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Magnetic resonance imaging (MRI) of rodent brains enables study of the development
and the integrity of the brain under certain conditions (alcohol, drugs etc.). However,
these images are difficult to analyze for biomedical researchers with limited image
processing experience. In this paper we present an image processing pipeline running on
a Midas server, a web-based data storage system. It is composed of the following steps:
rigid registration, skull-stripping, average computation, average parcellation, parcellation
propagation to individual subjects, and computation of region-based statistics on each
image. The pipeline is easy to configure and requires very little image processing
knowledge. We present results obtained by processing a data set using this pipeline and
demonstrate how this pipeline can be used to find differences between populations.
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INTRODUCTION
Magnetic Resonance (MR) Imaging studies are among the
increasingly popular methods of assessing neurodevelopment in
rodents. MRI is a non-invasive method used to study the brain’s
anatomical structure and connectivity without any known bio-
logical effect on the tissues. It is a highly translational technique
because it is used both in clinical settings as well as in pre-clinical
animal research and data can be acquired using similar meth-
ods in both humans and animals. The use of rodent models
for translational animal studies of clinical disorders has allowed
researchers to study precise effects of drug treatments or exposure
to specific substances in a defined environment for all subjects,
while minimizing uncontrolled external factors. There is also an
increasing interest in the scientific community for the use of MRI
to enable large-scale genetic phenotyping studies.

A typical image analysis study consists of comparing the dif-
ferences between an experimental group and a control sample.
One common method is to perform a region-based analysis of
the MR Images. The average and standard deviation of proper-
ties, such as the volume or the intensity of each region, is used
to compare the different populations (Harms et al., 2006; Stone
et al., 2008; Wang et al., 2008; Chan et al., 2009; Fatemi et al.,
2009; Lodygensky et al., 2009; Zahr et al., 2009; Badea et al., 2010;
Hui et al., 2010). Structural Magnetic Resonance Imaging (sMRI)
and Diffusion Tensor MRI (DTI) can be used in such stud-
ies. While sMR images are relatively straightforward to analyze,
DTI data require additional processing. The latter are estimated
from Diffusion Weighted Imaging (DWI) scans, which map the

diffusion process of the water molecules in biological tissues. Each
voxel of the image contains a 3 × 3 symmetric definite positive
matrix that can be visualized as an ellipsoid. A number of scalar
measurements can be computed from the DTI data, including
Fractional Anisotropy (FA), which represents how directionally
restricted along one axis the diffusion is (between 0, no direc-
tionality, and 1, diffusion in only one direction), Mean Diffusivity
(MD), which quantifies the total diffusion within a voxel, Radial
Diffusivity (RD), a measure of the average diffusion along the 2nd
and 3rd diffusion axis, and Axial Diffusivity (AD), diffusion along
the main direction. It has been shown that these measurements
are valuable clinical tools that can be used to diagnose tissue defi-
ciencies or delineate biological differences (van Gelderen et al.,
1994; Pierpaoli and Basser, 1996; Nair et al., 2005; Song et al.,
2005; Sun et al., 2005; Zhang et al., 2006). In addition to the scalar
measurements, images acquired without a diffusion gradient, i.e.,
the b = 0 images, and the average of all the images acquired with
a non-zero gradient, i.e., the Isotropic Diffusion Weighted Image
(iDWI), which are extracted from the DWI scans, can also be
useful to detect brain lesions (Moon et al., 2007).

Analyzing data from this type of study typically necessitates
a number of steps: a registration step to align all images in the
same space, a skull-stripping step to eliminate all non-brain tis-
sues that are not being studied and several other steps which
may include segmentation of the brain into different Regions Of
Interest (ROI), also called parcellation, so that their properties
(e.g., average intensity and volume) can be analyzed. Although
each of these steps can be performed manually for each image, this
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is labor intensive and subject to inter- and intra-rater variability,
which can often confound potentially subtle group differences in
the data set.

Due to the need for these sophisticated analyses, DTI process-
ing is inaccessible to small animal researchers with limited image
processing experience. For this reason, it is imperative to build
user-friendly software that implements automated pipelines to
process the data.

A number of automatic pipelines and set of tools to perform
those aforementioned steps are available for human data, such as
FSL1 (Smith et al., 2004), the LONI pipeline2 (Dinov et al., 2010)
which integrates tools such as BrainSuite 3 (Shattuck and Leahy,
2002) and which could be used to create a custom pipeline, and
FreeSurfer 4 (Fischl et al., 2002), but these produce very limited
results when applied to rodent scans. Registration parameters in
these tools are not appropriate due to image scale and ratio dif-
ferences. Skull-stripping algorithms produce poor results due to
non-appropriate assumptions regarding the data (shape of the
skull, space between brain and skull, etc).

