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Introduction

The effective population size, Ne, is one of the most

important parameters in population genetics and conser-

vation biology, because this parameter determines both

the amount of genetic drift and the rate of inbreeding

(Crow and Kimura 1970; Falconer and Mackay 1996). Ne

can be estimated from demographic data such as the

number of parents and the variance in their progeny

number (Caballero 1994). However, the demographic

data needed to estimate Ne is often not available in many

wild species. As an alternative to estimating Ne from

demographic data, methods for estimating Ne from

genetic data have been developed (for reviews, see Waples

1991; Schwartz et al. 1999; Beaumont 2003; Leberg 2005;

Wang 2005). These methods have different time scales on

which Ne is measured. Some of them infer the long-term

Ne in the past on an evolutionary time scale, and others

estimate the current or short-term Ne (Waples 1991;

Wang 2005). For solving practical issues such as manag-

ing a small population of endangered species, an accurate

estimate of the current or short-tem Ne is of special

importance, which is a major concern of this study.

To date, three methods are available for this purpose:

the temporal method (Nei and Tajima 1981; Pollak 1983;

Waples 1989), the linkage disequilibrium method (Hill

1981) and the heterozygote-excess method (Pudovkin

et al. 1996; Luikart and Cornuet 1999). These methods

actually assess the effective number of breeders (Neb) of a

cohort from which a sample is obtained. If the sample

consists of reproductive adults, Neb is nearly equivalent

to Ne in populations with nonoverlapping generations

(Schwartz et al. 1999; and as will be discussed later). Ne

can be estimated from Neb in populations with overlap-

ping generations, if the age structure is known (Waples

1991).

The logic behind the temporal method is that the

change of allele frequency in samples separated in time is
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Abstract

The effective population size, Ne, is an important parameter in population

genetics and conservation biology. It is, however, difficult to directly estimate

Ne from demographic data in many wild species. Alternatively, the use of

genetic data has received much attention in recent years. In the present study,

I propose a new method for estimating the effective number of breeders Neb

from a parameter of allele sharing (molecular coancestry) among sampled

progeny. The bias and confidence interval of the new estimator are compared

with those from a published method, i.e. the heterozygote-excess method, using

computer simulation. Two population models are simulated; the noninbred

population that consists of noninbred and nonrelated parents and the inbred

population that is composed of inbred and related parents. Both methods give

essentially unbiased estimates of Neb when applied to the noninbred popula-

tion. In the inbred population, the proposed method gives a downward biased

estimate, but the confidence interval is remarkably narrowed compared with

that in the noninbred population. Estimate from the heterozygote-excess

method is nearly unbiased in the inbred population, but suffers from a larger

confidence interval. By combining the estimates from the two methods as a

harmonic mean, the reliability is remarkably improved.
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a reflection of genetic drift. This method is the most

tested of the genetic Neb estimators and has been used to

estimate Neb of various species (Schwartz et al. 1999).

The primary weakness of this method is that two or

more samples separated in time are necessary (Schwartz

et al. 1999). This can be expensive and, by nature, time-

consuming. The linkage disequilibrium method is based

on the fact that genetic drift generates nonrandom asso-

ciation among alleles in different loci. Despite of the

obvious advantage that this method can be used to esti-

mate Neb from a single cohort sample, there are several

drawbacks (Schwartz et al. 1999; Wang 2005). Perhaps,

the most critical one is that the estimator assumes an

isolated equilibrium population with a constant effective

size, which may not be tenable for natural populations

of endangered species. The heterozygote-excess method is

based on the fact that when the breeding population is

small, binomial sampling error produces allele frequency

differences between male and female breeders, resulting

in an excess of heterozygotes in their progeny (Robertson

1965). As in the linkage disequilibrium method, this

method has the advantage that only a single cohort sam-

ple is required. Further, this method is appealing because

the estimate is easily computed. However, there are few

applications of this method, presumably because of the

low precision, as empirically shown by Luikart and

Cornuet (1999).

Several authors (Waples 1991; Pudovkin et al. 1996;

Luikart and Cornuet 1999) emphasized the importance of

exploring a method that gives an estimate independent of

ones from existing methods, because a combined estimate

of several independent estimates is expected to improve

the precision of separate estimates. In the present study, a

novel method for estimating Neb from genetic data of a

single cohort sample is proposed. The estimator is

obtained from a simple parameter (molecular coancestrty)

of allele sharing among sampled individuals. Reliability of

the new estimator is compared with that from the hetero-

zygote-excess method using computer simulation.

Improvement of the reliability attained by combining the

two methods is also examined.

Methods

Estimation of Neb from parent-based coancestry

Although a monoecious diploid population is assumed

throughout the following derivation, the extension to

dioecious diploid species is straightforward and the same

estimation method is applicable to the population.

Let ft be the coancestry among two randomly sampled

individuals in generation t, and P be the probability

that two randomly sampled alleles each from different

individuals in generation t come from the same individ-

ual in generation t ) 1. The recurrence equation for the

coancestry is given by

ft ¼ P
1þ Ft�1

2

� �
þ 1� Pð Þft�1 ð1Þ

(Crow and Kimura 1970, p. 102), where Ft)1 is the

inbreeding coefficient of individuals in generation t ) 1.

Following the definition by Crow and Kimura (1970, p.

347), we define the effective number of breeders (Neb), or

strictly the inbreeding effective number, as

Neb ¼
1

P
: ð2Þ

We set the base population of ft at the population of

generation t ) 1 by assuming Ft)1 = ft)1 = 0. Putting

t ) 1 = 0 in (1), we obtain from (1) and (2), f1 ¼ P=2 and

Neb ¼
1

2f1
: ð3Þ

This means that an estimate of Neb can be obtained if

the parent-based coancestry (f1) among individuals in one

cohort is estimated.

