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Systematic differences in effect 
estimates between observational 
studies and randomized 
control trials in meta‑analyses 
in nephrology
Miho Kimachi1*, Akira Onishi2, Aran Tajika3, Kimihiko Kimachi1 & Toshi A. Furukawa4

The limited availability of randomized controlled trials (RCTs) in nephrology undermines causal 
inferences in meta-analyses. Systematic reviews of observational studies have grown more common 
under such circumstances. We conducted systematic reviews of all comparative observational studies 
in nephrology from 2006 to 2016 to assess the trends in the past decade. We then focused on the 
meta-analyses combining observational studies and RCTs to evaluate the systematic differences in 
effect estimates between study designs using two statistical methods: by estimating the ratio of 
odds ratios (ROR) of the pooled OR obtained from observational studies versus those from RCTs and 
by examining the discrepancies in their statistical significance. The number of systematic reviews of 
observational studies in nephrology had grown by 11.7-fold in the past decade. Among 56 records 
combining observational studies and RCTs, ROR suggested that the estimates between study designs 
agreed well (ROR 1.05, 95% confidence interval 0.90–1.23). However, almost half of the reviews led 
to discrepant interpretations in terms of statistical significance. In conclusion, the findings based on 
ROR might encourage researchers to justify the inclusion of observational studies in meta-analyses. 
However, caution is needed, as the interpretations based on statistical significance were less 
concordant than those based on ROR.

Randomized controlled trials (RCTs) provide high-level evidence because they can minimize threats to internal 
validity. However, it is difficult to conduct RCTs in certain situations, such as with participants with serious 
complications, interventions with ethical constraints (e.g. surgical procedures) and serious adverse effects1–4. In 
particular, RCTs in nephrology have been limited because patients with kidney diseases generally have a number 
of complications5–9. When the number of available RCTs is insufficient, meta-analyses restricted to RCTs can 
be misleading10,11. Authors of such meta-analyses might then be justified in including observational studies3,12. 
Observational studies can reflect real world practices and have superior generalizability in comparison with RCTs 
under ideal conditions. However, the GRADE system states that nonrandomized studies constitute only a low 
level of evidence due to many threats to internal validity13. Discrepancies in the findings between observational 
studies and RCTs can be caused by differences in sample size, confounding factors, and biases such as selection 
bias, publication bias, and follow-up period14,15. In particular, unmeasured confounding factors can hamper 
causal inferences between the exposure and outcome16,17. Despite such controversy, several studies reported that 
risk estimates obtained from meta-analyses of observational studies did not differ from those from RCTs14,18,19. 
However, the evidence has not been sufficiently established in nephrology. Further, recent meta-analyses which 
compared observational studies with RCTs based their conclusions on the ratio of odds ratios (ROR) between 
the pooled OR derived from observational studies and those derived from RCTs, whereas most clinical studies 
generally interpret efficacy based on statistical significance18–22.
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Therefore, in the present study, we aimed to (1) assess the trends and characteristics of systematic reviews of 
observational studies in nephrology in the past decade; and (2) quantify systematic differences in effect estimates 
between observational studies and RCTs in meta-analyses using two statistical methods: ROR, and discrepancies 
in statistical significance between the two study designs among meta-analyses combining observational studies 
and RCTs.

Methods
Literature search and selection of studies.  The literature searches were conducted in January 2017 
using EMBASE and MEDLINE. We searched studies published from January 2006 to December 2016 with no 
language limitation. The search strategy was developed with the assistance of a medical information specialist 
and included key words related to ’observational study’, ’systematic review’, and ’kidney disease’ (see Supplement 
Table 1). Search terms relevant to this review were collected through expert opinion, literature review, controlled 
vocabulary—including Medical Subject Headings (MeSH) and Excerpta Medica Tree—and a review of the pri-
mary search results. The titles and abstracts were screened independently by two authors (M.K, K.K) and were 
excluded during screening if they were irrelevant to our research question or duplicated. Studies suspected of 
including relevant information were retained for full text assessment using inclusion and exclusion criteria. If 
more than one publication of one study existed, we grouped them together and adopted the publication with 
the most complete data. The present study was conducted according to a protocol prospectively registered at 
PROSPERO (CRD42016052244).