Numerous individual tools, such as AtlasWerks5, which creates
an average image from a set of images using diffeomorphic reg-
istration, and ANTs6, a software package that performs image to
image diffeomorphic registration, are also available but each of
them performs only a small part of the whole analysis process.
Moreover, most of the default parameters of those tools are set
for the human brain, thus not useful for direct application for the
rodent brain.

The image processing method we are presenting in the paper
has been used by different groups conducting research on rodent
images and has been described in previous publications (Chen
et al., 2005; Kovacevic et al., 2005; Badea et al., 2007; Calabrese
et al., 2013). Brain masks can be outlined manually (Lau et al.,
2008) or computed automatically (Badea et al., 2007). The cre-
ation method for an average image has already been presented
(Chen et al., 2005; Kovacevic et al., 2005; Badea et al., 2007; Lau
et al., 2008; Lerch et al., 2008; Calabrese et al., 2013). This step is
performed using existing tools such as ANTs or the mni_autoreg7

tools (Collins et al., 1994, 1995). The parcellation of the aver-
age population image, that is manually or automatically done,
is then propagated back to each subject using the inverse trans-
form that was computed to create the average image (Lerch et al.,

1FSL is a comprehensive library of analysis tools for FRMI, MRI and DTI brain
imaging data: http://www.fmrib.ox.ca.uk/fsl/
2The LONI Pipeline is a free workflow application primarily aimed at compu-
tational scientists: http://pipeline.loni.ucla.edu/
3BrainSuite is a suite of image analysis tools designed to process magnetic res-
onance images (MRI) of the human head: http://www.loni.ucla.edu/Software/
BrainSuite
4FreeSurfer is a set of automated tools for reconstruction of the brain’s cortical
surface from structural MRI data, and overlay of functional MRI onto the
reconstructed surface: http://surfer/nmr.mgh.harvard.edu/
5AtlasWerks is a set of high-performance tools for diffeomorphic 3D image
registration and atlas building. Scientific Computing and Imaging Institute
(SCI).
6The ANTs package is designed to enable researchers with advanced tools for
brain and image mapping: http://www.picsl.upenn.edu/ANTs/.
7Mni_autoreg are a set of tools to automatically linearly and nonlinearly
register two volumes together: https://github.com/BIC-MNI/mni_autoreg

2008; Calabrese et al., 2013). Each tool is often run individually
which makes the process cumbersome. Pipelines automatically
computing all the steps described above have also been created
(Badea et al., 2012). Although the existing processing steps are
well known, well described and reproducible, they are by no
means accessible to the typical preclinical researcher. First, most,
if not all, the tools require command line processing, which is
hardly user-friendly. Additionally, and perhaps more importantly,
each tool comes with numerous parameters, whose meanings and
interpretations require expertise in image processing algorithms.
Setting the values of all these dozens of parameters is a task that is
inhibitive to the typical preclinical researcher.

Our approach addresses these problems in three critical ways.
First, our entire pipeline is accessible through a web browser,
which is a familiar environment to even the most computer-
illiterate researcher. Second, we provide carefully fine-tuned
default settings to all the parameters, allowing the inexperienced
user to use the functionality offered out-of-the-box. However, it
should be noted that all the advanced parameters are also acces-
sible if desired, to allow the more experienced user flexibility.
Third, the Midas environment inherently allows data and pro-
cessing sharing: this can be crucial for those occasions when the
out-of-the-box does not work, and the user can ask for help from
an image processing expert for troubleshooting. All this person
would then need is to have access to the Internet, and they can see
the processing steps that were applied, the input and output, and
help pinpoint the problem. Compare this to the more traditional
scenario of having to transfer dozens of images to this expert, and
the non-expert trying to remember the exact details and sequence
of processing that was already tried, the expert working on this on
his/her own computer, then transferring the results back to the
user, perhaps only to discover that they don’t have access to the
same version of the software, and having to start over.