Estimation of parent-based coancestry

Molecular coancestry

For locus l, molecular coancestry fM,xy,l (frequently called

‘molecular similarity index’) between individual x having

alleles a and b and individual y having alleles c and d is

defined as (Malécot 1948)

fM;xy;l ¼
1

4
Iac þ Iad þ Ibc þ Ibd½ �; ð4Þ

where indicator Iac is one when allele a of individual x is

identical to allele c of individual y, and zero otherwise,

etc. When there are L marker loci, molecular coancestry

fM,xy is the average molecular coancestry over all loci

(Toro et al. 2002, 2003):

fM;xy ¼
1

L

XL

l¼1

fM;xy;l:

Molecular coancestry will be not only because of alleles

that are identical by descent but also because of alleles that

are alike in state (AIS). Molecular coancestry is, therefore,

an upward biased estimator of the coancestry relative to an

arbitrary base population. When sl denotes the probability

that two alleles at locus l are AIS in the base population, the

expected molecular coancestry between individual x and y

at locus l is (Oliehoek et al. 2006)

1� E fM;xy;l

� �
¼ 1� fxy

� �
1� slð Þ; ð5Þ

where fxy is the coancestry between individuals x and y

expressed relative to the base population.
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Equation (5) shows that a value for sl is needed for each

locus to obtain fxy. If allele frequencies in the base popula-

tion are known without errors, sl is computed as

sl ¼
Pnl

i¼1 p2
i , where nl is the number of alleles in locus l

and pi the frequency of ith allele in locus l in the base pop-

ulation. Because allele frequencies in the base population

are, however, usually unknown, sl needs to be estimated.

Similar problem is arisen in estimating any relatedness

from molecular markers. In most of the published works

(e.g. Ritland 1996; Lynch and Ritland 1999), allele fre-

quencies have been estimated from the current population

for which relatedness is estimated, meaning that the base

population is set equal to the current population. For our

purpose, this approximation leads to an apparent contra-

diction, because it implicitly assumes no drifts in allele fre-

quencies between parent and progeny generations (i.e.

Neb = ¥).

Estimation of f1 from fM,xy

Irrespective of the upward bias, simulations suggest that

molecular coancestry can be a good indicator of the coan-

cestry relative to an arbitrary base population (e.g. Toro

et al. 2003; Oliehoek et al. 2006). We take advantage of

this property to convert the molecular coancestry to the

parent-based coancestry (f1).

Suppose that n individuals are sampled from progeny

in a given generation, for which f1 is estimated. We

assume that the sample consists of at least two nonsib

families. This assumption will be satisfied except for a

population with an extremely small number of parents,

such as a population with only one male parent in polyg-

ynous species. Thus, for a given individual in the sample,

at least one nonsib pair should be involved in the possible

n ) 1 pairs with other sampled members. Underlying

concept of our estimation is that the nonsib pairs could

be inferred from molecular coancestry. Fernández and

Toro (2006) showed that a sib-ship can be reconstructed

from molecular coancestry with a high accuracy, suggest-

ing that the inference on nonsib pairs based on molecular

coancestry has a fairly high precision.

We assume that pairs inferred to be nonsibs (putative

nonsibs) are true nonsibs (i.e. fxy = 0). Thus, substituting

the average molecular coancestry (�fM;l)for locus l over all

pairs of putative nonsibs into (5) gives an estimate of sl:

ŝl ¼ �fM;l: ð6Þ
With the weight wl to optimize the contributions of

loci to the estimate of coancestry, suggested by Oliehoek

et al. (2006), the parent-based coancestry between indi-

viduals x and y, f1,xy, is estimated as

f̂1;xy ¼
1

W

XL

l¼1

wl
fM;xy;l � ŝl

1� ŝl
;

where

W ¼
XL

l¼1
wl;

(Oliehoek et al. 2006)

wl ¼
1� ŝlð Þ2Pnl

i¼1 p̂2
i 1�

Pnl

i¼1 p̂2
i

� � ;
and p̂i is the estimated frequency of allele i in locus l from

the sampled individuals. Note that the weight wl puts

more weight on loci with small sl and with lots of alleles

at nearly equal frequency. The estimate of f1 is simply

obtained by averaging f̂1;xy over nP ¼ n n� 1ð Þ=2 pairs:

f̂1 ¼
1

nP

Xn

x¼1

Xn

y>x

f̂1;xy:

And from (3), Neb is estimated by

N̂eb ¼
1

2f̂1

: ð7Þ

Selection method for putative nonsib pairs

The simplest method for selecting putative nonsibs from all

the possible pairs is to select a given number (n0) of pairs

with the smallest molecular coancestry. However, this

method leads to an underestimation of sl, because of the

positive correlation between fM,xy and fM,xy,l due to the

finite number of marker loci (L). For example, in an

extreme case where only one marker locus is available

(L = 1), the selection of the smallest fM,xy automatically

results in the selection of pairs with the smallest fM,xy,l.

When the number of selected pairs (n0) is much smaller

than the number of the actually existing nonsib pairs, the

average of fM,xy,l over the selected n0 pairs is expected to be

lower than that of fM,xy,l over all the actually existing nonsib

pairs, leading to an underestimation of sl [cf. equation (6)].

In a strictly statistical sense, the selection of putative

nonsibs for the estimation of sl should be based on data

independent of the sample from which sl is estimated.

This problem could be largely solved by excluding the

information on locus l in selecting putative nonsib pairs

for the estimation of sl. Denoting the molecular coances-

try between individuals x and y excluding the information

on locus l by fM,xy,/l, we can compute it as

fM;xy;=l ¼
1

L� 1

XL

i 6¼l

fM;xy;i: ð8Þ

For estimating sl, the selection of n0 pairs with the smallest

coancestry is based on this partial molecular coancestry.

In the present study, the following selection method was

applied: (i) Give the sequential numbers (i = 1, 2, …, n) to

n sampled individuals. (ii) For the first individual (i = 1), a

pair with the smallest fM,xy,/l [computed from (8)] is
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selected from n ) 1 pairs with other members. (iii) For the

proceeding individual (i ‡ 2), a pair with the smallest

fM,xy,/l is selected in the same manner. But if the pairs

already selected in the previous selection are included in

n ) 1 candidate pairs, the pairs are excluded from the can-

didates to avoid doubly selecting the same pairs. (iv) As a

result, we obtain n0(=n) pairs with the smallest fM,xy,/l; (v)

averaging fM,xy,l [computed from (4)] over the n0 pairs. The

average (�fM;l) is the estimate of sl [cf. equation (6)]. (vi)

Steps (ii)–(v) are repeated until estimates of sl are obtained

for all marker loci.

