about the role of electron transport chains within the structures.9 In AA9s 

conserved tyrosines are important in this context, whereas in AA10s a conserved patch of 

tryptophan residues has been implicated in this role.20 In AA11s, conserved tryptophans 

along with a methionine connect the active site to the distal face of the enzyme and could 

fulfil a similar function (Supplementary Fig. S4).

The copper active site of Ao(AA11)

The copper active site of Cu-Ao(AA11), Figure 4d, indicates that the copper ion has been 

photoreduced by the incident X-ray beam to the copper(I) oxidation state. This is in common 

with other LPMO structures, as shown clearly for an AA10 from Bacillus 

amyloliquefaciens20 and observed in a range of PDB files: 4alc, 4ale, 4alq, 4alr, 4als, 4alt by 

Gudmundsson et al, reviewed in reference 1313. The copper ion’s immediate coordination 

sphere from endogenous ligands is T-shaped with the three coordinating nitrogen atoms of 

the histidine brace. The oxygen atom of a tyrosine is near one of the copper ion’s potential 

axial coordination sites, although a Cu…O distance of 3.1 Å precludes a formal Cu–O bond. 

An oxygen atom of a glutamate residue from an adjacent AA11 in the crystal lattice lies 2.5 

Å from the copper ion bringing the oxygen atom close to the copper’s primary coordination 

sphere. This contact does not exist in solution since SEC-MALLS shows that the enzyme is 

monomeric (Supplementary Fig. S6). Accordingly, this interaction is perhaps indicative of 

how open the copper ion is to coordination by various potential ligands. This is in contrast to 

the active sites of AA10 enzymes which are more sterically encumbered.13 Detailed 

comparison of the active sites of AA9, AA10 and AA11 shows that the AA11 active site has 

some features of both AA9 and AA10, namely the tyrosine seen in AA9 (Fig. 4e) and the 

conserved secondary coordination sphere alanine of AA10 (Fig. 4f). In previous studies with 

AA9 enzymes (for example10,11,24) it has been shown that the N-methylation is not required 

for activity, and is absent in enzymes expressed in hosts other than filamentous fungi.10,11 

Consistent with such observations, the E. coli expressed protein described herein shows no 

τ-N-methylation of the N-terminal histidine in its active site structure.
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EPR spectroscopic analysis of the copper site in Ao(AA11)

The X-band EPR spectra of Cu-Ao(AA11) at 150 K in the absence and presence of azide are 

shown in Fig. 5. The azide-free structure exhibits a near-axial spectral envelope revealing a 

singly-occupied molecular orbital at copper with significant d(x2-y2) character. Accurate 

simulation of the Cu-Ao(AA11) spectrum could be achieved in the parallel region with gz = 

2.27 and ∣Az∣ = 157 G (0.0166 cm−1, Supplementary Table 2), placing Cu-Ao(AA11) 

squarely within the Peisach-Blumberg classification of a type 2 copper centre.25 Given the 

lack of resolution in the perpendicular region, accurate simulation of the Ax,y and of gx,y 

values was not possible, however an overall fit to the spectral envelope could only be 

achieved by introducing a degree of rhombicity, with gx = 2.03 and gy = 2.10. It is notable 

that there is some resolution of superhyperfine coupling to ligating nitrogen atoms 

observable in the perpendicular region (~15 G, 0.0014 cm−1, 43 MHz) with coupling 

constants typical for coordination to copper(II) by sp2 hybridised nitrogen atoms.26 Addition 

of excess sodium azide causes a shift in the EPR spectrum of Cu-Ao(AA11) to gx = gy = 

2.06, gz = 2.24 and ∣Az∣ = 175 G (0.018 cm−1, Fig. 5, Supplementary Table 2) demonstrating 

that azide coordinates directly to the copper ion, accompanied by a shift in coordination 

geometry symmetry towards axial. A comparison of the known EPR parameters for the 

different LPMO classes and substrates, using the standard axial type 2 copper parameters in 

AA9 as a reference (Supplementary Table 3) shows that AA10 enzymes which are active on 

chitin demonstrate a reduced ∣Az∣ value and some rhombicity in perpendicular g values. 