In this paper we present a processing pipeline targeted toward
a relatively inexperienced preclinical researcher who, for exam-
ple, doesn’t wish to learn about the intricate details of image
registration algorithms but just wants to compute the volume of
the caudate nucleus in his data. We propose to make this possi-
ble via our Midas-based rodent brain image processing pipeline.
The user does not have to go through complicated steps to find
all the individual tools necessary for the processing as well as
parameters giving correct results for rodent images. We illustrate
the usage of the different steps of our method (rigid registra-
tion, skull-stripping, average computation, average parcellation,
individual parcellation and computation of region-based statis-
tics) by processing a very simple dataset and present the results
as well as the possibilities and the limitations of the developed
pipeline.

METHODS
OVERVIEW OF THE PIPELINE
The current pipeline was developed to perform a region-based
analysis of 3D medical images and has been optimized for MR
rodent brain imagery. It can process DWI, DTI and structural
MRI data and is composed of a set of BatchMake8 scripts designed

8http://batchmake.org
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for a Midas 9 server. Midas is a toolkit that enables web-enabled
data storage and has been designed for large data such as med-
ical images. It provides a mechanism to integrate plugins to
perform actions such as processing and analyzing the images
stored on the server. Such plugins can integrate BatchMake, a
cross-platform scripting language and grid computing abstrac-
tion layer for processing data locally or on distributed system,
thus providing computational power if installed on a com-
puter grid. The Midas platform was chosen because it allows
easy sharing of data among collaborators. The pipeline incor-
porates existing tools as well as some specific tools that were
created to assemble all of the existing ones in a pipeline. To
run it, the researcher uses the web interface to select the plu-
gin to run, to choose the files to process, and to set the options
(Figure 1). The final results are directly uploaded back onto the
server.

The pipeline is composed of six major steps (Figure 2): Rigid
registration, skull-stripping, creation of a population average,
parcellation of the population average, parcellation propagation
to individual subjects and region based statistics. In some of
those steps, existing software developed in other laboratories has
been integrated to the pipeline we present here. Those steps are
marked with an asterisk (∗) in the figures and the software is
cited in the description of the step. The order of these steps mat-
ters since each of them depends on the output of the previous
one. For most of the steps, every input image will be processed
individually and independently. This allows parallel processing
when possible. The images acquired by the scanner are often in
DICOM or in raw format. Once they are converted into a for-
mat readable by the Insight Toolkit Library10 (ITK), on which
most tools used in the pipeline are based, one can start processing
them using the presented pipeline. Each step is described in detail
below.

RIGID REGISTRATION (STEP 1)
The first step of the pipeline consists of aligning all the images
with a template, such as the one available with the C57
Brookhaven atlas (Ma et al., 2005). Additional details about avail-
able templates and atlases are given in Parcellation of Population
Average (Step 4). As shown in Figure 3, the necessary inputs to
this step are a template image and a subject image, which can
be either a DTI, a DWI or an sMRI scan. This step allows the
researcher to easily compare the results of the different images in
a common coordinate space as well as to perform the following
steps. Only a rigid registration, which computes a transforma-
tion composed of a translation and a rotation, is performed to
keep the size of the brain constant in order to compare brain and
region volumes. Performing another type of registration such as
an affine registration or other with higher order transformations
would result in deforming the original brain, possibly scaling the
image and therefore modifying the original volumes of the brain
regions.

9The Midas Platform is an open-source toolki that enables the rapid creation
of tailored, web-enabled data storage: http://www.midasplatform.org
10ITK is a widely used C++ library designed for image processing purposes:
http://itk.org

FIGURE 1 | Screenshots presenting the user interface of the pipeline

when running the registration step. From top to bottom: selection of the
images to register, selection of the fixed image for the registration,
selection of the options including the type of the input image.

Before the registration is computed, an inten-
sity bias field correction is performed on the data using
N4ITKBiasFieldCorrection (Tustison et al., 2010), a tool dis-
tributed with 3D Slicer 11 (Gering et al., 1999; Pieper et al.,
2004, 2006), a multi-platform software for visualization and
medical image computing. The registration is performed using
RegisterImages (“Registration” step in Figure 3), also part of 3D
Slicer package. If the input image is a structural MRI scan (T1,
T2, etc), it is simply registered to a given template. If no template
is available to the user, one can use a reference image that has

11http://www.slicer.org
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been manually oriented correctly. If the input image is a DWI
scan, a DTI scan will be estimated from it. The DTI scan will
be used to compute the MD image which is then registered to
the chosen template. Once the transformation is computed, it
is applied to the DTI scan which is then resampled using the
log-Euclidean framework (Arsigny et al., 2010). The b = 0 and
iDWI images, if present, are also transformed. Finally, all of
the derived images (MD, FA, RD, AD) are computed from the
registered DTI data. Any given additional images (i.e., T1, T2)
are also resampled using the computed transformation. They
are expected to be aligned with the input image. Therefore,
one has all the input and related images aligned with the
template.