Computer simulation

Computer simulation was carried out to evaluate the reli-

ability of the presented method. Genotypes of individuals

in the initial population were generated by assigning

alleles randomly sampled from an infinite (conceptual)

gene pool with a uniform allele frequency distribution

with two alleles for the ‘low-polymorphic’ marker loci

case or 10 alleles for the ‘high-polymorphic’ marker loci

case. The number of loci was 80 for both polymorphic

cases. Prior to progeny sampling for the estimation of

Neb, eight generations of random mating with a breeding

system defined below were simulated to accumulate

inbreeding and relationship. As the breeding system,

monogamy and polygyny were modeled. Under monog-

amy model, an equal number of male and female parents

(N/2) were randomly paired to form N/2 permanent cou-

ples. Progeny (parent of the next generation) was pro-

duced from a randomly sampled couple, and the

sampling of a couple and the reproduction were repeated

until N/2 replacements of each sex have been obtained.

Under polygyny model, Nm males and Nf (>Nm) females

were generated, and each female was mated with a ran-

domly sampled male (thus, there are Nf fixed matings).

Progeny was produced from a randomly sampled mating,

and this was replicated to obtain Nm males and Nf

females for the parents of the next generation. In the final

generation, a sample of n progeny was obtained in the

same manner of reproduction of the respective breeding

system. From the loci each with at least two segregating

alleles in the sampled progeny, L = 5–30 loci were ran-

domly chosen as marker loci. For the standard parental

population size, N = 10 in monogamy, and Nm = 5 males

and Nf = 20 females in polygyny were computed. Sample

size of progeny (n) in the final generation was 100 for the

two breeding systems. In the low-polymorphic marker

loci case, all the marker loci should have exactly two

alleles (nl = 2) as in single nucleotide polymorphisms, but

the allele frequency distribution is varied among the loci.

In the high-polymorphic marker loci case, not only the

allele frequency distribution but also the number of alleles

is varied among the loci. In the above standard popula-

tion size, the average numbers of alleles per marker locus

was 3.83 in monogamy, and 5.31 in polygyny, which

would be comparable with the allele number of microsat-

ellite markers in a practical survey. This type of data gen-

eration is referred to as the ‘inbred population’ model, in

a sense that the parental population of sampled progeny

consists of inbred and related individuals, which will be a

general situation of endangered species populations.

As another type of data generation, the ‘noninbred

population’ model was also simulated. The manner for

the assignment of initial genotypes and the acceleration of

generations were exactly same as in the inbred popula-

tion, except for that the number of accelerated genera-

tions was seven. At the final generation, the allele

frequency distribution of each locus was memorized.

Then, genotypes of parents were regenerated by assigning

alleles randomly sampled from an infinite gene pool with

the memorized allele frequency distribution. The sam-

pling of progeny and the choice of marker loci were same

as in the inbred population. These procedures could pro-

duce a parental population consisting of noninbred and

nonrelated individuals but having the same quality of

molecular information as in the corresponding inbred

population. This type of data generation could be an

approximation of a recently recolonized population in an

ephemeral habitat.

In additional computations, different sizes of parental

population and progeny sample were examined. The

effect of unequal contribution of parents on the estimates

was also evaluated under monogamy with N = 10, by

considering the following two patterns of unequal contri-

butions of N/2 = 5 couples: (0.4, 0.3, 0.1, 0.1, 0.1) and

(0.6, 0.1, 0.1, 0.1, 0.1). The number of replicated runs for

each combination of population model, breeding system

and variables was 5000.

Demographic effective number of breeders (Neb,demo)

under monogamy model was computed from the standard

formula of the inbreeding effective size (Caballero 1994):

Neb;demo ¼
Nlk � 1

lk � 1þ r2
k

�
lk

; ð9Þ

where lk ¼ n= N=2ð Þ½ � and r2
k are the mean and variance

of the number of progeny of couples, respectively. The

expression of r2
k under the simulated condition is given

in Appendix A. Neb,demo under polygyny is computed as

Neb;demo ¼
4NmNf

2Nm þ Nf � 1
: ð10Þ

The derivation of this equation is shown in Appendix B.

Neb from pedigree coancestry was also computed, which

was simply obtained by substituting the average parent-
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based pedigree coancestry of sampled progeny into (7).

The computed Neb well agreed with Neb,demo. Thus, only

the value of Neb,demo was presented in results, and it was

referred to as the true value of simulation. In addition to

the estimate (denoted as N̂eb;fmol hereafter) obtained from

(7), estimate from the heterozygote-excess method

(N̂eb;he; Pudovkin et al. 1996) was computed for compari-

son. The locus specific N̂eb;he;l is estimated as

N̂eb;he;l ¼
1

2D
þ 1

2 Dþ 1ð Þ ;

where

D ¼ 1

nl

Xnl

i¼1

Hobs;i �Hexp;i

Hexp;i
;

and Hobs,i and Hexp,i are the observed and expected

proportion of heterozygotes having allele i, respectively.

Multiple loci estimate was simply computed as the har-

monic mean of N̂eb;he;l over the marker loci, following the

previous simulation studies (Pudovkin et al. 1996; Luikart

and Cornuet 1999). In both methods, when a negative

estimate was obtained, the estimate was regarded as an

infinite (N̂eb ¼ 1).

As a criterion of evaluation, the harmonic mean of esti-

mates over 5000 replicates was computed. Furthermore,

to characterize the variation and distribution of estimates,

10th, 50th and 90th percentiles in replicates were calcu-

lated. The xth percentile was obtained as the 5000 · (x/

100)th smallest estimate in 5000 replicated estimates.

