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Abstract
Recent developments in sequencing and growth of bioinformatics resources provide us with vast depositories of protein 
network and single nucleotide polymorphism data. It allows us to re-examine, on a larger and more comprehensive scale, 
the relationship between protein–protein interactions and protein variability and evolutionary rates. This relationship has 
remained far from unambiguously resolved for quite a long time, reflecting shifting analysis approaches in the literature, and 
growing data availability. In this study, we utilized several public genomic databases to investigate this relationship in human, 
mouse, pig, chicken, and zebrafish. We observed strong non-linear relationship patterns (tending towards convex decreasing 
function shapes) between protein variability and the density of corresponding protein–protein interactions across all five 
species. To investigate further, we carried out stochastic simulations, modeling the interplay between protein connectivity 
and variability. Our results indicate that a simple negative linear correlation model, often suggested (or tacitly assumed) 
in the literature, as either a null or an alternative hypothesis, is not a good fit with the observed data. After considering 
different (but still relatively simple, and not overfitting) simulation models, we found that a convex decreasing protein vari-
ability–connectivity function (specifically, exponential decay) led to a much better fit with the real data. We conclude that 
simple correlation models might be inadequate for describing protein variability–connectivity interplay in vertebrates; they 
often tend towards false negatives (showing no more than marginal linear or rank correlation where there are in fact strong 
non-random patterns).

Keywords  Protein connectivity · Protein variability · Protein–protein interactions · PPI · Stochastic computer simulations · 
Protein evolutionary rates

Introduction

Protein–protein interactions (PPIs) play an important role 
in realizing specific functions in biological systems. One 
way to represent PPIs is via protein networks. In a protein 
network, a link between two proteins is a visualization of 
a dependency relationship. The latter can have many bio-
logical meanings, ranging from direct or indirect physical/
chemical interactions to co-expression to ontological prox-
imity (Asur et al. 2007). Protein networks have attractive 

Portions of this work were presented and will be published in 
thesis form in fulfillment of the requirements for the PhD for X. W. 
from the City of Hope Graduate School of Biomedical Sciences.

Handling editor: Eugene Shakhnovich.

Electronic supplementary material  The online version of this 
article (https​://doi.org/10.1007/s0023​9-019-09899​-z) contains 
supplementary material, which is available to authorized users.

 *	 Andrei S. Rodin 
	 arodin@coh.org

	 Xichun Wang 
	 xicwang@coh.org

	 Sergio Branciamore 
	 sbranciamore@coh.org

	 Grigoriy Gogoshin 
	 ggogoshin@coh.org

1	 Department of Computational and Quantitative Medicine 
and Diabetes and Metabolism Research Institute, Beckman 
Research Institute of the City of Hope, 1500 East Duarte 
Road, Duarte, CA 91010‑3000, USA

http://orcid.org/0000-0002-2570-0332
http://crossmark.crossref.org/dialog/?doi=10.1007/s00239-019-09899-z&domain=pdf
https://doi.org/10.1007/s00239-019-09899-z


185Journal of Molecular Evolution (2019) 87:184–198	

1 3

mathematical properties—interpretability, compartmen-
talization, scalability, admixture of different types of pro-
teins and dependencies, and scale-free properties coupled 
with the network sparseness (Nacher et al. 2009). However, 
translation “back” from the protein network abstraction into 
the actual mechanistic understanding of the biochemical 
machinery (and its regulation and evolutionary history, up 
to the genomic level) is not a trivial undertaking (Ghadie 
et al. 2017; Guo et al. 2014; Kirk et al. 2017a, b; Zhu et al. 
2013). In this light, a relationship between the “connectiv-
ity” of a protein (i.e., the density of its immediate Markov 
neighborhood in the network, also correlated with its “cen-
trality” in the network, and its network “hub,” as opposed 
to “periphery,” positioning) and its evolutionary qualities/
parameters (such as intraspecific variability, duplicability, 
and interspecific variability) is of a special interest.

Establishing (and quantifying) this relationship has been 
a notable research goal over the last 10–15 years [see (Zhu 
et al. 2012) for a broad discussion]. Prachumwat and Li 
demonstrated an inverse relationship between high con-
nectivity and gene duplicability (with older genes tending 
towards higher connectivity) in yeast (Prachumwat and Li 
2006). However, later studies suggested direct proportion-
ality in mammals (Liang and Li 2007), leading the authors 
to speculate that highly connected proteins require higher 
dosages, thus necessitating more gene duplication (bringing 
about, in turn, more functional diversification). In parallel, 
higher gene duplicability was hypothesized to be linked with 
increased protein complexity (via longer protein sequences 
and higher number of functional domains) (Yang et  al. 
2003).

Switching from duplicability to variability—early on 
Fraser et al. have demonstrated negative correlation between 
protein interactions and evolutionary rate (on the basis of 
yeast species and C. elegans) (Fraser et al. 2002, 2003). Jor-
dan et al. argued that only very weak correlation (if any at 
all) could be found between protein evolutionary rate and 
protein connectivity in yeast species (Jordan et al. 2003). 
This inter-study discrepancy could be attributed to the dif-
ferences between (and consequent unintended biases stem-
ming from) the datasets used, and other analysis artifacts 
(Bloom and Adami 2003)—raising, of course, the question 
of the robustness of the general investigative approach in 
the first place (Plotkin and Fraser 2007). Perhaps even more 
importantly, protein evolutionary rates are determined and 
influenced by many other factors, and correlate (negatively 
or positively) with many other measurements (Alvarez-
Ponce and Fares 2012; Alvarez-Ponce et al. 2017; Josephs 
et al. 2017; Liao et al. 2006; Mahler et al. 2017; Saeed and 
Deane 2006; Zhang and Yang 2015)—it has been suggested 
that weak-to-moderate negative correlation between protein 
connectivity and variability might not signify causation per 
se, but rather reflect strong correlation between protein 