SKULL-STRIPPING (STEP 2)
Next, the image is skull-stripped in order to remove the extra-
neous tissues that are not part of the brain (Figure 4). In the
current pipeline, the method presented by Lee et al. (2009) and

FIGURE 2 | Overview of the entire pipeline.

FIGURE 3 | Rigid registration pipeline. Registration is performed using
RegisterImages, a tool distributed with 3D Slicer.

Oguz et al. (2011) was implemented. To perform this opera-
tion, we first perform an affine registration of a template to
each image with specific parameters for rodent images. The
template image is not provided as part as the pipeline, but
several templates (as well as their parcellation map) are pub-
licly available, such as the C57 Brookhaven atlas (Ma et al.,
2005), the Mouse BIRN atlas (MacKenzie-Graham et al., 2006)
and the Waxholm atlas (Jiang and Johnson, 2011). The direc-
tion of the transformation is chosen so that the output mask,
obtained at the end of this step, is in the input image space (i.e.,
aligned with the input image, typically the output of step 1),
and not in the template space (i.e., registered with the tem-
plate). We then transform a probabilistic tissue segmentation
atlas associated with the template image, that can be subse-
quently used for tissue segmentation, into the input image space
using the computed transformation. Atlas Based Classification12

(Prastawa et al., 2005), also known as ABC, a tool that implements
the Expectation-Maximization Segmentation (EMS) algorithm
(Pohl et al., 2007), classifies the different tissues of the brain
into white matter (WM), gray matter (GM), cerebrospinal fluid
(CSF) and the rest of the image, using the transformed proba-
bilistic tissue segmentation maps. GM, WM and CSF are then
combined to generate a whole-brain mask. It is then filtered:
the largest connected component of the obtained segmenta-
tion is selected to remove voxels outside the brain wrongly
classified (i.e., false positives) and a binary closing operation
is performed to smooth the boundaries and get rid of small
regions erroneously classified as non-brain inside the brain (i.e.,
false negatives). The resulting mask will be used in the follow-
ing steps of the pipeline. The step necessitates an input image
(DWI, DTI or sMRI scan), a template image and corresponding

12http://www.nitrc.org/project/abc/

FIGURE 4 | Skull-stripping pipeline. Registrations are performed using
RegisterImages and Expectation Maximization Segmentation (EMS) is
computed with Atlas Based Classification (ABC). Both tools are available in
3D Slicer.
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probabilistic tissue segmentation as inputs. The output will be a
brain mask.

POPULATION AVERAGE CREATION (STEP 3)
Once the images are skull-stripped, the computation of a pop-
ulation average image (Figure 5) is possible. For each case,
the mask that was computed at the previous step is applied
to the corresponding subject image used for this step. First, all
the skull-stripped images are histogram-matched and affinely
registered to the first case image. A first average image is com-
puted. However this could create bias based on ordering of
images. To limit this effect, we register affinely all the images
a second time to the coarse average image just obtained. Once
this is completed, we compute an unbiased atlas using a fluid-
based registration algorithm performing voxel-by-voxel diffeo-
morphic mapping (Joshi et al., 2004) using AtlasWerks 13. This
generates an average image as well as deformation fields that
transform each image to the average image. To limit smooth-
ing due to multiple interpolations, we recompute the average
image from the original images after merging, for each case, the
rigid transform obtained in the first step with the deformation
field just computed. This way only one interpolation is performed
instead of two resulting in a sharper population average image.
In the case where the input images are Diffusion Tensor (DT)
or Diffusion Weighted (DW) images, an average DT image is
computed.

13http://www.sci.utah.edu/sofware.html

FIGURE 5 | Population average computation pipeline. Registration is
performed using RegisterImages (distributed with 3D Slicer) and Average
Computation is done with AtlasWerks.

The step additionally creates, for each input image, a deforma-
tion field that corresponds to the inverse diffeomorphic registra-
tion that was computed to create the average image. This inverse
deformation field can be used in step 5 of the pipeline, depending
on the selected options.

PARCELLATION OF POPULATION AVERAGE (STEP 4)
To avoid having to manually segment the different regions of
the brain in the population average that was computed previ-
ously (output of Step 3), we use a parcellation associated with
an external template. As mentioned in Skull-Stripping (Step 2),
several atlases are publicly available. A diffeomorphic registration
between the chosen external template and the average image is
performed using ANTs (Avants et al., 2008). The obtained trans-
formation is applied to the external parcellation map. This creates
the output label map corresponding to the population average
parcellation.