Evaluation of the characteristics of the systematic reviews of observational studies.  We 
included systematic reviews of all comparative observational studies in nephrology to assess the trends and 
characteristics of systematic reviews of observational studies in nephrology in the past decade. We included 
systematic reviews published from 2006 to 2016 to assess the influence of reporting assessment tools including 
PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-analyses)23 published in 2009 and the risk 
of bias (RoB) tools including the Newcastle–Ottawa Scale (NOS)24 in 2007 and the Cochrane Risk of Bias Assess-
ment Tool for Non-Randomized Studies of Interventions (ACROBAT-NRSI)25 in 2014.

We selected studies of kidney disease based on the following two criteria:

1.	 We included studies on participants with kidney diseases. Kidney diseases were defined as diseases that 
occurred in the renal parenchyma, such as acute or chronic kidney injury, kidney neoplasms, and nephro-
lithiasis, based on the MeSH search builder of the term ’Kidney Diseases’. Studies were excluded if they had 
participants with extra-renal diseases including ureteral, urethral, and urinary bladder diseases.

2.	 We included studies with primary outcomes related to kidney diseases. We used the same definition of kidney 
diseases as above. We excluded studies in which kidney diseases were treated as a composite outcome (e.g. 
composite outcome of kidney, pancreas, and liver cancers).

We described the characteristics of systematic reviews of observational studies as follows:

1.	 The number of published systematic reviews of observational studies per year
2.	 Country of first author’s institution
3.	 Designs of observational studies

–	 Cohort studies included prospective and retrospective cohort studies
–	 Case–control studies included ordinary and nested case–control studies.

4.	 Number of primary studies included in each review
5.	 Cause of kidney injury
6.	 Funding source

–	 Included support from both public institutions and industrial firms

7.	 Whether each review assessed the RoB
8.	 Whether each review performed a reporting assessment

–	 Reporting assessment tools were PRISMA23, MOOSE (Meta-analyses of Observational Studies in Epi-
demiology)26, and QUAROM (The Quality of Reporting of Meta-analyses)27. STROBE (Strengthening 
the Reporting of Observational Studies in Epidemiology)28, CONSORT (Consolidated Standards of 
Reporting)29, and others were excluded.

Comparison of effect estimates between observational studies and RCTs in meta‑analyses 
combining both types of study.  To compare the effect estimates between study designs, we focused on 
meta-analyses which combined observational studies and RCTs and compared two specific interventions. We 
included non-randomized studies, such as cohort, case–control, cross-sectional, and controlled trials that use 
inappropriate strategies of allocating interventions (sometimes called quasi-randomized studies), as observa-
tional studies30. We included all studies related to the above-mentioned kidney diseases and did not focus on 
specific comparative studies. We compared the effect estimates obtained from observational studies as a meas-
urement of exposure with those from randomized studies as a measurement of control in meta-analyses com-
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bining both types of studies. We expressed the quantitative differences in effect estimates for primary efficacy 
outcomes between study designs, taking the ROR31. Further, we assessed discrepancies in statistical significance 
between study designs. The absence of discrepancies, which represents agreement between efficacy and effective-
ness, was defined as follows: (1) both study types were significant with the same direction of point estimates, and 
(2) both study types were not significant. In contrast, the presence of discrepancies was defined as follows: (1) 
one study type was significant while the other type was not significant, and (2) both study types were significant, 
although the point estimates had the opposite direction24. The assessment of the methodological quality of these 
meta-analyses combining both types of studies was performed using the AMSTAR (assessment of multiple sys-
tematic reviews) 2 appraisal tool32.