AA11 enzymes have type 2 copper ∣Az∣ values and rhombicity in g values, thereby lying 

somewhat in-between AA9 and AA10 in terms of their EPR spectroscopic features, 

commensurate with the structural variations in the active sites of the different classes.

Discussion

We have reported herein the discovery of a new LPMO family using a module-walking 

approach from a common domain of unknown function, termed X278. This approach 

demonstrates that it is possible to find LPMOs with different activities/sequences from those 

already known, thereby opening-up further the discovery potential for this important class of 

enzymes. In the example described herein, the observation and occurrence of an X278 

module on a chitinase (Fig. 2), along with the observed activity of Ao(AA11) on chitin 

suggest that X278 could be a chitin-binding domain but it is worth noting that such 

speculation demands further experimental evidence, given that CBM specificity does not 

always correlate with that of the catalytic module.14,15 Using an exemplar from Aspergillus 

oryzae we showed that the new family has structural, activity and spectroscopic 

characteristics that are an intriguing mixture of those seen in enzymes of the previous AA9 

and AA10 classifications, sharing active centre features that are common to one or the other 

family. A significant implication of the AA11 family is that distinct LPMO families now 

form a “clan”, consisting of CAZy families AA9-AA11. With this expansion of the LPMO 

clan it is possible to envisage that other LPMO members will be found, with the potential to 

broaden both the range of potential substrates and the types of reactive copper-oxygen 

species formed at the active site of LPMOs.
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On line methods

Discovery of AA11

Blast searches conducted with AA11 sequences did not retrieve AA9s nor AA10s with 

significant scores and the same vice-versa. BLAST searches starting with either AA9 or 

AA10 sequences do not pick AA11s with significant scores. PSI-BLAST analyses suggest 

distant relatedness to AA9, but insufficient to build a reliable alignment. The structural 

relationship between the current three families (AA9, AA10 and AA11) of LPMOs suggests 

that AA9, AA10 and AA11 form a clan of families. The sequences were aligned using 

MUSCLE27 and the output was made using ESPRIPT28.

Expression and Purification of Ao(AA11)

Nucleotides 457 to 1104 from NCBI reference sequence: XM_001822611.2 which code for 

mature Ao(AA11) (residues 20 - 235 of BAE61530.1) were codon optimised for expression 

in E. coli, synthesised with the pelB leader sequence and cloned into the pET-26a vector 

between NdeI and XhoI restriction sites by GenScript. Protein was expressed in BL21* 

(DE3) E. coli in 6 × 500 ml LB cultures at 37 °C shaking at 180 rpm. At an A600 of 0.4 the 

temperature was lowered to 16 °C before the addition of IPTG to a final concentration of 1 

mM when A600 = 0.6-0.8. The following day cells were harvested by centrifugation at 

11,000 g for 20 min at 4 °C.

The cell paste was re-suspended in three volumes of ice-cold 50 mM Tris pH 8, 20% w/v 

sucrose. 40 μl of 10 mg ml−1 lysozyme was added for every gram of cell paste and left on 

ice for 1 h with occasional agitation. 60 μl of 1 M MgSO4 per gram of cell paste was then 

added and left on ice for a further 30 min. Following centrifugation at 10,000 g for 20 min, 4 

°C and removal of the supernatant to a fresh tube, the pellet underwent osmotic shock by re-

suspension in 3 volumes of ice cold MilliQ water and was left on ice for a further hour. The 

cell debris was removed by centrifugation at 10,000 g for 20 minutes and the supernatant 

combined with that from the previous step. This was sonicated on ice in an MSE Soniprep 

150 sonicator to reduce the viscosity before the pH was lowered by adding a small amount 

of 1 M Na-acetate pH 5.0. The protein was passed through a 5 ml HiTrap SP HP (GE 

Healthcare) column equilibrated in 50 mM Na-acetate pH 5. Solid (NH4)2SO4 was added 

directly to the flow through which contained AoAA11 to give a final concentration of 1 M. 