PARCELLATION PROPAGATION TO INDIVIDUAL SUBJECTS (STEP 5)
The parcellation of each individual is useful to compare differ-
ences across subjects or across populations. One already has the
transformations (inverse deformation fields obtained at Step 3)
to propagate the population average parcellation to all the cases
that were used in step 4. If all the cases in the study were used
to compute that image, one just has to use those transforma-
tions to obtain the parcellation of each scan. Otherwise, the
population average has to be registered to each image using a dif-
feomorphic algorithm. The obtained deformation fields are then
used to warp the average image parcellation to the individual
cases.

REGION BASED STATISTICS (STEP 6)
Once each subject is segmented, computation of whole brain and
regional statistics is possible on all the available images, using
their brain mask and their individual parcellation respectively.
This includes volumes, means and standard deviations of the
intensity in the segmented regions or over the whole mask. For
diffusion images, this gives the values for the diffusion properties
of the image such as FA, MD, RD, and AD.

DATA AND ANALYSIS
To illustrate our pipeline’s functionality, we applied it to a small
data set composed of two groups of mouse brain images. All
animal treatment protocols were approved by the University of
North Carolina at Chapel Hill Institutional Animal Care and Use
Committee. The two groups were scanned with different head
coils. We then conducted a short statistical analysis to measure
the differences between the two sets of scans. The experimental
part was used to present the functionalities of the pipeline, and
it was not intended to present novel clinically oriented results.
This pipeline has been used to process data for other studies with
a clinical intent that have been published (O’Leary-Moore et al.,
2012).

IMAGES: ACQUISITION
Two groups of 45 days old mice were scanned on a 9.4 T vertical
bore Oxford magnet with shielded coils. For both groups, the
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image matrix was 512 × 256 × 256 over a 22 × 11 × 11 mm
field of view giving 43 × 43 × 43 um isotropic voxels (Jiang
and Johnson, 2011). The repetition time was 100 ms. The echo
time was 11.828 ms. The bandwidth was 61.5 KHz. The dif-
fusion pulses were two 1.3 ms sinusoid pulses separated by
∼6.15 ms (start to start). The scans were acquired with six gradi-
ent directions and one b = 0 (gradient amplitude = 1500 mT/m).
A total of fifteen mice were imaged. Each individual of the first
group (A) was imaged with a solenoid radiofrequency coil that
was built in-house, constructed from a single sheet of microwave
substrate, twice to increase the signal-to-noise ratio (SNR).
Eleven images were acquired. The second group (B) was imaged
with a different custom radiofrequency coil which produced scans
with higher SNR. Each individual mouse in the second group was
therefore scanned only once, with the original imaging protocol.
Four images were acquired for the second group.

RESULT ANALYSIS
We used the developed pipeline to compare the two groups
of scans. Each input image was processed using the developed
pipeline and we applied a simple t-test between the two groups
to detect if there was any statistical difference between them (no
multiple comparison correction was applied). Statistical signifi-
cance was defined as p < 0.05. Though we understand our sample
size is small, we present results in this paper to demonstrate how
a t-test could be applied to a larger dataset processed with this
processing pipeline.

Data distribution (Figures 12, 13) is shown with box and
whisker diagrams including the median (bar band), the 25th and
75th percentile (left and right bar respectively) and the minimum
and maximum (whiskers).

RESULTS
The visualizations presented in the following section
(Figures 6–10) were obtained using 3D Slicer as well as
ITK-SNAP 14 (Yushkevich et al., 2006), a software application
used to segment and visualize structures in 3D medical images.

RIGID REGISTRATION
The first step of the pipeline rigidly registers each input image to
a template (Figure 6). In this analysis, the input image was a DWI
scan. A DT image was estimated from it, and its MD was com-
puted to be registered to the given template (in this case, we used
the C57 Brookhaven atlas). Once the transformation was com-
puted, it was applied to the DTI data, the iDWI and the b = 0
images that were computed from the DWI scan. The FA, MD, and
color-coded Fractional Anisotropy (cFA) were then computed
from the transformed DTI data. The cFA is an image in which
at each voxel the orientation of the tensor is coded with a color
(green: anterior-posterior; blue: superior-inferior; red: left-right)
that is modulated by the intensity of the FA.