Data extraction.  Two authors (M.K., K.K.) independently performed full screening to capture the trends 
and characteristics of systematic reviews of observational studies in the past decade. Three authors (M.K., A.O., 
A.T.) independently extracted the relevant data, such as the number of events or non-events, to compare the 
effect estimates between observational studies and RCTs in meta-analyses combining both types of studies. In 
addition, two authors (M.K., A.O.) independently graded each review for overall confidence as high, moderate, 
low, and critically low using the AMSTAR 2 tool.

Statistical analyses.  We described the baseline characteristics of systematic reviews of observational stud-
ies using means (standard deviation [SD]) for continuous data with a normal distribution, medians (interquar-
tile range [IQR]) for continuous variables with skewed data, and proportions for categorical data.

For the comparison of effect estimates between observational studies and RCTs in meta-analyses combining 
both types of studies, we estimated the ROR of the pooled OR obtained from observational studies versus those 
from RCTs. If an OR was not reported in a review, we recalculated the OR by extracting the number of events and 
non-events in both the intervention and control groups from a review or the primary study itself. If the number 
of events or non-events was 0, we added 0.5 to all cells of each result30. If we could not find the number of events 
or non-events from a review or primary articles to calculate the OR, we substituted original outcome measures, 
such as relative risks or risk ratios (RR), and hazard ratios (HR), instead of OR21,31. In addition, standardized 
meanfrom a review or the primary study itself. If the number differences (SMD) and mean differences (MD) 
were converted to ORs based on a previous study33. The standard errors (SEs) and 95% CI were calculated in 
accordance with previous studies22,31. Further, if the reviews did not report effect sizes separately for two designs, 
we synthesized the results obtained from primary articles. If positive outcomes such as survival were adopted, 
the OR comparing the intervention with control were coined. In addition, if ordinary or older interventions were 
included in the numerator of the OR, those OR were also coined. If several outcomes were reported, we used the 
first outcome that was described in the paper.

We estimated the differences in the primary efficacy outcomes between study designs by calculating the 
pooled ROR with the 95% CI using a two-step approach34. First, the ROR was estimated with the OR obtained 
from observational studies and RCTs in each review using random effects meta-regression. Second, we estimated 
the pooled ROR with the 95% CI across reviews with a random-effects model. Further, we performed sensitivity 
analysis using fixed effect model. If the ROR was more than 1.0, this would indicate that the OR from observa-
tional studies were larger than those from RCTs22,31. Heterogeneity was estimated using I2 test30. I2 values of 25%, 
50% and 75% represent low, medium and high levels of heterogeneity.

Further, we examined the association between discrepancies in statistical significance of each design in 
accordance with above-mentioned definitions and risk factors using a multiple logistic regression model, adjusted 
for differences in the number of primary articles between study designs, publication year, countries of first 
authors, pharmacological intervention, adjustment for confounding factors, and methodological quality of sys-
tematic reviews based on rating overall confidence of AMSTAR 2 tool.

All statistical analyses were performed using STATA 16.0 (StataCorp LLC, College Station, TX, USA).

Results
Study flow diagram.  The PRISMA flow diagram (see Fig. 1) shows the study selection process. Of 5,547 
records identified through database searching, we screened the titles and abstracts of the 3994 records remaining 
after removing duplicates and ultimately obtained 613 records. After a full-text review, we included a total of 477 
records for the description of characteristics of systematic reviews of observational studies. Further, of the 114 
records that combined both observational studies and RCTs, 56 were eligible for the evaluation of quantitative 
systematic differences in effect estimates of meta-analyses between observational studies and RCTs (see Supple-
ment Table 2).