connectivity/PPI and other factors influencing protein evo-
lutionary rates (Koonin and Wolf 2006)—and, in any case, 
protein connectivity might be insignificant in comparison to 
some of these other factors. Specifically, expression levels 
and patterns (such as histological breadth) have been singled 
out as important factors (Drummond et al. 2005; Mahler 
et al. 2017; Pal et al. 2001), with protein connectivity/PPI’s 
independent contribution to the protein variability estimated 
to be comparatively negligible (Drummond et al. 2006; 
Yang and Gaut 2011) [but see (Plotkin and Fraser 2007; 
Alvarez-Ponce et al. 2017) for a somewhat different pro-
spective]. Much of the above work has been carried out in 
yeast—however, it was recently demonstrated, in H. sapiens, 
and other species, that protein connectivity/centrality still 
impacts protein variability, independently of gene expres-
sion levels (Alvarez-Ponce et al. 2017; Josephs et al. 2017; 
Masalia et al. 2017), and that there is a marginal-to-strong 
negative correlation between protein connectivity/centrality 
and genetic divergence.

It should also be noted that there is a difference between 
the topological localization in the PPI network (e.g., “hub” 
vs. “periphery”) and protein connectivity—although it has 
been argued that the “hub” protein assignment might be a 
somewhat artificial notion (Batada et al. 2006, 2007), there 
is significant recent evidence that “hub” proteins are sub-
jected to strong negative selection (Biswas et al. 2017; Kirk 
et al. 2017a; Pang et al. 2016). Finally, a distinction should 
also be made, when talking about protein evolutionary rates, 
between protein intraspecific variability, polymorphism, and 
interspecific variability (divergence). In conclusion, the gen-
eral question of variability–connectivity correlation remains 
unresolved to a significant degree.

In our opinion, one of the hitherto ignored angles is the 
way “correlation” per se is defined and measured. In much 
of the above literature, single-nucleotide polymorphisms 
(SNPs) are counted in various species datasets available 
as public resources, and then, after invoking basic trans-
formations (e.g., computing nonsynonymous/synonymous 
rate ratios), linear correlation coefficients (or their non-par-
ametric, rank correlation, equivalents) between protein evo-
lutionary rate and connectivity are derived. However, such 
simple relationships might be a poor fit in this particular 
situation. In general, it is possible, even likely, to mistake 
even a very pronounced pattern for the absence of correla-
tion in biological systems if an overly simplistic model is 
used for the correlation analysis (Dietrich 1991); we believe 
that this might have been happening here, contributing to 
the aforementioned ambiguity. Therefore, in our approach, 
we aimed at examining the link between protein connectiv-
ity and variability as a complex and (possibly) non-linear 
dependency, on the distributional level. We also wanted to 
extend the analysis to as many proteins as practically fea-
sible, taking advantage of the ever-growing public genome 
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database resources, and to concentrate on the vertebrate 
species, to complement the existing analyses in yeast, C. 
elegans, and flowering plants.

After analyzing SNP data from five different species 
(human, mouse, pig, chicken, zebrafish) using different pub-
lic genomic datasets, we confirm that there is a tendency 
towards negative dependency between protein connectivity 
and protein variability at the interspecific (ortholog) vari-
ability level (but not at the intraspecific variability level). 
However, this relationship is clearly non-linear; correspond-
ing distributions exhibit a distinct shape largely invariant 
across the different species and databases. Using simula-
tions, we show that incorporation of the non-linear (namely, 
exponential decay) variability–connectivity functions in 
the simulated evolutionary process results in the variabil-
ity–connectivity relationship patterns that approximate the 
observed, real, protein variability–connectivity data suffi-
ciently well; along the way, we propose a simple but math-
ematically rigorous way to stochastically model the interplay 
of protein connectivity and protein evolutionary rates.

Materials and Methods

Database Data (Protein Connectivity 
and Evolutionary Rates)

Our principal analyses were centered around the protein con-
nectivity data for human, mouse, pig, chicken, and zebrafish 
assembled in the STRING database (Szklarczyk et al. 2017). 
In STRING database, each protein–protein connection is 
assigned a probability score (an estimate of whether the con-
nection in question is biologically meaningful, specific, and 
reproducible). Only confirmed physical non-redundant con-
nections with significant scores were considered. We started 
by selecting all connections for which the corresponding 
intraspecific protein evolutionary rate data were available, 
resulting in 15,903 human proteins, 12,937 mouse proteins, 
1017 pig proteins, 804 chicken proteins, and 2124 zebrafish 
proteins. We continued by compiling all connections for 
which confirmed (Wolf and Koonin 2012) human ortholog 
(human/chimpanzee, specifically) and mouse ortholog 
(mouse/rat) data were available, resulting in 15,116 human 
proteins and 15,246 mouse proteins. For these, standard 
built-in Ensembl Genome Browser phylogenetic analysis 
scheme, encompassing maximum likelihood tree reconstruc-
tion and maximum likelihood dN (nonsynonymous substitu-
tion rate) and dS (synonymous substitution rate) estimation, 
was used to obtain dN, dS, and dN/dS values (Aken et al. 
2016; Chen et al. 2010; Yang 1997).

Importantly, we used both intraspecific protein evolu-
tionary rate data and interspecific protein evolutionary rate 
(divergence, or ortholog) data throughout the study. Both 

present biological interest; in addition, the former is more 
congruent with our simulation framework (as detailed 
below), while the latter is directly comparable with the 
majority of the results in the literature. We used total SNP 
counts, dN, dS, and dN/dS ratio to evaluate protein variabil-
ity. The former are, again, more congruent with our simula-
tion framework, while dN and dN/dS ratio arguably do the 
best job of quantifying selection pressures in sufficiently 
divergent sequences (unless the synonymous sites are under 
significant selection pressure, which is unlikely to be the 
case for the five species in this present study). We did not 
utilize intraspecific dN/dS data, because it is unclear whether 
dN/dS is at all meaningful in the context of segregating poly-
morphisms (Kryazhimskiy and Plotkin 2008).