SKULL-STRIPPING
A mask of the brain is computed using the rigidly registered
image. In Figure 7, we present the result of this step for one

14http://www.itksnap.org/

FIGURE 6 | Rigid registration pipeline. The DWI scan is registered to a
template and derived images (MD, FA, b = 0, iDWI, color-coded FA) are
computed.

FIGURE 7 | Skull-stripping pipeline. From left to right: original FA image,
computed mask, original FA image skull-stripped, 3D rendering of
computed mask.

FIGURE 8 | Population average computation pipeline output. From top
to bottom: sagittal view, axial view, coronal view. From left to right: RD
image, MD image, AD image, FA image, color-coded FA with ellipsoids
representing the tensors superimposed.

case. The mask is applied to the FA image and is rendered
in 3D.

COMPUTATION OF THE POPULATION AVERAGE
The next step of the pipeline computes the population average of
the input images. Figure 8 presents the scalar images (MD, FA,
RD, AD) estimated from the obtained average DTI scan as well as
the cFA overlaid with the tensors represented as ellipsoids.

SEGMENTATION OF POPULATION AVERAGE
In the current study, we used the C57 Brookhaven atlas as the
external template and atlas. This pipeline step diffeomorphically
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FIGURE 9 | Regional segmentation of the population average FA

image. From left to right: Axial view, coronal view, sagittal view. The list of
the different regions is: Hippocampus, Corpus Callosum and External
capsule, Caudate and Putamen, Anterior commissure, Globus Pallidus,
Internal capsule, Thalamus, Cerebellum, Superior Colliculi, Ventricle,
Hypothalamus, Inferior colliculi, Central Gray, Neocortex, Amygdala,
Olfactory Bulb, Brain Stem, Rest of Midbrain, Basal Fore Brain and Septum,
Fimbria, Pituitary.

FIGURE 10 | 3D rendering of the population average segmentation.

Cerebellum, neocortex, corpus callosum and external capsule were made
partially see-through to allow better visualization of the inside regions.

registered the external template to the population average and
applied the obtained transform to the C57 Brookhaven atlas.
Results are shown in Figures 9, 10.

SEGMENTATION PROPAGATION TO INDIVIDUAL SUBJECTS
To propagate the segmentation to the individual subjects, the
inverse deformation fields were not used in this experiment.
The registration between the population average image and each
individual were recomputed for another study including cases
not used to compute the population average. The new deforma-
tion fields were applied to the population average segmentation.
Results are shown in Figure 11 for all subjects.

STATISTICAL ANALYSIS OF THE PIPELINE OUTPUT
We applied a t-test to compare the two populations that were
scanned with different head coils (population A: cases 1–11; pop-
ulation B: cases 12–15). By comparing those two groups of scans
we can assess whether there is a significant difference in the
images due to the new head coil. The power of this specific statisti-
cal analysis is low due to the low number of samples in each group,
especially for the t-test. This analysis is presented in this paper
only to illustrate the possibilities opened by using this pipeline to
analyze data.

Table 1 contains the whole brain statistics of the processed
images. The volumes of the two groups seem to match well when

FIGURE 11 | Subject segmentation. From left to right: axial view, coronal
view and sagittal view of cases 1–6 (bottom–top).

comparing the whole brain. The AD, MD and RD are statisti-
cally different between the two groups (p < 0.05). The FA does
not present any statistical differences either. This can possibly be
explained by the fact that FA is a ratio of the diffusion along
the different directions. Even though the absolute values of the
measured diffusion amounts are changed, it is plausible that their
relative magnitudes captured by FA remain stable.

Among the individual regions of the brains that were seg-
mented using the developed pipeline, no statistical differences
in volume between the two groups were found (Table 2).
Figure 12 illustrates the volume distribution of the segmented
brain regions.

For all segmented brain regions but the ventricles, the sig-
nificant statistical difference in the AD between the two groups
(Table 1) over the whole brain is also present in individual regions
(Table 2). Figure 13 shows the AD value distribution of the seg-
mented brain regions. FA does only present statistical differences
for certain regions such as the thalamus, the hypothalamus and
a few others (Table 2). As explained above, this might be due
to the fact that FA is a ratio of the diffusion along the different
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directions. Finally, RD and MD also present significant differences
for most segmented regions (Table 2).

The results presented here are meant to serve only as a proof
of concept to illustrate our Midas pipeline. A more thorough

Table 1 | Whole brain volume (mm3); average MD (10−4 mm2/s), FA,

RD (10−4 mm2/s) and AD (10−4 mm2/s) intensities; t-test to compare

group A (subjects 1–11) to group B (subjects 12–15).