Trends over the past decade and description of study characteristics.  We summarized the base-
line characteristics of 477 nephrology systematic reviews of all comparative observational studies (see Table 1). 
The number of systematic reviews of observational studies in nephrology increased 11.7-fold between 2006 and 
2016. In particular, the number of publications from China, as well as the United States of America (USA) and 
European countries increased (see Supplement Table 3). As shown in Table 1, most of the reviews dealt with 
topics related to therapies for patients with acute kidney injury, malignancy, end-stage renal diseases, and renal 
transplantation, aside from basic research. As for the eligible designs of observational studies, 67.1% of records 
included cohort studies and 33.8% included case–control studies. Of the 82 reviews related to basic research, 75 
(91.5%) included case–control studies. Case series and before-after studies without comparisons were excluded 
in many studies. NOS was the most frequently used tool for assessing the risk of bias. ACROBAT-NRSI was used 
in only 0.8% of records.
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Comparison of qualitative systematic differences in effect estimates between observational 
studies and RCTs in meta‑analyses combining both types of studies.  Fifty-six meta-analyses 
combining both observational studies and RCTs were eligible for the analyses. A total of 418 observational stud-
ies and 204 RCTs were included, and the median number (interquartile range) per meta-analysis was 7 (2.5 to 
10) observational studies and 3 (2 to 5) RCTs. Almost all reviews indicated a critically low quality (see Supple-
ment Table 4).

We compared the effect estimates of primary outcomes between study designs using ROR with 95% CI. No 
significant differences were noted in the effect estimates by study designs (ROR 1.05, 95% CI 0.90 to 1.23) (see 
Fig. 2). There was moderate heterogeneity (I2 = 47.5%). Additionally, the result obtained using the fixed effect 
model was closely similar to that obtained using the random effect model (ROR 0.98, 95% CI 0.89 to 1.07). Of 
the 56 studies, 2 reviews showed that observational studies had significantly larger effects than RCTs (ROR > 1.0), 
while 6 showed that observational studies had significantly smaller effects than RCTs (ROR < 1.0). The remaining 
48 reviews indicated no significant differences between the study designs.

Of the 56 studies, 29 reviews showed no discrepancy in terms of statistical significance (14 reviews, significant 
in the same direction as the point estimates; 15 reviews, neither significant), while 27 reviews showed some dis-
crepancy (all 27 studies, one significant and the other not significant). No review showed statistical significance 
in the opposite direction of the point estimates. Table 2 compares baseline characteristics between the presence 
and absence of discrepancies. In addition, we explored the factors associated with discrepancies (see Table 3) 
but found no significant association for any covariate; in particular, we found no differences in the number of 
papers between observational studies and RCTs (OR 1.10, 95% CI 0.99 to 1.23).

Further, on comparison of the results of ROR and the distribution of discrepancies of statistical significance, 
of 48 records (85.7%) that indicated non-significance of the ROR, 20 (35.7%) showed discrepancies in statistical 
significance (see Table 4).

Discussion
Our findings indicate that the number of systematic reviews of observational studies in nephrology have dra-
matically increased in the past decade, especially from China and the USA. Around 60% of reviews assessed the 
risk of bias, mostly using the NOS. A comparison of effect estimates between observational studies and RCTs in 
meta-analyses combining both types of studies revealed that the effect estimates from observational studies were 
largely consistent with those from RCTs. However, when interpreted in terms of statistical significance, almost 
half of the reviews led to discrepant interpretations.

Figure 1.   Study flow diagram and study selection process.
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Observational studies generally have larger sample sizes and better represent real-world populations than 
RCTs. Nevertheless, confounding factors, especially confounding by indication, often disturb the precise assess-
ment of causal inference and establishment of high levels of evidence35–38. The quality of evidence based on 
observational studies might depend on how confounding factors are controlled. Adjustment using appropriate 
techniques, including propensity score matching and instrumental variables, are likely to be useful, although 
these methods cannot completely deal with unmeasured variables39,40. However, most of the reviews included 
in the present study did not mention the implementation of adjustment in detail.

Recently, several risk of bias appraisal tools for evaluating the quality of systematic reviews of observational 
studies in multiple domains have been developed, including ACROBAT-NRSI25,41,42. However, the present study 
showed that these tools are not yet widely implemented. Most of the studies reported the risk of bias using the 
NOS, although this has been reported to show uncertain reliability and validity in previous studies24,43.