These analyses were augmented with the separate analy-
ses of the human protein connectivity data from the Reac-
tome database (Fabregat et al. 2016). Protein–protein inter-
actions in Reactome are further classified into four groups: 
“direct complex” (interactions between proteins present in 
the same complex), “indirect complex” (present in different 
subcomplexes of a complex), “reaction” (participating in a 
reaction but not present in the same complex), and “neigh-
boring reaction” (participating in two consecutive reac-
tions but not present in the same complex). The latter two 
categories are not, strictly speaking, physical PPI—never-
theless, we have included them in the (separate) analyses, 
for comparison/control purposes. After the data cleanup 
(removing self-connections, etc.), the human intraspecific 
variability Reactome dataset contained 1839 proteins in 
“direct complex” group, 2109 proteins in “indirect com-
plex” group, 2975 proteins in “reaction” group, and 3187 
proteins in “neighboring reaction” group. Human/chimpan-
zee ortholog Reactome dataset contained 1729 proteins in 
“direct complex” group, 2001 proteins in “indirect complex” 
group, 2824 proteins in “reaction” group, and 3072 proteins 
in “neighboring reaction” group. Finally, we have also car-
ried out the separate analyses for human proteins from Agile 
Protein Interactomes DataServer (APID) (Alonso-Lopez 
et al. 2016). Only confirmed physical interactions were 
included. These amounted to 15,651 (intraspecific variability 
data)/15,109 (human/chimpanzee ortholog data) proteins.

In general, we aimed to leverage all available public 
large-scale physical protein connectivity resources (current 
stable versions/builds as of mid-2019) which could be reli-
ably and easily cross-linked with the protein evolutionary 
rate data, ending with the aforementioned three databases 
and five species, with the bulk of the results generated from 
the STRING human and mouse data. We were especially 
interested in the vertebrates because most of the previous 
research has been carried out in plants, yeast, and C. elegans.

To cross-link connectivity and variability data, three pub-
lic resources were used: UniProt (UniProt: the universal pro-
tein knowledgebase 2017), USCS Genome Browser (Tyner 
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et al. 2017), and Ensembl Genome Browser (Aken et al. 
2016; Chen et al. 2010). After cross-referencing the proteins 
from the different databases, all proteins from all five species 
were assembled in the final dataset under uniform UniProt 
ID system. The final datasets can be found in Supplemen-
tary Material 2 (annotation) and Supplementary Materials 
3, 4 (data). We used the total SNP number divided by the 
gene (mRNA) length as the “raw” evolutionary rate measure, 
and dN, dS, and dN/dS ratio as implemented in Aken et al. 
(2016), Chen et al. (2010), and Yang (1997). These were 
plotted (y-axis) against the protein connectivity (x-axis) in 
most of the results reported below. Python code for manag-
ing the datasets and visualizing the variability–connectivity 
relationships can be found in Supplementary Material 1.

Computer Simulations

We used stochastic computer simulations of protein con-
nectivity and protein variability to model three scenarios: 
no dependency between the former and the latter, linear 
dependency, and non-linear dependency. Subsequently, we 
investigated which of the three implemented scenarios fitted 
the real, observed, data the best.

To model protein connectivity, we used a protein network 
template: a connected network graph with nodes represent-
ing proteins, and edges—existing protein–protein interac-
tions. During our simulation process, a new node is con-
nected to the existing node i with the probability pi, where 
ki is the number of connections of i (Albert and Barabási 
2002):

In protein connectivity modeling function, we take the 
number of nodes as an input, and use this number to set 
up iterations. In each loop, we generate a new list of ran-
dom values between 0 and 1. The length of the new list will 
increase by one in each loop, implying addition of a new 
node. The random number between 0 and 1 represents the 
probability of whether this new node is connected to the 
existing node. Next, we compare the random number with 
the probability assigned to the old node. If the former is less 
than the latter, these two nodes are connected by an edge, 
and the connectivity matrix is correspondingly updated. 
After the process is finished, the final matrix contains con-
nectivity numbers (edge counts) for all nodes.

We tried the above algorithm with 1000–10,000 nodes. 
On a late model workstation, one 1000-node run takes ~ 2 s, 
whereas one 10,000-node run takes more than 30 min. We 
noticed that the protein connectivity distribution shape was 
essentially the same for any number of nodes, the only dif-
ference being in scaling along the protein connectivity axis. 

pi =
ki

∑

j kj
.

For example, to put it in biological context, for 1000 nodes, 
simulated protein connectivity scale was similar to that of 
the actually observed human Reactome “direct complex” 
subclass data. Because we were more interested in the distri-
bution shape and patterns rather than the absolute values, we 
largely limited ourselves to 1000-node simulations through-
out the study, which made the simulations computationally 
feasible without involving exotic computing resources. 
(However, results shown in Fig. 5 below were obtained with 
10,000-node simulations).

For protein variability modeling, we first defined protein 
variability as the normalized total number of SNPs (i.e., 
divided by the mRNA length). We modeled the total SNP 
count dynamic over generations (assuming mutation neutral-
ity) using binomial distribution (Sainudiin et al. 2007; Xu 
et al. 2012), setting the mRNA length at [100 × maximum 
SNP count].