The protein was then passed through a 5 ml Phenyl Sepharose HP column (GE Healthcare), 

in 50 mM Na-acetate pH 5.0, 1M (NH4)2SO4. The protein was then precipitated by the 

addition of solid (NH4)2SO4 to 85% saturation at 4°C and isolated by centrifugation at 

38,000 g for 20 min, 4 °C. The pellet was dissolved in 10 volumes of 20 mM sodium acetate 

pH 5.0, 250 mM NaCl, 5 mM EDTA and then concentrated to less than 10 ml for size 

exclusion chromatography on a HiLoad 26/60 Superdex 75 column (GE Healthcare) in 20 

mM Na-acetate pH 5.0, 250 mM NaCl. Peak fractions were pooled and concentrated by 

centrifugation on a Sartorius 10 kDa molecular weight cut off concentrator. Protein 

concentrations for all subsequent experiments were determined by measuring the A280 with 

an extinction coefficient of 25,815 dm3 mol−1 cm−1 and a molecular weight of 23,055.8 Da. 

The protein was judged to be >95% pure on SDS-PAGE gel and gave a single species at 

23,049 Da by electrospray mass spectrometry.
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Isothermal titration calorimetry

In order to obtain a Cu2+ binding constant, competition isothermal titration calorimetry was 

performed using an ITC-200 calorimeter (GE Healthcare) at 298K. First Zn2+ binding was 

measured with the protein in the cell at 150 μM and 10-fold that concentration of ZnCl2. 

Fitting these data using Origin 7 (MicroCal) gave N = 0.753 ± 0.008, K = 1.25 × 105 ± 9.8 × 

103 M−1, ΔH = 4034 ± 57cal/mol, and ΔS = 36.8 cal/mol/K. Copper binding was then 

measured with protein (and ZnCl2 present in the cell at 50 μM and 500 μM respectively) and 

CuCl2 at 500 μM. 1μl injections were used with 2 min between each injection. 20 mM 

sodium acetate pH 5.0, 250 mM NaCl, was the buffer used throughout with the metal 

solution prepared in exactly the same buffer, ensuring that no competing hydrolysis of 

metals was occurring. Fitting with the competitive binding model using the above 

parameters for zinc gave N = 0.760 ± 0.0025, K = 1.27 × 109 ± 2.1 × 108 M−1, ΔH = −7401 

± 77.7 cal/mol for copper binding. As noted in previous work, the stoichiometry of the 

interaction with metals was typically less than 1:1. This is likely due to the incomplete 

removal of copper from the buffers leaving a sub-population of protein copper bound given 

the high affinity of the interaction. Assuming a binding model of a single copper ion 

displacing a single zinc ion from AoAA11 the thermogram data were fitted using a nonlinear 

regression procedure within Origin 7 for data from a single experiment.

Reaction Product Analysis

Squid pen chitin was chosen as a substrate as it is purer than crab and shrimp chitins, in 

terms of the presence of contaminating chito-oligosaccarides, and because it is widely 

regarded as the standard substrate for mass spectrometry in the field.3 1 ml reactions were 

set up with 0.2% w/v solid substrate (kind gift from Dominique Gillet of Mahtani Chitosan 

Pvt Ltd) in 10 mM ammonium acetate pH 5.0, 1 mM ascorbic acid, 1 μM CuCl2 and 1 μM 

Cu-Ao(AA11) and were incubated at 30 °C rotating overnight. Remaining substrate was 

removed by centrifugation at 16,000 g, 4 °C for 5 min and the supernatant used for the 

analysis. 1 μl of sample was mixed with an equal volume of 10 mg/ml 2,5-dihydroxybenzoic 

acid (DHB) in 50% acetonitrile, 0.1% trifluoroacetic acid (TFA) on a SCOUT-MTP 384 

target plate (Bruker). The spotted samples were then dried in a vacuum desiccator before 

being analysed by mass spectrometry on an Ultraflex III matrix-assisted laser desorption 

ionization–time of flight/time of flight (MALDI-TOF/TOF) instrument (Bruker), as 

described in Vaaje-Kolstad et al.3

Crystallisation of Ao(AA11)