Results and discussion

Left and middle panels in Fig. 1 (A: monogamy and B:

polygyny) illustrate the 10th, 50th and 90th percentiles,

and a harmonic mean of 5000 replicated estimates of the

effective number of breeders (Neb) from the heterozygote-

excess and molecular coancestry methods applied to the

noninbred population with L = 5–20 high-polymorphic

marker loci. The three percentiles indicate that the distri-

butions of estimates from both methods are skewed

upward. The 50th percentile and harmonic mean were,

however, close to Neb,demo (10 for monogamy and 13.79

for polygyny) in both methods. Under monogamy, the

interval between 10th and 90th percentiles in N̂eb;he

tended to be wider than that in N̂eb;fmol, whereas the

reversal tendency was observed under polygyny.

The corresponding simulation results in the inbred

population are shown in Fig. 2. Although the 50th per-

centile and harmonic mean show that the heterozygote-

excess method gives an essentially unbiased estimate of

Neb, the estimate from the molecular coancestry method

tends to be biased downward. The degree of bias became

larger as the number of marker loci increased. Inbreeding

and relationship in the parental population gave quite a

different impact on the confidence interval in the two

methods. The interval between 10th and 90th percentiles

in N̂eb;he was widened in the inbred population, compared

with that in the noninbred population (Fig. 1). The

increase of confidence interval was more remarkable

under monogamy. In fact, the 90th percentile under

monogamy was infinite even with L = 20 marker loci. In

contrast, the interval in N̂eb;fmol was remarkably narrowed

in the inbred population. For example, the 10th and 90th

percentiles in N̂eb;fmol under monogamy with L = 20 mar-

ker loci were 3.75 and 12.93, respectively.

In a strict sense, the heterozygote-excess method is

valid only when the progeny are produced by random

union gametes (Pudovkin et al. 1996; Luikart and Cornuet

1999). When the progeny are produced by individual-

based pairwise matings such as monogamy and polygyny,

the sample of progeny is family-structured. In such a

sample, heterozygote deficiency generated by the inter-

family Wahlund effect may mask the heterozygote excess,

reducing the usefulness of the heterozygote-excess method

(Luikart and Cornuet 1999). Using computer simulation,

Luikart and Cornuet (1999) examined the effect of a

family-structured sample on the reliability of the hetero-

zygote-excess method. They found that the heterozygote-

excess method gives an essentially unbiased estimate even

with a family-structured sample. However, the existence

of family structure in sampled progeny substantially

increased the variance of estimates under monogamy.

Simulation data of Luikart and Cornuet (1999) was gen-

erated in the same manner as the noninbred population

of the present study. Thus, their sample of progeny con-

tains only sib families. On the other hand, the sample of

progeny from the inbred population consists of families

with various degrees of relationship (e.g. cousins). The

increased confidence interval observed in Fig. 2 indicates

that the application of the heterozygote-excess method to

such a sample reduces the reliability, although the

method still gives an unbiased estimate. The reduction of

reliability will be more serious under monogamy (Fig. 2).

As a detail information on the estimation process in

the molecular coancestry method, Table 1 gives the

observed and estimated [from equation (6)] AIS probabil-

ity (sl) in the parental population, and the average esti-

mated parent-based coancestry among actual nonsibs

(NS), actual half-sibs (HS), actual full-sibs (FS) and all

pairs of sampled progeny, for the case of monogamy and

polygyny with L = 15 high-polymorphic marker loci. All

the values are shown as the average over 5000 replicates

(and over 15 marker loci for sl). In the noninbred popu-

lation, the estimated AIS probability was close to the

observed value, giving the average estimates of the
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parent-based coancestries in the three categories (NS, HS

and FS) close to the pedigree coancestries, i.e. 0, 0.125

and 0.25 for NS, HS and FS, respectively. Thus, the

molecular coancestry method gives an essentially unbiased

estimate of Neb for the noninbred population (Fig. 1).

However, the process of selecting putative nonsibs in the

molecular coancestry method causes a problem when

applied to the inbred population. The selection method

may select the actual nonsibs with a reasonably high

probability. But the putative nonsibs selected from the

inbred population may be less-related nonsibs with regard

to further back ancestral relationships than the average

nonsibs among the sampled progeny. As seen from

Table 1, this causes an underestimation of AIS probabil-

ity, implying that the base population for coancestry is

set at a further back generation over the parental genera-

tion. This overrun in setting the base population results

in an overestimation of the parent-based coancestry, lead-

ing to a downward bias of N̂eb;fmol as observed in Fig. 2.

Irrespective of this drawback, the narrow confidence

interval of N̂eb;fmol in the inbred population is attractive

in its practical use. Although the molecular coancestry

method will be less useful for a point estimate of Neb in

inbred populations, it will be useful for detecting a small

Neb.

The simulation results for the estimation with the low-

polymorphic marker loci are shown in the left and middle

panels in Fig. 3(A) for noninbred and Fig. 3(B) for inbred
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Figure 1 Harmonic mean (marked by open circle), and 10th, 50th and 90th percentiles (marked by bar) of 5000 estimated effective numbers of

breeders in the noninbred population under (A) monogamy with N = 10 (half of each sex) parents and (B) polygyny with Nm = 5 male and

Nf = 20 female parents, for the case of high-polymorphic marker loci. The sample size of progeny is n = 100. N̂eb;he is the estimate from heterozy-

gote-excess method (Pudovkin et al. 1996), N̂eb;fmol the estimate from equation (7) and N̂eb;comb the estimate by the harmonic mean of N̂eb;he and

N̂eb;fmol. The value in top of each graph is the clipped 90th percentile, and the value in parentheses is the percentage of replicates with N̂eb ¼ 1.

The dashed line shows the effective number of breeders expected from demographic parameters (Neb,demo = 10 under monogamy and 13.79

under polygyny, respectively).
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populations in monogamy. Results in polygyny (data not

shown) were essentially similar to those in monogamy. As

seen from the 10th and 90th percentiles in N̂eb;he, the het-

erozygote-excess method suffers from a larger confidence

interval. In fact, even with L = 30 marker loci, the 90th

percentile in N̂eb;he was still infinite in both noninbred

and inbred populations. In contrast, the molecular coan-

cestry method gave an estimate with a practically accept-

able confidence interval when L = 30 marker loci were

available.