In our first modeling scenario, we assumed that the pro-
tein connectivity network and protein variability are not 
coupled, evolving completely independently. Time, there-
fore, is the only variable linking protein connectivity and 
protein variability dynamics. Under this assumption, we take 
the number of nodes as an input, and set up the iterative 
process—in each loop (generation) we create a new list of 
random values following the binomial distribution. The list 
grows by one in each loop (addition of a new node). The 
binomial distribution-generated number is the number of 
SNPs in a new generation, for each node. Finally, we take 
inventory of all the SNPs across the generations, and return 
SNP vectors for all the nodes.

For the second and third modeling scenarios, we assume 
that protein connectivity and protein variability are not inde-
pendent, and generate protein variability as a function of its 
connectivity. We will call it a variability–connectivity (V–C) 
function. (An obvious, and simplest, possible V–C function 
is the negative linear function, which is implemented in our 
second modeling scenario.) For the purposes of this study, 
we will limit ourselves to the negative (decreasing) func-
tions. Under these conditions, we start by taking the number 
of nodes and the V–C function type as inputs in the itera-
tive process. In each loop (generation), we use the method 
described in the preceding paragraph to generate a protein 
connectivity matrix. Using the updated matrix, and summing 
column-wise, we obtain a new protein connectivity vector 
after adding one new node. We then apply V–C function 
to this updated protein connectivity vector to estimate the 
probability of having one SNP count for the protein in this 
current generation. Then we use random sampling binomial 
distribution function to generate a vector of new SNPs for 
all the nodes in this generation; subsequently, we sum up 
SNPs counts for each generation, ascertain the maximum 
SNP count value, and multiply it by 100 to achieve uni-
form mRNA length. Finally, we divide the SNP counts by 
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the mRNA length to calculate the protein variability. This 
procedure returns two vectors, one—containing protein con-
nectivities, and another—protein variabilities. (It remains to 
note that we have tried at least 500 simulation runs for each 
of the three scenarios, and they proved to be exceedingly 
robust, with very little to practically no variation between 
the runs for our purposes.)

The crucial question, and the cornerstone of the present 
study, is the choice of the V–C function(s). This study was 
partly motivated by a simple observation that the actual, 
observed, protein variability–connectivity patterns did not 
look particularly linear (regardless of whether the correla-
tion was positive, negative, or non-existent). In fact, in our 
analyses (see Figs. 1, 3, Supplementary Figs. 2, 4, 6 in the 
"Results" section below) they looked rather “curvy.” There-
fore, in addition to a linear V–C function, we have tried 
out a number of simple but non-linear functions. From the 
evolutionary standpoint, the exponential decay (or, negative 

exponential) function is a logical first choice. Indeed, it is 
well known (Sawyer and Hartl 1992) that the probability of 
fixation of an allele under selection decreases exponentially 
if negative selection is assumed. Here, we further hypoth-
esize that the negative selection coefficient is linearly pro-
portional to the protein’s connectivity, thus ending with the 
exponential decay V–C function as the simplest one fitting 
this evolutionary scenario.

Our goal was to show that a non-linear (but still simple) 
function might be a much better fit with the real data, and 
that this observation might help in resolving the variabil-
ity–connectivity correlation (or absence thereof) conun-
drum. Of course, for each observed variability–connectivity 
dataset it is possible to over-parameterize the V–C functions 
to the extent that the fit will be asymptotically perfect (or at 
least much better than that obtained via a simple exponential 
decay V–C function), but such overfitting does not make 
much predictive modeling (or biological) sense. Eventually, 

Fig. 1   Density plots (left panes) and 3D surface plots (right panes) 
of human intraspecific protein variability versus protein connectiv-
ity. a STRING data. b Reactome “Direct Complex” data. c Reactome 
“Indirect Complex” data. d Reactome “Reaction” data. e Reactome 

“Neighboring Reaction” data. f APID data. Straight lines in the left 
panes depict fitted linear models. Spearman (non-parametric, rank) 
correlation coefficient/statistical significance (ρ and P value) are 
shown for each plot
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with all these considerations in mind, we picked the nega-
tive linear V–C function for our second modeling scenario, 
and the exponential decay function for our third modeling 
scenario, with the probability of having a new SNP being, 
respectively, either

 or

 where c is the protein connectivity. (We discuss the parame-
ters (a, b, k) choice below in the "Results/Computer Simula-
tion" section.) Python code for modeling all three scenarios 
can be found in Supplementary Material 1.

Results

Observed Data

Figure 1 depicts intraspecific protein variability versus 
protein connectivity relationships observed in the human 
STRING, Reactome, and APID data. Figure 1a, left pane, 
is a “heat map” visualization (density plot, with each point 
representing one gene) of the STRING data, with red color 
corresponding to the highest, and blue—lowest counts of 
the proteins with given connectivity and variability values. 
Figure 1a, right pane, is an alternative “3D surface plot” 
(joint probability distribution) visualization of the STRING 
data, where proteins were subdivided into ten equal-size bins 
(corresponding to 0.0–1.0 scale). It is clear from Fig. 1a that 
most human proteins have low connectivity and low variabil-
ity (but there is a relative decrease in proteins with very low 
variability); very few have high connectivity and high vari-
ability; and some have high connectivity/low variability or 
low connectivity/high variability. Similar pattern is observed 
in the human Reactome data (Fig. 1b, “direct complex”; 
Fig. 1c, “indirect complex”; Fig. 1d, “reaction”, Fig. 1e, 
“neighboring reaction”) and human APID data (Fig. 1f). 
Figure 2 depicts the same data, but shown in the log–log 
scale, highlighting the low variability–low connectivity area. 
Here, a more nuanced relationship pattern emerges—nota-
bly, there is a relative paucity of the very low variability 
proteins. (Similarly, Supplementary Fig. 1 depicts the same 
data in the linear scale but “zoomed in,” to further highlight 
the low variability–low connectivity area.)