Pure Ao(AA11) was buffer exchanged on a Sartorius 10 kDa molecular weight cut off 

concentrator into 20 mM sodium acetate pH 5.0 to remove salt and was finally concentrated 

to 25 mg/ml for crystallization. Crystal screens were performed at this concentration using a 

Mosquito robot (TTP Labtech). Crystals were obtained in several conditions all containing 

ZnCl2, the best of which were in PACT (Qiagen) condition B12: 10 mM ZnCl2, 100 mM 

MES pH 6.0, 20% w/v PEG-6000. These were readily reproduced in larger hanging drops 

and were used for subsequent soaks and data collection.
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Diffraction Data Collection, Processing and Structure Determination

Crystals were cryo-cooled for data collection by first soaking for 30 s in mother liquor 

containing 15% v/v ethylene glycol before plunging in liquid nitrogen. Diffraction data were 

collected from Zn2+-containing crystals at Diamond Light Source, beamline I02 at a 

wavelength of 1.282 Å. Data were indexed and integrated using XDS29 with subsequent 

processing steps performed in the CCP4 software suite30. The structure was solved using 

SAD phasing from the anomalous Zn2+ signal with SHELX31. The initial model was re-built 

using ARP/wARP32 before subsequent rounds of rebuilding and refinement using COOT33 

and REFMAC5 33 respectively.

To obtain the copper complex, crystals were soaked for 2 h in cryo-protectant in which the 

ZnCl2 had been replaced with 2 mM CuCl2 and again were cryo-cooled by plunging in 

liquid nitrogen. Diffraction data were collected at Diamond Light Source beamline I04 at a 

wavelength of 0.980 Å. These data were indexed and integrated using XDS 29 and further 

downstream processing performed in the CCP4 software suite.30 The original model was 

refined against these new data having removed flexible loops and the metal ion to avoid 

model bias. Rebuilding and refinement were again performed in COOT33 and REFMAC534 

respectively. The quality of the models was monitored throughout using MOLPROBITY,35 

with both models showing no Ramachandran outliers and 98.3% in the favoured region for 

both the Cu and Zn complexes. Data processing and structure refinement statistics can be 

found in Supplementary table 1.

Structures have been deposited in the Protein Data Bank with codes 4MAH and 4MAI.

Size Exclusion Chromatography with Multi-Angle Laser Light Scattering (SEC-MALLS)

50 μl samples of Ao(AA11) were applied onto a BioSep-SEC-S 3000 column (Phenomenex) 

at a concentration of 2 mg/ml. For the copper-loaded sample the buffer used was 20 mM 

sodium acetate pH 5.0, 250 mM NaCl, and for copper free 1 mM EDTA was also included 

in the buffer. MALLS data were collected on a Dawn Heleos II 18-angle light scattering 

detector with an in-line OptilabrEX refractive index monitor (Wyatt Technology). ASTRA 

software was used to analyze the data fitting with the Zimm model and an estimated dn/dc 

value of 0.190 mL/g. The errors were estimated within the ASTRA software and are based 

on a single measurement.

Electron paramagnetic resonance spectroscopy

Continuous wave X-band frozen solution EPR spectra of single sample of 0.2 to 0.5 mM 

solutions of Cu(II)-Ao(A11) and with 1000-fold excess of sodium azide (10% v/v glycerol) 

at pH 5.0 (acetate buffer) and 150 K were acquired on a Bruker EMX spectrometer 

operating at ~9.30 GHz, with a modulation amplitude of 4 G and microwave power of 5.02 

mW. Spectral simulation was carried out using Easyspin 4.0.0 on a desktop PC. Simulation 

parameters are given in Supplementary table 2. gz and ∣Az∣ values were determined 

accurately from the three absorptions at low field. It was assumed that g and A tensors were 

axially coincident. Accurate determination of the gx, gy, ∣Ax∣ and ∣Ay∣ was not possible due 

to the second order nature of the perpendicular region, although it was noted that satisfactory 

simulation could only be achieved with one particular set of g values.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Structure of typical AA9 and active sites of AA9 and AA10. (a) Overall structure of AA9 

from Thermoascus aurantiacus5 with the active site copper shown as a sphere and active site 

residues shown as sticks, (b) schematic representations of the Cu active sites observed in 