Table 1.   Baseline characteristics of the 477 included systematic reviews of observational studies. Results of 
continuous variables are shown as the mean (standard deviation) or median (interquartile range). AKI acute 
kidney injury, CIN contrast induced nephropathy, CKD chronic kidney disease, RCT​ randomized controlled 
trial, NOS Newcastle–Ottawa Scale, USPSTF/Task Force The U.S. Preventive Services Task Force, ACROBAT-
NRSI A Cochrane Risk of Bias Assessment Tool for Non-Randomized Studies of Interventions.

Characteristics

Number of primary studies 13 (9 to 21)

Cause of kidney injury

Renal tumor 75 (15.7%)

End stage renal disease 68 (14.3%)

Renal transplant 39 (8.2%)

AKI·CIN 50 (10.5%)

Nephrotoxin 9 (1.9%)

Chronic glomerulonephritis 11 (2.3%)

Diabetic nephropathy 14 (2.9%)

Kidney stone 14 (2.9%)

Basic Research (genetic, molecular, others) 82 (17.2%)

Children or pregnant women with renal diseases 9 (1.9%)

CKD (complication, risk factor, therapy, outcome research, others) 99 (20.8%)

Others (RDN, renal artery, others) 7 (1.5%)

Included studies

RCT​ 114 (23.9%)

Clinical trials (nonrandomized studies) 18 (3.8%)

Cohort studies 320 (67.1%)

Case–control studies 161 (33.8%)

Cross sectional studies 52 (10.9%)

Case series 5 (1.1%)

Before-after studies 7 (1.5%)

Unclear observational studies 54 (11.3%)

Funding support

Yes 210 (44.0%)

No 102 (21.4%)

Unclear 165 (34.6%)

Risk of bias in observational studies

NOS 183 (38.4%)

Tool by Hayden et al.44 14 (2.9%)

Tool by Downs and Black45 13 (2.7%)

Tool by USPSTF/task force46 11 (2.3%)

ACROBAT NRSI1 4 (0.8%)

Others 38 (8.0%)

Unclear 26 (5.5%)

None 188 (39.4%)

Reporting assessment

Yes 227 (47.6%)

No 250 (52.4%)
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In the present study, we compared the effect estimates between observational studies and RCTs in meta-
analyses combining both types of studies using two analytical methods: ROR and discrepancies in statistical 
significance between the study designs. ROR with a 95% CI revealed that effect estimates were, on average, 
consistent between the two study designs. These findings would encourage researchers to justify the inclusion 
of observational studies in meta-analyses. Combining different types of designs in meta-analyses based on the 
ROR may be reasonable, as improvement in statistical power leads to a more definite assessment if a sufficient 

Figure 2.   Forest plot of the pooled ROR with the 95% CI to assess systematic differences in the effect estimates 
between observational studies and RCTs in meta-analyses combining both types of study in nephrology. ROR 
ratio of odds ratio, CI confidence interval, RCT​ randomized controlled trial.
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Table 2.   Baseline characteristics of the 56 included meta-analyses combining both observational studies 
and randomized control trials. Results of continuous variables are shown as the mean (standard deviation) 
or median (interquartile range). RCT​ randomized controlled trial, USA United States of America, AKI acute 
kidney injury, CIN contrast induced nephropathy, CKD chronic kidney disease, NOS Newcastle–Ottawa 
Scale, USPSTF/Task Force The U.S. Preventive Services Task Force, ACROBAT-NRSI A Cochrane Risk of Bias 
Assessment Tool for Non-Randomized Studies of Interventions.