After fitting the straight lines for the linear model fit 
visualization, and computing the Spearman rank correla-
tion coefficients, we observe insignificant negative corre-
lation in the STRING (Fig. 1a) data, significant negative 
correlation in the Reactome “direct complex” (Fig. 1b) data, 
significant negative correlation in the Reactome “indirect 
complex” (Fig. 1c) data, insignificant negative correlation 

a ∗ c + b

e−k∗c,

in the Reactome “reaction” (Fig. 1d) data, and significant 
positive correlation in the Reactome “neighboring reac-
tion” (Fig. 1e) and APID (Fig. 1f) data. STRING and APID 
datasets have many more proteins than Reactome, and cor-
responding results are likely to be more robust. While the 
negative correlation observed in the STRING data (Fig. 1a) 
is weak and insignificant, and the positive correlation 
observed in the APID data (Fig. 1f) is significant, the actual 
distributions, when not reduced to the simple linear models 
(or rank correlation statistics), are quite similar between the 
two (Fig. 1a, f, 2a, f; Supplemental Fig. 1a, f). This suggests 
that “compressing” the full distributional information into 
the single-number linear (or rank) correlation coefficients 
might not be the best tactic for comparing and/or contrasting 
the protein variability–connectivity distributions. (Instead, 
distributional distance-based approaches are explored below 
in the "Results/Computer Simulation" section.)

Supplementary Fig. 2 (and Supplementary Fig. 3, same 
data but in the log–log scale) depicts dN/dS ratio versus 
protein connectivity relationship observed in human/chim-
panzee orthologs (STRING, Reactome and APID data-
bases). Here, we see broadly the same distribution shapes 
as in Fig. 1. However, we observe significant negative vari-
ability–connectivity correlation in the larger STRING and 
APID datasets (and no strongly discernible trend across the 
smaller Reactome datasets). We conclude that proteins with 
high connectivity tend to show lower dN/dS values [reflect-
ing stronger purifying (negative) selection]. Supplementary 
Figs. 4 and 6 (and Supplementary Figs. 5 and 7, same data 
but in the log–log scale) show dN versus protein connectiv-
ity and dS versus protein connectivity relationships, respec-
tively. The same distributional shapes and patterns remain. 
So does the tendency towards negative variability–connec-
tivity correlation, more pronounced with the dN data.

Figure 3 (and Supplementary Fig. 8, same data but in 
the log–log scale) depicts intraspecific protein variability 
versus protein connectivity relationships observed in mouse, 
pig, chicken, and zebrafish (STRING database). While the 
shapes and relative densities vary, overall the five distribu-
tions are similar to each other and to the human distribu-
tion (see Fig. 1a). The differences between the distributions 
might have less to do with the interspecific differences than 
with the way the datasets are assembled and curated. Only 
the mouse data show significant negative correlation; other 
species do not reveal significant correlation coefficients.

Supplementary Fig. 9 (and Supplementary Fig. 10, same 
data but in the log–log scale) depicts dN/dS, dN, and dS ver-
sus protein connectivity relationships observed in mouse/rat 
orthologs (STRING database). (We have limited our inter-
specific analyses to human/chimpanzee and mouse/rat, as 
it was difficult to obtain sizable confirmed ortholog data-
sets for the remaining species.) The dN/dS and dN patterns 
remain similar to the ones observed in human/chimpanzee 
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orthologs (Supplementary Figs. 2, 4). The dS pattern, how-
ever, is somewhat different. There are very few proteins with 
low dS, reflecting comparatively high divergence between 
mouse and rat. It is reasonable to assume that the patterns of 
dS–connectivity relationships would, in general, become less 
pronounced with increasingly more divergent sequences, 
especially if the synonymous sites are not under signifi-
cant selection pressure. Just as with the human/chimpanzee 
ortholog data (Supplementary Figs. 2, 4, 6), we observe the 
general trend towards negative correlation (here significant 
for all three datasets, dN/dS, dN, and dS), which is more 
pronounced compared to the mouse intraspecific variability 
data (Fig. 3a).

All of the above results (shown in Figs. 1, 3; Supple-
mental Figs. 2, 4, 6, 9) are summarized in Table 1 below. 
We conclude that, in general, there is an overall tendency 
towards the negative protein variability–connectivity cor-
relation in the orthologs (interspecific variability) data. It is 
more pronounced for the dN/dS and dN than for the dS data, 
arguably reflecting selection pressure. The intraspecific vari-
ability results are ambiguous, ranging from the positive cor-
relation in some larger human databases (APID) to virtually 
no correlation in other larger human databases (STRING) 
to the negative correlation in mouse (STRING database) 
to no significant correlation in pig, chicken, and zebrafish 
(STRING database). The distributional shapes, however, 

Fig. 2   Density plots of human 
intraspecific protein variability 
versus protein connectivity, 
shown in the log–log scale 
to highlight the low variabil-
ity–low connectivity areas. a 
STRING data. b Reactome 
“Direct Complex” data. c Reac-
tome “Indirect Complex” data. 
d Reactome “Reaction” data. e 
Reactome “Neighboring Reac-
tion” data. f APID data
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suggest a typical and distinct variability–connectivity rela-
tionship pattern, largely invariant between the different spe-
cies, databases, and analyses.

Computer Simulation Results

Figure 4a illustrates our first modeling scenario (see Meth-
ods), in which protein connectivity and variability were 
modeled independently. Low connectivity proteins display 
just about any variability; high connectivity proteins tend to 

display high variability. In general, this plot is very dissimi-
lar to the distribution shapes in Figs. 1, 3 and Supplementary 
Figs. 2, 4, 6, 9 (we will explicitly quantify the extent of the 
dissimilarities in Table 2 below, after introducing two dis-
tributional distance measures).