Table 2 shows the results from simulation runs with

additional combinations of the number of parents and

sample size, for the case of L = 15 high-polymorphic

marker loci. As the harmonic mean of replicated esti-

mates well agreed with the 50th percentile, it was not

shown in the table. The general properties of estimates,

e.g. a small bias of estimation from both methods in the

noninbred population and a downward bias of N̂eb;fmol in

the inbred population, were similar to those observed in

Figs 1–3. A remarkable point in Table 2 is a narrower

confidence interval of N̂eb;fmol in a small sample of prog-

eny from a small inbred population. For example, under

monogamy with N = 10 parents, the 90th percentile of

N̂eb;fmol from n = 10 progeny was 38.2, while the corre-

sponding percentile of N̂eb;he was infinite. In most of the

practical situations of conservation biology, the popula-

tion in question will be small and inbred, and may suffer

from a low reproductive ability. The molecular coancestry

method could significantly contribute to the detection of

small Neb of such populations. The magnitude of

the downward bias of N̂eb;fmol increased in a larger

inbred population, as seen from the 50th percentiles in
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Figure 2 Harmonic mean (marked by open circle), and 10th, 50th and 90th percentiles (marked by bar) of 5000 estimated effective numbers of

breeders in the inbred population under (A) monogamy with N = 10 (half of each sex) parents and (B) polygyny with Nm = 5 male and Nf = 20

female parents, for the case of high-polymorphic marker loci. The sample size of progeny is n = 100. N̂eb;he is the estimate from heterozygote-

excess method (Pudovkin et al. 1996), N̂eb;fmol the estimate from equation (7) and N̂eb;comb the estimate by harmonic mean of N̂eb;he and N̂eb;fmol.

The value in top of each graph is the clipped 90th percentile, and the value in parentheses is the percentage of replicates with N̂eb ¼ 1. The

dashed line shows the effective number of breeders expected from demographic parameters (Neb,demo = 10 under monogamy and 13.79 under

polygyny, respectively).
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monogamy with N = 50 and polygyny with Nm = 20 and

Nf = 80, which may limit the usefulness of the molecular

coancestry method. However, even in these populations,

the narrow confidence interval of N̂eb;fmol would be of

practical significance for obtaining a conservative estimate

of Neb.

Table 1. Observed and estimated AIS probability, and estimated parent-based coancestries among actual nonsibs (NS), actual half-sibs (HS),

actual full-sibs (FS) and all pairs of sampled progeny from the noninbred and inbred parental populations under monogamy with N = 10 parents

or polygyny with Nm = 5 male and Nf = 20 female parents, for the case of L = 15 high-polymorphic marker loci and the sample size of n = 100.

Breeding system Population

AIS probability Estimated parent-based coancestry among

Observed Estimated Actual NS Actual HS Actual FS All pairs

Monogamy Noninbred 0.3587 0.3571 0.0045 – 0.2552 0.0546

Inbred 0.3565 0.3366 0.0346 – 0.2651 0.0806

Polygyny Noninbred 0.2967 0.2972 0.0008 0.1259 0.2503 0.0370

Inbred 0.2981 0.2830 0.0237 0.1418 0.2592 0.0579

The AIS probability is the average over 5000 replicates and 15 marker loci, and the coancestry is the average over 5000 replicates.

E
st

im
at

ed
 N

eb
 

0 
5 0 

E
st

im
at

ed
 N

eb
 

E
st

im
at

ed
 N

eb
 

E
st

im
at

ed
 N

eb
 

E
st

im
at

ed
 N

eb
 

E
st

im
at

ed
 N

eb
 

∞∞∞∞∞∞ ∞∞∞ 1 . 7 8 
5 . 0 6 2 . 5 5 1 

) 9 . 8 ( ) 5 . 8 1 ( ) 8 . 0 3 ( ) 8 . 0 1 ( ) 2 . 2 1 ( ) 1 . 4 1 ( ) 7 . 8 1 ( ) 2 . 2 2 ( ) 1 . 3 2 ( 

) 6 . 3 ( 

) 7 . 1 ( 
) 7 . 1 ( 

) 8 . 0 ( 
) 4 . 0 ( 

∞∞∞∞∞∞∞∞ 8 . 3 5 2 . 9 9 
) 2 . 8 ( ) 4 . 5 1 ( ) 0 . 8 2 ( ) 0 . 9 1 ( ) 4 . 9 1 ( ) 1 . 2 2 ( ) 0 . 3 2 ( ) 4 . 6 2 ( ) 1 . 0 3 ( 

) 8 . 4 ( 

) 2 . 3 ( 

) 9 . 1 ( 

) 4 . 6 ( 

) 6 . 2 ( 

) 1 . 1 ( 
) 3 . 0 ( ) 5 . 0 ( 

) 1 . 0 ( 

) 7 . 6 ( ) 7 . 1 1 ( 

) 8 . 4 ( 

,
ˆ 

ehbeN 
,

ˆ 
lomfbeN 

,
ˆ 

bmocbeN 

,
ˆ 

ehbeN ,
ˆ 

lomfbeN 

,
ˆ 

bmocbeN 

) 5 . 7 ( 

10 

20 

30 

40 

50 

0 

10 

20 

30 

40 

50 

0 

10 

20 

30 

40 

50 

0 

10 

20 

30 

40 

50 

0 

10 

20 

30 

40 

50 

0 

10 

20 

30 

40 

50 

10 15 20 25 30 5 0 10 15 20 25 30 5 0 10 15 20 25 30 
No. of marker loci (L)No. of marker loci (L)No. of marker loci (L)

5 0 10 15 20 25 30 5 0 10 15 20 25 30 5 0 10 15 20 25 30 
No. of marker loci (L)No. of marker loci (L)No. of marker loci (L)