AA9 and AA10 structures.
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Figure 2. 
“Module walking” to discover new LPMOs.
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Figure 3. 
Copper binding affinity and oxidative activity of Ao(AA11). (a) ITC thermogram of Zn2+ 

displacement by Cu2+ from the active site of Ao(AA11). (b) MALDI-TOF analysis of 

Ao(AA11) action on squid-pen chitin. DPnal = aldonic acid, DPn−2 = oxidation from R-OH 

to R=O, (measured MW). DP5/DP5−2 +Na+ (1056.4, 1054.4), DP5al +Na+ (1072.4), DP5al
− 

+2Na+ (1094.4), DP6/DP6−2 +Na+ (1259.5, 1257.5), DP6al +Na+ (1275.5), DP6al
− +2Na+ 

(1297.5), DP7/DP7−2 +Na+ (1462.6, 1460.6), DP7al +Na+ (1478.6), DP7al
− +2Na+ (1500.6), 

DP8/DP8−2 +Na+ (1665.6, 1663.6), DP8al +Na+ (1681.6), DP8al
− +2Na+ (1703.6), 

DP9/DP9−2 +Na+ (1868.7, 1866.7), DP9al +Na+ (1884.7), DP10/DP10−2 +Na+ (2071.8, 

2069.8), DP10al +Na+ (2087.8), DP10al
− +2Na+ (2109.8). Magnified region of DP6 is 

shown in Supplementary Fig. 3.
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Figure 4. 
Structural comparisons of Ao(AA11) with known AA9 and AA10 enzymes. (a) 3D structure 

of Cu-Ao(AA11), ribbon depiction. The conserved active site residues are shown as sticks 

with green carbons and disulfide bonds (from conserved cysteines) as yellow sticks. (b) 

Overall superposition of Cu-Ao(AA11) (green) with Zn-(AA9) from T. terrestris (yellow) 

with rmsd = 2.6 Å over 145 Cα’s (c) Superposition of Cu-Ao(AA11) (green) with Cu-

(AA10) from E. faecaelis (pink) with r.m.s.d = 2.3 Å over 118 residues overlapping with a 

Cα’s. (d) The electron density maps contoured at 1σ in the active site of Cu-Ao(AA11), Cu-

N(His 1) = 1.97 Å, Cu-NH2(His1) = 2.19 Å, Cu-N(His60) = 1.98 Å, N(His1)-Cu-NH2 = 

90.5°, N(His60)-Cu-NH2 = 103.0°, N(His1)-Cu-N(His1) = 164.8°. Glu74, marked with 

asterisk is from a symmetry related molecule and is shown with yellow carbon atoms. (e) 

Active site overlay of Ao(AA11) (green carbons/copper) with Cu-AA9 from T. aurantiacus 

(orange carbons/copper), note side chain of conserved alanine 58, depicted as green rod in 

AA11. (f) The active site overlap of Cu-Ao(AA11) (green carbons/copper) with Cu-(AA10) 

from B. amyloliquefaciens (pink carbons/copper). See Supplementary figure 5 for stereo 

views of d-f.
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Figure 5. 
The X-band EPR spectra of Cu enzymes (2500-3500 G, 9.3 GHz, 150 K) with simulations 

(red) of a) Cu-Ao(AA11), pH 5, 10% v/v glycerol and b) Cu-Ao(A11), pH 5, 10% v/v 

glycerol with 1000 equivalents of azide.
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