Total

No discrepancy 
(significant in the same 
direction) (n = 14)

No discrepancy (both 
non-significant) 
(n = 15)

Discrepancy
(one significant and the other 
non-significant) (n = 27)

Number of primary studies

Overall studies 11 (6.5 to 14.5) 12 (5 to 15) 7 (4 to 11) 12 (9 to 16)

Observational studies 7 (2.5 to 10) 4.5 (1 to 11) 4 (2 to 8) 9 (5 to 13)

RCTs 3 (2 to 5) 2.5 (1 to 9) 2 (2 to 4) 3 (2 to 5)

Countries (%)

China/Taiwan 21 (37.5) 4 (28.6) 6 (40.0) 11 (40.7)

USA 17 (30.4) 6 (42.9) 3 (20.0) 8 (29.6)

European countries 10 (17.9) 1 (7.1) 5 (33.3) 4 (14.8)

Others 8 (14.3) 3 (21.4) 1 (6.7) 4 (14.8)

Publication years, n (%)

2012 or before 10 (17.9) 1 (7.1) 2 (13.3) 7 (25.9)

2014–2013 15 (26.8) 3 (21.4) 4 (26.7) 8 (29.6)

2015–2016 31 (55.4) 10 (71.4) 9 (60.0) 12 (44.4)

Cause of kidney injury, n (%)

Renal tumor 4 (7.1) 1 (7.1) 2 (13.3) 1 (3.7)

End stage renal disease 11 (19.6) 2 (14.3) 2 (13.3) 7 (25.9)

Renal transplant 7 (12.5) 4 (28.6) 0 (0) 3 (11.1)

AKI·CIN 17 (30.4) 2 (14.3) 4 (26.7) 11 (40.7)

Nephrotoxin 2 (3.6) 0 (0) 2 (13.3) 0 (0)

Chronic glomerulonephritis 1 (1.8) 0 (0) 0 (0) 1 (3.7)

Diabetic nephropathy 1 (1.8) 1 (7.1) 0 (0) 0 (0)

Kidney stone 6 (10.7) 2 (14.3) 4 (26.7) 0 (0)

Children or pregnant women with 
renal diseases 1 (1.8) 1 (7.1) 0 (0) 0 (0)

CKD (complication, risk factor, 
therapy, outcome research, others) 6 (10.7) 1 (7.1) 1 (6.7) 4 (14.8)

Included studies, n (%)

Cohort studies 45 (80.4) 11 (78.6) 13 (86.7) 21 (77.8)

Case–control studies 7 (12.5) 1 (7.1) 3 (20.0) 3 (11.1)

Cross-sectional studies 3 (5.4) 0 (0) 1 (6.7) 2 (7.4)

Unclear observational studies 11 (19.6) 4 (28.6) 0 (0) 7 (25.9)

Other non-randomized studies 5 (8.9) 0(0) 2 (13.3) 3 (11.1)

Subjective outcomes, n (%) 56 (100) 14 (100) 15 (100) 27 (100)

Pharmacological interventions, n (%) 18 (32.1) 5 (35.7) 6 (40.0) 7 (25.9)

Funding support for SR, n (%)

Yes 22 (39.3) 10 (71.4) 3 (20.0) 9 (33.3)

No 16 (28.6) 2 (14.3) 7 (46.7) 7 (25.9)

unclear 18 (32.1) 2 (14.3) 5 (33.3) 11 (40.7)

Risk of bias in observational studies, n (%)

NOS 25 (44.6) 9 (64.3) 7 (46.7) 9 (33.3)

Downs and Black 4 (7.1) 0 (0) 1 (6.7) 3 (11.1)

ACROBAT NRSI 1 (1.8) 0 (0) 0 (0) 1 (3.7)

Others 10 (17.9) 1 (7.1) 2 (13.3) 7 (25.9)

Unclear 2 (3.6) 0 (0) 0 (0) 2 (7.4)

None 14 (25.0) 4 (28.6) 5 (33.3) 5 (18.5)

Existence of reporting assessment, 
n (%) 32 (57.1) 7 (50.0) 6 (40.0) 19 (70.4)
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number of RCTs cannot be obtained. Further, the degree of guideline recommendations in nephrology is almost 
always low because evidence from high-quality RCTs is lacking. The increase in evidence derived from the find-
ing that the effect estimates of observational studies are similar to those of RCTs might lead to an improvement 
in the quality of guidelines in nephrology.