Monogamy; Non-inbred 

Monogamy; Inbred 

∞∞∞∞∞∞ ∞∞∞ 1 . 7 8 
5 . 0 6 2 . 5 5 1 

) 9 . 8 ( ) 5 . 8 1 ( ) 8 . 0 3 ( ) 8 . 0 1 ( ) 2 . 2 1 ( ) 1 . 4 1 ( ) 7 . 8 1 ( ) 2 . 2 2 ( ) 1 . 3 2 ( 

) 6 . 3 ( 

) 7 . 1 ( 
) 7 . 1 ( 

) 8 . 0 ( 
) 4 . 0 ( 

∞∞∞∞∞∞∞∞ 8 . 3 5 2 . 9 9 
) 2 . 8 ( ) 4 . 5 1 ( ) 0 . 8 2 ( ) 0 . 9 1 ( ) 4 . 9 1 ( ) 1 . 2 2 ( ) 0 . 3 2 ( ) 4 . 6 2 ( ) 1 . 0 3 ( 

) 8 . 4 ( 

) 2 . 3 ( 

) 9 . 1 ( 

) 4 . 6 ( 

) 6 . 2 ( 

) 1 . 1 ( 
) 3 . 0 ( ) 5 . 0 ( 

) 1 . 0 ( 

) 7 . 6 ( ) 7 . 1 1 ( 

) 8 . 4 ( 

,
ˆ 

ehbeN 
,

ˆ 
lomfbeN 

,
ˆ 

bmocbeN 

,
ˆ 

ehbeN ,
ˆ 

lomfbeN 

,
ˆ 

bmocbeN 

) 5 . 7 ( 

A

B

Figure 3 Harmonic mean (marked by open circle), and 10th, 50th and 90th percentiles (marked by bar) of 5000 estimated effective numbers of

breeders in the (A) noninbred and (B) inbred populations under monogamy with N = 10 (half of each sex) parents, for the case of high-polymor-

phic marker loci. The sample size of progeny is n = 100. N̂eb;he is the estimate from heterozygote-excess method (Pudovkin et al. 1996), N̂eb;fmolesti-

mate from equation (7) and N̂eb;comb the estimate by harmonic mean of N̂eb;he and N̂eb;fmol. The value in top of each graph is the clipped 90th

percentile, and the value in parentheses is the percentage of replicates with hatNeb ¼ 1. The dashed line shows the effective number of breeders

expected from demographic parameters (Neb,demo = 10).
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The effect of unequal contributions of parents on esti-

mates of Neb is shown in Table 3, in which a monogamy

with N = 10 (half of each sex) and a sample size of

n = 100 offspring was assumed. In all the cases com-

puted, the 90th percentile in the molecular coancestry

method was much smaller than in the heterozygote-excess

method. As unequal contribution of parents is an impor-

tant factor for a smaller Ne than the census number of

breeders (Frankham 1995), the higher accuracy of the

present method observed in Table 3 will be a practically

appealing point.

Figure 4 represents the joint distribution of estimates

from the heterozygote-excess and molecular coancestry

methods applied to the inbred populations under polyg-

yny with Nm = 5 and Nf = 20 parents and L = 15 high-

polymorphic marker loci. The moment and Spearman’s

rank correlations, excluding the pairs with infinite esti-

mate, were )0.003 and )0.164, respectively. In all other

cases simulated, the correlations of these orders were

obtained. An interesting point in Fig. 4 is that the inci-

dence of overestimations in the two methods tends to be

exclusive. At present, it is not theoretically obvious how

to combine several estimates of Neb optimally to give a

single best estimate (Wang 2005). As a tentative method, I

combined the two estimates as the harmonic mean,

according to the suggestion of Waples (1991):

Table 2. Percentiles (10th, 50th and 90th) of estimated effective number of breeders for 5000 replicated simulation runs in the noninbred and

inbred populations with several additional combinations of the number of parents and sample size.

Population and

breeding system N or Nm:Nf Neb,demo n

N̂eb;he N̂eb;fmol N̂eb;comb

10th 50th 90th 10th 50th 90th 10th 50th 90th

Noninbred

Monogamy 10 10 10 4.84 11.99 ¥ (23.2) 4.10 8.27 ¥ (10.3) 5.39 9.42 27.01 (2.1)

20 5.24 11.01 ¥ (16.7) 4.48 8.81 114.5 (8.5) 5.90 9.57 24.42 (1.2)

50 50 50 19.73 55.33 ¥ (26.5) 17.0 45.80 ¥ (23.1) 22.58 44.75 285.37 (6.3)

Polygyny 5:20 13.79 20 7.63 16.18 ¥ (14.4) 6.11 12.42 ¥ (12.0) 8.80 13.81 38.51 (1.7)

50 8.73 15.17 73.97 (5.8) 7.06 13.57 85.49 (6.7) 9.09 14.15 30.01 (0.5)

20:80 53.78 100 25.28 59.03 ¥ (17.6) 21.62 50.24 ¥ (18.2) 28.10 52.03 203.54 (3.0)

Inbred

Monogamy 10 10 10 4.46 12.18 ¥ (26.5) 3.43 6.70 38.20 (5.7) 4.90 8.03 18.09 (0.9)

20 4.81 10.99 ¥ (22.8) 3.51 6.60 22.29 (3.6) 5.08 7.85 16.58 (0.3)

50 50 50 17.50 50.37 ¥ (23.4) 11.58 20.30 85.59 (4.7) 16.58 27.83 69.50 (1.0)

Polygyny 5:20 13.79 20 7.52 16.19 ¥ (17.6) 5.00 9.31 41.06 (4.8) 7.26 11.45 25.37 (0.6)

50 8.47 15.85 ¥ (10.0) 5.31 8.85 21.79 (1.6) 7.71 11.33 19.90 (0)

20:80 53.78 100 23.61 57.84 ¥ (19.7) 15.01 24.62 73.89 (2.6) 21.44 33.73 72.07 (0.4)

Fifteen (L = 15) high-polymorphic marker loci were assumed.

N, the number of parents (half of each sex) in monogamy; Nm, the number of male parents; Nf, the number of female parents in polygyny;

Neb,demo, effective number of breeders expected from demographic parameters; N̂eb;he, estimated Neb from the heterozygote-excess method;

N̂eb;fmol, estimated Neb from equation (7); N̂eb;comb, harmonic mean of N̂eb;he and N̂eb;fmol.