Subject Volume MD FA RD AD

(group) (in mm3)

1 489.1 4.490 0.3222 3.698 6.074
2 479.8 5.733 0.2767 4.890 7.42
3 490.1 5.249 0.3258 4.344 7.058
4 493.4 5.408 0.2931 4.562 7.100
5 468.2 4.606 0.3193 3.827 6.163
6 469.4 4.696 0.3183 3.897 6.295
7 469.0 5.378 0.2993 4.539 7.056
8 462.0 4.943 0.3049 4.144 6.542
9 500.4 4.449 0.3499 3.605 6.136
10 463.1 4.806 0.3218 3.961 6.496
11 489.7 5.148 0.3189 4.253 6.936
12 481.3 7.985 0.3001 6.692 10.570
13 468.1 6.061 0.3524 4.889 8.406
14 478.0 5.018 0.3486 4.070 6.914
15 489.1 6.107 0.3553 4.968 8.383
t-Test 0.9646 0.0071* 0.0596 0.0187* 0.0017*

Statistically significant differences (p < 0.05) are marked with an asterisk (*).

statistical analysis, including a larger sample size and correction
for multiple comparison tests, is necessary before drawing any
conclusions from this data set.

DISCUSSION
The pipeline presented herein allowed automated processing
and comparison of two groups of mouse images scanned with
different head coils. Visual inspection by a human expert con-
firmed that the results after each step of the pipeline were satisfac-
tory. We were able to align the images, skull-strip them, compute
a population average, segment the population average, propagate
the segmentation to every individual and compute statistics over
each individual image (MD, FA, AD, RD). The computation of
these statistics was completed for the whole brain, using the brain
mask, as well as for each segmented region, using the warped
segmentation map from each case.

It is possible that in some circumstances, one want to skip
some steps of the processing pipeline. For example, if one is only
interested in skull-stripping the images (e.g., only measure the
brain volume), registration of the images rigidly to an external
template may not be necessary (step 1). Indeed, in step 2, the
template is registered, rigidly and affinely, to the subject to trans-
form the probability maps from the template space to the subject
space, to apply the EM algorithm. However, there are three prob-
lems in skipping that step: (1) if the input images are DTI or DWI
scans, one will still need to compute scalar images derived from
those for the skull-stripping step to be achieved; (2) the skull-
stripping results are usually more accurate after rigid registration;
(3) the result of Step 3 (creation of a population average) is

Table 2 | t-Test of the regional differences between the two groups.

t-Test Volume AD FA RD MD

Hippocampus 0.161785 0.002171* 0.083883 0.014185* 0.006480*

CC & External capsule 0.176126 0.002440* 0.945476 0.035062* 0.010841*

Caudate & Putamen & GP 0.967358 0.002652* 0.012038* 0.034600* 0.01245*

AC 0.58113 0.004561* 0.895986 0.015399* 0.007892*

GP 0.357158 0.004783* 0.118830 0.065355 0.023774*

Internal capsule 0.543368 0.002063* 0.636858 0.044567* 0.01155*

Thalamus 0.267541 0.002253* 0.034974* 0.028814* 0.010214*

Cerebellum 0.807982 0.002723* 0.775615 0.016528* 0.00778*

Superior colliculi 0.449734 0.002356* 0.550493 0.005228* 0.00363*

Ventricle 0.744692 0.060377 0.097752 0.323671 0.187511

Hypothalamus 0.078088 0.001211* 0.039063* 0.011286* 0.004133*

Inferior colliculi 0.494573 0.004877* 0.482485 0.007751* 0.006061*

Central gray 0.277711 0.002421* 0.151546 0.043269* 0.014244*

Neocortex 0.485982 0.002684* 0.105912 0.016225* 0.007889*

Amygdala 0.858912 0.002583* 0.065014 0.010802* 0.005608*

Olfactory bulb 0.355956 0.000748* 0.148953 0.012075* 0.003904*

Brain stem 0.371267 0.005558* 0.043845* 0.110809 0.032877*

Rest of midbrain 0.925355 0.001040* 0.027451* 0.024848* 0.006166*

Basal fore brain 0.278086 0.002233* 0.099579 0.017967* 0.007121*

Fimbria 0.221511 0.000912* 0.832303 0.039053* 0.007191*

Pituitary 0.291476 4.62E−05* 0.237743 0.007372* 0.000587*

Statistically significant differences (p < 0.05) are marked with an asterisk (*).
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FIGURE 12 | Distribution of the segmented brain region volumes (mm3). Neocortex volume is not presented for scale difference reason. Median: bar band;
25th and 75th percentile: left and right bar respectively; minimum and maximum: whiskers.