We now proceed with two V–C functions that “couple” 
variability and connectivity throughout the stochastic simu-
lation modeling process. Figure 4b illustrates our second 
modeling scenario (negative linear V–C function) and 
Fig. 4c third modeling scenario (exponential decay V–C 
function). The actual V–C functions in Fig. 4 are

 where a = − 0.004, b = 1, and c is the protein connectivity 
(Fig. 4b), and

 where k = 1, and c is the protein connectivity (Fig. 4c). 
(Supplementary Fig. 11A–C depicts the same data as in 
Fig. 4a–c, but in the log–log scale.) We have tried various 
V–C function parameter values (a, b, k) while aiming to 
keep the resulting counts and values in the realistic range. 
Corresponding simulations are shown in the Supplementary 
Material 5 (negative linear) and Supplementary Material 6 
(exponential decay). The former (negative linear) results 
in the largely alike distributions, of which the distribution 
shown in Fig. 4b is representative. Again, it is dissimilar to 
the distribution shapes observed in the real data. The lat-
ter (exponential decay) range from the convergence to the 
negative linear (when k ~ = 0) to the “compression” into very 
few unique data points (when k > 4)—the distribution shown 
in Fig. 4c (k = 1) is representative of the distributions with 
mid-k values, and at a first glance is not dissimilar to the 
ones observed in the real data (Figs. 1, 3; Supplementary 
Figs. 2, 4, 6, 9).

We will now evaluate the actual similarity/dissimilar-
ity between the real data and the distributions generated by 
the uncoupled, negative linear, and exponential decay V–C 
functions. It is difficult to do so by directly observing the 
plots, largely because of the different protein connectivity 
scaling (depending on the species, database size, type of 
protein–protein interaction, and whether it is the observed 
data, or a 10,000-node simulation experiment). Therefore, to 
illustrate on the human STRING data example, in Fig. 5 we 
re-scale protein connectivity to the single common [0 (min 
connectivity value)—1 (max connectivity value)] range, and 
scatter-plot both observed STRING human data [red dots, 
same data points as in Fig. 1a (intraspecific variability), Sup-
plemental Figs. 4a (dN) and 6a (dS)] and simulated data 
(green dots, same data points as in Fig. 4). Figure 5a depicts 
human intraspecific variability/no V–C coupling combina-
tion; Fig. 5b depicts human intraspecific variability/linear 
V–C function combination; Fig. 5c—human intraspecific 

a ∗ c + b,

e−k∗c,

Fig. 3   Density plots (left panes) and 3D surface plots (right panes) 
of mouse, pig, chicken, and zebrafish intraspecific protein variability 
versus protein connectivity (STRING data)
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variability/exponential decay V–C function combination; 
Fig. 5d—human–chimpanzee ortholog protein dN/expo-
nential decay V–C function combination; Fig. 5e—human-
chimpanzee ortholog protein dS/exponential decay V–C 
function combination. (Supplementary Fig. 12a–e depicts 
the same data as in Fig. 5a–e, but in the log–log scale.)

The goal of this study was not necessarily to find the V–C 
function that would lead to the perfect fit to the observed 
data, but rather to show that (i) no V–C function at all might 
not lead to a good fit (e.g., Fig. 5a), (ii) negative linear V–C 

function might not lead to a good fit (e.g., Fig. 5b), (iii) 
some other simple V–C function (possibly a “curvy”, con-
vex, decreasing one) might lead to a better fit. It appears that 
the exponential decay V–C function works reasonably well, 
leading to a better fit with the real data (e.g., Fig. 5c–e). 
This is consistent with the dynamics of the probability of 
allele fixation under the negative selection (Sawyer and Hartl 
1992).

Finally, we will use distributional distance measures 
(Energy Distance, ED, and Earth Mover’s Distance, EMD) 

Table 1   Spearman correlation coefficient and statistical significance (ρ and P value) for protein variability–connectivity relationships shown in 
Figs. 1, 3 and Supplemental Figs. 2, 4, 6, 9

ρ P value

Human intraspecific protein variability versus protein connectivity (Fig. 1)
 STRING − 0.0092 0.2472
 Reactome direct complex − 0.0706 0.0024
 Reactome indirect complex − 0.0489 0.0247
 Reactome reaction − 0.0141 0.4426
 Reactome neighboring reaction 0.0694 8.8695e−05
 APID 0.0383 1.6330e−06

Human/chimpanzee ortholog protein dN/dS ratio versus protein connectivity (Supplemental Fig. 2)
 STRING − 0.1058 7.5334e−39
 Reactome direct complex − 0.0226 0.3475
 Reactome indirect complex − 0.0527 0.0184
 Reactome reaction − 0.0139 0.4592
 Reactome neighboring reaction 0.0076 0.6744
 APID − 0.0750 2.5481e−20

Human/chimpanzee ortholog protein dN versus protein connectivity (Supplemental Fig. 4)
 STRING − 0.0639 3.5349e−15
 Reactome direct complex − 0.0279 0.2464
 Reactome indirect complex − 0.0403 0.0714
 Reactome reaction − 0.0226 0.2298
 Reactome neighboring reaction 0.0110 0.5407
 APID − 0.0388 1.8759e−06

Human/chimpanzee ortholog protein dS versus protein connectivity (Supplemental Fig. 6)
 STRING − 0.0168 0.0393
 Reactome direct complex − 0.0338 0.1606
 Reactome indirect complex − 0.0214 0.3386
 Reactome reaction − 0.0167 0.3765
 Reactome neighboring reaction 0.0007 0.9677
 APID − 0.0127 0.1194