Figures in parentheses are the percentage of replicates with N̂eb ¼ 1.

Table 3. Percentiles (10th, 50th and 90th) of estimated effective number of breeders for 5000 replicated simulation runs with unequal contribu-

tion of parents under monogamy in the noninbred and inbred populations with N = 10 (half of each sex) parents and the sample size of n = 100.

Contribution Neb,demo Population

N̂eb;he N̂eb;fmol N̂eb;comb

10th 50th 90th 10th 50th 90th 10th 50th 90th

0.4, 0.3, 0.1, 0.1, 0.1 7.18 Noninbred 4.53 8.14 302.02 (9.3) 3.59 6.91 18.55 (2.1) 4.81 7.31 13.46 (0.2)

Inbred 4.07 8.30 ¥ (16.9) 2.69 5.45 14.09 (1.1) 4.09 6.31 10.95 (0)

0.6, 0.1, 0.1, 0.1, 0.1 5.03 Noninbred 3.80 6.82 107.07 (8.8) 2.26 4.74 13.90 (2.0) 3.40 5.42 9.94 (0.1)

Inbred 3.63 7.24 ¥ (14.6) 1.76 4.17 12.50 (1.6) 2.96 5.02 8.90 (0.1)

Fifteen (L = 15) high-polymorphic marker loci were assumed.

Contribution: expected contributions of N=2=5 couples to sample.

Neb,demo, effective number of breeders expected from demographic parameters; N̂eb;he, estimated Neb from the heterozygote-excess method;

N̂eb;fmol, estimated Neb from equation (7); N̂eb;comb, harmonic mean of N̂eb;he and N̂eb;fmol.

Figures in parentheses are the percentage of replicates with N̂eb ¼ 1.
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1

N̂eb;comb

¼ 1
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N̂eb;he

þ 1

N̂eb;fmol

 !
:

The harmonic mean is expected to work well in the pres-

ent case, because of the exclusive incidence of overestima-

tions in the two methods; an overestimated Neb returned

by one method is filtered out and the combined estimate

is largely determined by the estimate from the other

method. The property of the combined estimate is shown

in the right panels in Figs 1–3 and the column of N̂eb;comb

in Tables 2 and 3. The combined estimate in the inbred

population was biased downward because of the down-

ward bias of N̂eb;fmol. However, as expected, the confi-

dence interval of the estimate was substantially narrowed,

comparing with the separate estimates. It is notable that

the improvement is larger for lower marker quality, i.e.

for a smaller number of marker loci and/or a smaller

number of alleles in each locus (Figs 1–3), and for a

smaller sample size (Table 2). Although the development

of an optimal method for combining separate estimates

into a single estimate deserves further investigation with

sophisticated statistical tools, the above results strongly

suggest that a highly reliable estimate can be obtained

from the optimal combination.

Some of the limitations of the method proposed in this

study are shared by most of the published methods: mar-

ker alleles are assumed to be selectively neutral, mating

within the population is at random and immigration

from other populations is absent (Leberg 2005). In addi-

tion, the present method involves a problem associated

with age at sampling. Estimation of Ne from the recur-

rence equation (1) is based on the assumption that the

average coancestries in two successive generations are

measured as the same age stage. In fact, the application of

the present method to a sample of juveniles gives an esti-

mate of ‘the effective number of breeders’. But even in a

population with nonoverlapping generations, the estimate

can be largely different from Ne, depending on the sur-

vival pattern of juveniles to adults. Following Crow and

Morton (1955), we consider two extreme patterns of the

survival: (i) random survival and (ii) survival of the fam-

ily as a unit. In the random survival model, survival from

juvenile to adult is randomly determined with the

expected survival rate s. Under this pattern of survival,

the average coancestry among adults is expected to be

unchanged from that among the juveniles. Thus, if the

present method is applied to a population with nonover-

lapping generations, Ne ¼ E N̂eb;fmol

� �
. Under the survival

of the family as a unit, the entire juveniles in a family

either survive or do not. With the average survival rate s

in the population, N̂eb;fmol obtained from a sample of

juveniles is related to Ne as Ne ¼ sE N̂eb;fmol

� �
(for the the-

oretical aspect of the above consideration, see Appendix

C). Although this model describes an extreme pattern of

survival, N̂eb;fmol of animals with low fecundity and high

survival rate, such as mammals and birds in which paren-

tal nursing for their brood is generally observed, should

be cautiously interpreted. On the other hand, N̂eb;fmol will

give an appropriate estimate of Ne when the method is

applied to animals with high fecundity and low survival

rate, such as marine invertebrates and fishes, whose

survival seems to be essentially random.

The present method involves additional problems asso-

ciated with the selection method for putative nonsibs.

One is the problem as to the determination of the num-

ber (n0) of selected pairs as putative nonsibs. Although

the selection method applied to the present study auto-

matically assigns the number (n) of the sampled progeny

to n0, this is an arbitrary choice. With a smaller n0, it is

more likely that the selected pairs are actually nonsibs,

but the coancestry among them will underestimate the

AIS probability, and vice versa. Another problem is the

drift-induced linkage disequilibrium among marker loci.

In small populations, the drift-induced linkage disequilib-

rium may be an important factor (Hill 1981) and reduce

the degree to which loci provide independent information

about coancestry. This may reduce the effectiveness of the

selection criterion of putative nonsibs defined by equation

(8). One potential for solving these problems and

improving the estimates of Neb from molecular coancestry

is the use of a sib-ship reconstruction technique. To date,

several methods for sib-ship reconstruction from molecu-

lar markers have been developed using different algo-

Figure 4 Joint distribution of estimates of effective number of breed-

ers from heterozygote-excess (N̂eb;he) and molecular coancestry

(N̂eb;fmol) methods in the inbred population under polygyny with

Nm = 5 male and Nf = 20 female parents and n = 100 sample of

progeny. Estimates outside the graph were clipped.