FIGURE 13 | Axial diffusivity (mm2/s) of the segmented brain regions. Median: bar band; 25th and 75th percentile: left and right bar respectively; minimum
and maximum: whiskers.

sharper if the rigid registration has been computed due to a better
alignment.

The computation and segmentation of a population average
are also optional. One may want to directly warp the external tem-
plate segmentation to each individual image directly. This may
be necessary in situations where the appearance of the individu-
als is too diverse for a stable population average to be computed.
Additionally, computing only a single diffeomorphic registration
directly to the external atlas may give, in some cases, a better
result than having two warping steps (external template to pop-
ulation average followed by population average to individual).

However, adding the population average creation and segmenta-
tion steps gives less biased results. If comparing two populations,
one being close to the external atlas, and one being very differ-
ent, the results obtained using direct registration of the external
template to each individual will be biased. However, if one first
computes an average using both populations and then regis-
ters this newly computed average to each subject, the result will
be less biased, the average image including subjects from both
populations.

Additionally, the population average image has a better SNR
and therefore the registration of the external template to this
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image is usually more robust than the one to the individual
images.

After each step, if one is not satisfied with the results obtained
by the automatic processing, one can manually correct the images.
For example, if the skull-stripping (step 2) is not accurate enough,
one can edit masks that are not precise enough and use those cor-
rected images in the rest of the pipeline. This also holds for the
rigid registration (step 1) and the population average segmenta-
tion (step 4) steps as well. If one is not satisfied with the rigid
registration results, one can directly provide a manual transfor-
mation to the pipeline and skip the computation of the automatic
transformation. In such a case, the registration step will still
compute the transformed image as well as the derived images
if any (Fractional Anisoptropy, MD, etc.). This is useful when
processing DWI and DTI.

It is possible to conduct additional processing of the data
after the pipeline has been run. For example, a voxel-by-voxel
analysis (Li et al., 2010) like those reported in previous studies
(Tyszka et al., 2006; Van Camp et al., 2009) can be performed on
the individual subjects transformed into the population average
space using the deformation field transforms. Fiber tract-based
analysis can also be used to detect white matter abnormalities
(Sizonenko et al., 2007; Zhang et al., 2007) and to analyze DTI
scans (Huang et al., 2004; Asanuma et al., 2008). These analyses
can be performed in both the individual images, or in the pop-
ulation average space (Goodlett et al., 2009) which has a better
SNR and propagated to individual images using the deforma-
tion field transforms computed with the pipeline. In addition
to fiber tract analyses, assessment of cortical thickness (Tamnes
et al., 2010; Lee et al., 2011) can be done in this type of analysis:
the cortical thickness in the population average is computed and
propagated the result to each subject again using the deformation
field transforms obtained with the pipeline. Deformation field
analysis (Walhovd et al., 2010), also called Tensor Morphometry,
which allows detection of an increase or a decrease in the volume
of a region by analyzing the amount of deformation, can also be
performed by analyzing the deformation field computed by the
pipeline.

Finally, the Midas platform allows easy collaboration by shar-
ing data and tools. It is not necessary for data to be transferred

back and forth between multiple laboratories and/or institutions.
Any modified or newly computed data is directly available to each
party sharing the platform and the data. Similarly, every institu-
tion sharing one Midas platform can share tools enabled by the
plugin system without having the usual problems arising such
as verifying that the correct versions are used and verifying that
those tools are available for the different environments used in all
collaborating institutions. An important side effect of this cen-
tralization is that input data and results can be better managed to
ensure proper data provenance and experimental reproducibility.
The web-based interface allows a user-friendly experience and the
server-side processing reduces the need for powerful computers
at each user’s location. This is crucial for allowing biomedical sci-
entists with limited image processing experience to use the DTI
technology in their research.

CONCLUSION
We presented a pipeline that is freely available15 as a plugin for
the Midas platform and that can be used to process rodent MR
images. We showed preliminary results obtained with such anal-
ysis on a sample data set and demonstrated how useful and easy
it is to use this pipeline to process images from beginning to end.
The current scripts can also be easily adapted for future studies.
Additional analysis such as voxel-by-voxel analysis, cortical thick-
ness analysis, deformation field analysis or tractography can also
be performed using the results of the pipeline or by adding a step
to the current pipeline. Those additional steps will be included in
the pipeline in later versions.
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