Mouse, pig, chicken, and zebrafish intraspecific protein variability versus protein connectivity (Fig. 3)
 Mouse − 0.0453 2.5181e−07
 Pig 0.0041 0.8967
 Chicken − 0.0262 0.45907
 Zebrafish − 0.0308 0.1566

Mouse/rat ortholog protein variability versus protein connectivity (Supplemental Fig. 9)
 dN/dS ratio − 0.1638 3.7644e−92
 dN − 0.1590 7.3377e−87
 dS − 0.1036 1.2849e−37
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to quantify the distributional similarities/dissimilarities 
between the real and the simulated data. Both ED and EMD 
generalize easily to the multidimensional data and are more 
appropriate than the “standard” Kolmogorov–Smirnov dis-
tance for the distributions that are known to be possibly 
significantly dissimilar and/or have relatively heavy tails/
numerous outliers; both distances are scale sensitive, range 

from zero to infinity, and are proportional to the empirical 
distribution sample sizes (Rizzo and Szekely 2016; Rubner 
et al. 1998). Table 2 summarizes the ED and EMD values 
for the human STRING data comparisons (as plotted in 
Fig. 5). Both metrics suggest that the exponential decay V–C 
function leads to a better fit (lower distributional distances) 
with the real data than the negative linear V–C function or 

Fig. 4   Density plots (left panes) 
and 3D surface plots (right 
panes) of simulated protein 
variability versus protein con-
nectivity. a protein variability 
and connectivity are modeled 
independently (see “first mod-
eling scenario” in Methods). b 
protein variability and connec-
tivity are linked via negative lin-
ear function (second modeling 
scenario). c protein variability 
and connectivity are linked 
via exponential decay function 
(third modeling scenario)
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no V–C function. (To provide the sense of scale, EMD is 
roughly equal to the area between the two distributions’ 
empirical CDFs, or cumulative distribution functions—
therefore, a difference between, for example, EMD of 360.83 
and 116.1, as shown in Table 2, is highly significant; simi-
larly, ED is a linear function of the Cramer Distance, with 
the same scale sensitivity). This is consistent throughout the 
realistic range of the negative linear and exponential decay 
functions’ parameter values (Supplementary Materials 5, 6). 
To further demonstrate that even the “best” possible nega-
tive linear model fit is still inferior to the exponential decay 
model fit, we have obtained the ED values (between the real 
human STRING data and the simulated data) for the wid-
est possible range (that fits into our simulation framework) 
of the negative linear V–C function parameters (a and b), 
averaged over 100 simulations for each parameter combina-
tion (Supplementary Material 7; we did not obtain the EMD 
values due to the EMD being computationally much more 
demanding). Even the lowest ED value (420.3298 in Supple-
mentary Material 7) was significantly higher than the typical 
(k =1, non-optimized) ED value for the exponential decay 
model data (231.70 in Table 2). (Python code for implement-
ing ED, EMD, and the above simulations can be found in 
Supplementary Material 1.)

Discussion

The main conclusions of this study are threefold: First, when 
analyzed in a “traditional” fashion (linear models and/or 
rank correlation), large-scale genomic vertebrate datasets 
suggest that there is a tendency towards weak but often sig-
nificant negative correlation between the protein connectiv-
ity and interspecific variability (Supplementary Figs. 2, 4, 6, 
9, Table 1). The intraspecific variability results (Figs. 1, 3; 

Table 1), on the other hand, are ambiguous. Second, the pat-
terns of protein variability–connectivity relationships, while 
strongly pronounced, are not linear (they tend to have a con-
vex decreasing shape, combined with the relative paucity of 
the very low variability proteins), and probably should not 
be evaluated by fitting linear models. The latter tends to, at 
best, underestimate the variability–connectivity association 
effect. At worst, they might lead to the “false negatives,” 
suggesting non-existent or marginal correlation where there 
is in fact a strong non-random pattern. Third, simulation 
experiments can be used to generate patterns similar to the 
ones observed in the real data. Coupling variability and con-
nectivity during the simulation modeling process via, for 
example, an exponential decay function produces a better 
distributional fit (between the simulated and observed vari-
ability–connectivity distributions) compared to the negative 
linear function or no coupling at all.

Of course, while our modeling results approximate the 
real data patterns sufficiently well (Fig. 5c–e), there are still 
notable discrepancies. More broadly, protein variability is 
affected by many factors other than PPIs—expression lev-
els and patterns, protein age, protein length and structure, 
gene structure, chromatin factors, epigenetic factors in gen-
eral, etc. In future, we plan to expand our simulation frame-
work by gradually introducing more (and more biologically 
motivated) parameters. One possible research direction is 
to “fix” the PPI network (along the lines of the real data) 
and simulate the protein variability over the fixed network 
topology and parameters. This would be especially fitting 
for the interspecific (divergence) data, as the simulation and 
“real” evolution timescales would be better aligned—there 
is significant evidence that PPIs, on average, evolve more 
slowly than protein sequences (Ghadie et al. 2017).

Another interesting aspect is classifying PPIs, and/or 
corresponding proteins, into distinct subgroups. Recent 

Table 2   Energy Distance (ED) 
and Earth Mover’s Distance 
(EMD) between the observed 
(human STRING data) and 
simulated distributions 
(a =− 0.004, b =1 for the 
negative linear V–C function, 
k =1 for the exponential decay 
V–C function), averaged over 
100 simulation replications 
for ED and 5 simulation 
replications for EMD

Exponential decay
V–C function

Negative linear
V–C function

V–C uncoupled

ED
 STRING
  Intraspecific variability

231.70
(Fig. 5c)

584.07
(Fig. 5b)

576.85
(Fig. 5a)

 STRING
  dN

221.77
(Fig. 5d)

570.20 536.28

 STRING
  dS

227.82
(Fig. 5e)

597.37 562.61

EMD
 STRING
  Intraspecific variability

116.11
(Fig. 5c)

360.83
(Fig. 5b)

336.99
(Fig. 5a)

 STRING
  dN

126.43
(Fig. 5d)

507.96 473.25

 STRING
  dS

132.03
(Fig. 5e)

373.90 351.21
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literature (Biswas et al. 2017; Pang et al. 2016) suggests 
that, in general, different subgroups might show very dif-
ferent selection/variability patterns. For example, there is 
evolutionary rate heterogeneity between the proteins asso-
ciated with human PPI single-interface “hubs” and multi-
interface “hubs” (Biswas et al. 2017). Similarly, proteins 
associated with human PPI “hubs/non-hubs,” “bottlenecks/
non-bottlenecks,” and various combinations thereof show 
different evolutionary rates and patterns (Pang et al. 2016). 