Nomura Estimation of effective number of breeders

ª 2008 The Author

Journal compilation ª 2008 Blackwell Publishing Ltd 1 (2008) 462–474 471



rithms, such as Markov Chain Monte Carlo (MCMC)

algorithm (Almudevar and Field 1999; Thomas and Hill

2002; Wang 2004) and simulated annealing (Almudevar

2003; Fernández and Toro 2006), and have been reviewed

by Blouin (2003) and Butler et al. (2004). I here take the

method proposed by Fernández and Toro (2006) as a trial

example of the use of a sib-ship reconstruction technique

for estimating Neb. By the use of their method, we can

find the sib-ships among sampled individuals that yield a

parent-based coancestry matrix with the highest correla-

tion with the molecular coancestry matrix. A notable

feature of their method is that it is free from the assump-

tion of linkage equilibrium among marker loci. Two

methods for the use of the reconstructed sib-ships were

examined: In the first method (SR1), the reconstructed

sib-ships were directly used for computing f̂ 1 in equation

(7). In the second method (SR2), the average locus-spe-

cific coancestry among the inferred nonsib pairs were

used for estimating sl as in equation (6). Simulation with

200 replicates was run for the case of polygyny in the

inbred population with Nm = 5 and Nf = 20 parents,

n = 100 sample of progeny and L = 15 high-polymorphic

marker loci. The results are summarized in Table 4. The

two methods with sib-ship reconstruction worked quite

well; they gave nearly unbiased estimates and narrower

confidence intervals. Although further evaluations includ-

ing other published methods for sib-ship reconstruction

should be carried out under a wide range of scenario, the

results in Table 4 suggest the potential for improving the

molecular coancestry method.
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Appendix A – Expression of r2
k in equation (9)

In general, variance of x can be written as

V x½ � ¼ V E x yj½ �½ � þ E V x yj½ �½ �; ðA1Þ

where E x yj½ � and V x yj½ � are the expectation and variance

of x conditional on a given y, respectively (Mood et al.

1987, p. 159). We apply this formula to the derivation of

expression of r2
k .

Let ci i ¼ 1; 2; :::;N=2ð Þ be the expected contribution of

ith couple to the cohort of offspring and ki the number

of offspring by ith couple in sample with size n. Applying

(A1), we obtain

r2
k ¼V E ki cij½ �½ � þ E V ki cij½ �½ �
¼V nci½ � þ E nci 1� cið Þ½ �

¼n2

PN=2
i¼1 ci � �cð Þ2

N=2
þ n

PN=2
i¼1 ci 1� cið Þ

N=2

¼n n� 1ð Þ
PN=2

i¼1 c2
i

N=2
þ n�c 1� n�cð Þ;

where �c is the mean of ci.

For example, in the simulation condition assumed in

Figs 1–3 and Table 2, ci ¼ 2=N for all i, giving

r2
k ¼

2n

N
1� 2

N

� �
:

Substituting this expression of r2
k and lk ¼ 2n=N into

(9) gives

Neb;demo ¼ N
2n� 1

2n� 2
� N;

as expected.

Appendix B – Derivation of equation (10)

The effective size (Ne) of populations with unequal sex

ratio and variation in mating success has been generally

formulated by Nomura (2005). Consider a population of

polygynous (harem) breeding system with Nm male and

Nf female parents, in which a male mates with several

females and a female mates with only one male. Let dmi

be the number of matings of male parent i ¼ 1; 2; :::;Nmð Þ
with the mean ldm

and variance r2
dm

. Assuming a Poisson

distribution of litter size (the number of newborns per

mating), the equation given by Nomura (2005) reduces

to

Ne ¼
4NmNf

Nm þNf 1þ C2
dm

	 
 ; ðB1Þ

where Cdm
¼ rdm

�
ldm

� �
is the coefficient of variation of

dmi. Under the condition of the present simulation, the

number of matings (dmi) of male parents follows a bino-

mial distribution with the mean ldm
¼ Nf=Nm and vari-

ance r2
dm
¼ Nf=Nmð Þ 1� 1=Nmð Þ, giving

C2
dm
¼ Nm

Nf
1� 1

Nm

� �
:

Substituting this expression into (B1) leads to
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Ne ¼
4NmNf

2Nm þNf � 1
:

Putting Neb,demo = Ne, we obtain equation (10).

Appendix C – Effect of age at sampling on rela-
tion between Ne and Neb

For simplicity, consider a population of monogamous

species with an equal number (N/2 = Nm = Nf) of male

and female parents. Generations are assumed to be dis-

crete (nonoverlapping). Let kei be the number of offspring

at the early age stage (juveniles) contributed by family

(couple) i, and kai be the number of offspring at the later

age stage (reproductive adults) contributed by family i.

The average survival rate from juvenile to adult is s.

According to the standard formula of effective population

size (Caballero 1994), the effective number of breeders of

juveniles Neb and the effective population size Ne (or

equivalently the effective number of breeders of adults)

are expressed as

Neb ¼
Nlke � 1

lke � 1þ r2
ke

�
lke

and

Ne ¼
Nlka � 1

lka � 1þ r2
ka

�
lka

: ðC1Þ

We consider two extreme survival models: (i) random

survival and (ii) survival of the family as a unit. Although

lka = slke in both models, the expression of r2
ka and con-

sequently the relation between Neb and Ne depend on the

model of survival assumed, as shown below.

Random survival

Applying equation (A1) and noting s ¼ lka=lke, we

obtain an expression of r2
ka as

r2
ka ¼V E kai keij½ �½ � þ E V kai keij½ �½ �
¼s2r2

ke þ s 1� sð Þlke

ðC2Þ

Substituting (C2) into (C1) gives

Ne ¼
Nlke � lke=lka

lke � 1þ r2
ke

�
lke

� Neb:

Survival of the family as a unit

Under this model, the expression corresponding to (C2)

is

r2
ka ¼ sr2

ke þ s 1� sð Þl2
ke:

Substituting this expression into (C1) leads to

Ne ¼ s
Nlke � lke=lka

lke � 1þ r2
ke

�
lke

" #
� sNeb:
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