We feel that an effort to establish some “formal,” universally 
accepted, standard for further subgroup classification is long 
overdue, and so are the subgroup-specific protein variability 
analyses (as opposed to pooling all the proteins together, on 
a continuous spectrum, as was done in this and majority of 
the preceding studies).

On a genomic level, high connectivity has been shown 
to be correlated with conserved synteny (preserved gene 
order across different species); while the association was 

Fig. 5   Scatter plots of observed 
human data from STRING data-
base (red dots) superimposed 
on the simulation results (green 
dots). a Intraspecific vari-
ability data (red dots); protein 
variability and connectivity are 
modeled independently (green 
dots). b Intraspecific variability 
data (red dots); protein variabil-
ity and protein connectivity are 
linked via negative linear func-
tion (green dots). c Intraspecific 
variability data (red dots); pro-
tein variability and connectivity 
are linked via exponential decay 
function (green dots). d Human/
chimpanzee ortholog protein 
dN values (red dots); protein 
variability and connectivity are 
linked via exponential decay 
function (green dots). e Human/
chimpanzee ortholog protein 
dS values (red dots); protein 
variability and connectivity are 
linked via exponential decay 
function (green dots) (Color 
figure online)
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found to be moderate, connectivity still possessed predictive 
value (independently of orthology) with respect to conserved 
synteny (Kirk et al. 2017b). The next level is large-scale 
genomic aberrations (to which chromosome-specific PPI 
patterns can be linked) (Kirk et al. 2017a). This and other 
genome-wide effects, such as PPIs being mediated by mul-
tiple sequence regions (Ghadie et al. 2017), add a whole 
new (higher) plane of biological structure/regulation to the 
picture, and simulating PPI evolution on a genomic level 
is undoubtedly a yet another intriguing research direction.

The results of our study dovetail, in a complementary 
way, with the recent work by Alvarez-Ponce et al. (2017), 
the goal of which was to rank and compare various compo-
nents (including PPI characteristics and expression param-
eters) contributing to protein evolutionary rate variation, 
using human (human/mouse orthologs) and other species 
(D. melanogaster/D. yakuba, C. elegans/C. briggsae, and 
S. cerevisiae/S. paradoxus orthologs) data. Correlation (or 
partial correlation) was used to assess the “strength” of all 
components; they were subsequently integrated (and com-
pared) in the principal component analysis framework. 
Eventually, PPI/centrality-related components were found to 
be at least as important as the gene expression-related ones 
in contributing (independently) to dN and dN/dS. The effect 
was most pronounced in H. sapiens. Interestingly, while the 
protein interaction/centrality results in Alvarez-Ponce et al. 
(2017) (Figs. 1a, 3a, b in Alvarez-Ponce et al. 2017) are 
very similar to ours, using correlation to measure the protein 
interaction/centrality component’s strength probably down-
plays the importance of the protein interaction/centrality 
component. An approach similar to the one employed in 
our study (using distributional proximity metrics instead of 
correlation coefficients) would have arguably strengthened 
Alvarez-Ponce, Feyertag, and Chakraborty’s main conclu-
sion (namely, that network centrality has substantial inde-
pendent impact on the rates of protein evolution). We should 
note here that our analyses did not include expression levels 
and patterns (or any components other than protein connec-
tivity)—therefore, at this time, we would rather not speculate 
on the correlation (or independence) of PPI-related factors 
and expression-related factors contributing to the rates of 
protein evolution—leaving it to the future, multi-component, 
analyses and simulations.

In closing, we would like to posit the question: why are 
we so curious about the interplay of protein connectivity 
and variability to begin with? In addition to the obvious 
aspects, discussed at some length throughout this manuscript 
and elsewhere, there is also an issue of a purely pragmatic 
significance:

Picture a typical large-scale biomedical research study in 
which large sets of candidate genes (proteins), to be consid-
ered for the individual follow-up studies, are generated. How 
do we prioritize/rank them for the future research? In other 

words, can we come up with the multidimensional measure 
of how “interesting,” or “important,” a specific candidate 
gene (protein) is? PPI data (in particular, connectivity or 
centrality) should probably factor into it. So should expres-
sion patterns, selection pressures, etc. Recently, Zhang, 
Xiao, and Hu developed such an integrated metric (“orthog-
onal centrality measure”) (Zhang et al. 2018) to predict 
“essential” (on organismal level) proteins. While predicting 
interesting, or important, proteins is of course different (for 
one, we do not have the known class labels for interesting/
important proteins, as we do for essential ones), a conceptu-
ally similar integrative approach is probably the most viable 
way to combine both PPI and evolutionary factors in a single 
predictive analytic framework. Such framework should also 
include expression levels and patterns and other components 
(Alvarez-Ponce et al. 2017). As we have illustrated through-
out this study, the relationship between PPI and variability 
is a complicated and nuanced one. Incorporating both into a 
single protein “importance” metric is a worthwhile goal and 
a promising research direction to be pursued further.
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