However, with regard to the interpretation of the findings, almost half of records showed discrepancies in 
statistical significance between the study designs. Further, 35.7% of records indicated disagreement in judgement 
between the two analytical methods. Therefore, the findings should be interpreted with care, as inconsistent 
findings due to the modification of analytical methods might reflect poor internal validity between the study 
designs. In addition, the present study failed to identify systematic review-level factors associated with discrep-
ancies in statistical significance, including differences in the number of primary articles between study designs 
and the implementation of adjustment with confounding factors. Future studies should explore risk factors at 
the primary study level.

Several limitations of our study should be mentioned. First, it is possible that we failed to include several 
gray-area studies or smaller studies, Albiet that we performed a comprehensive search. Second, we included 
similar research questions that were published by different authors, which might have led to overestimation. 
Third, to compare effect estimates between study designs, we substituted original outcome measures, such as 
RR or HR instead of OR, if the number of events could not be determined from primary articles to calculate the 
OR, similarly to previous studies21,44. However, results using the RR and HR are not necessarily consistent with 
those using the OR, particularly when the number of events is large. Fourth, we were unable to estimate the ROR 
adjusted for the methodological quality of systematic reviews based on the AMSTAR 2 tool, as almost all reviews 
were judged to be of low quality. Fifth, in the present study, we performed a literature search using two databases 
recommended by AMSTAR 2: the EMBASE and MEDLINE databases, which are the most universally used in the 
medical field. Sixth, we were unable to adjust for several potential risk factors that may have influenced the results 
in each primary study, such as the sample size, details concerning the techniques used to adjust for confounding 
factors, presence of selection bias, degree of risk of bias, and funding sources. In particular, differences in the 
sample size in each primary study might have influenced the results, but we only adjusted for differences in the 
number of primary articles between study designs at the systematic review level. Future studies should explore 
those risk factors at the primary study level. In addition, meta-analyses of observational studies are likely to have 
dramatically increased in number over the past few years, so we must continue to update our research. Finally, 
because we sampled meta-analyses which included both observational studies and RCTs, it is conceivable that 
extreme results, either from observational studies or from RCTs, could have been excluded when the original 

Table 3.   Predictors of discrepancies in results between observational studies and randomized control 
trials. Adjusted for differences in the number of primary articles between observational studies and RCTs, 
publication year, country of first author, and pharmacological intervention. OR odds ratio, CI confidence 
interval, USA United States of America.

OR (95% CI) p-value

Differences in number of papers between observational studies and RCTs 1.09 (0.99 to 1.21) 0.085

Countries

China/Taiwan 1.04 (0.25 to 4.28) 0.96

USA Reference

European countries 0.63 (0.10 to 3.89) 0.62

Other countries 1.11 (0.17 to 7.33) 0.91

Publication year

2012 or before Reference

2013–2014 0.59 (0.095 to 3.64) 0.57

2015–2016 0.45 (0.087 to 2.34) 0.34

Pharmacological interventions (vs. none) 1.12 (0.27 to 4.64) 0.87

Adjustment for confounding factors 0.59(0.14 to 2.49) 0.48

Table 4.   Comparison of ROR and discrepancies defined by statistical significance. ROR ratio of odds ratio, 
number (%).

Discrepancy in the interpretations based on statistical significance

No discrepancy (significant in 
the same direction) (n = 14)

No discrepancy (both non-
significant) (n = 15)

Discrepancy (one significant and 
the other non-significant) (n = 27)

ROR

p < 0.05 (n = 8) 1 (1.8) 0 (0) 7 (12.5)

p ≥ 0.05 (n = 48) 13 (23.2) 15 (26.8) 20 (35.7)



9

Vol.:(0123456789)

Scientific Reports |         (2021) 11:6088  | https://doi.org/10.1038/s41598-021-85519-5

www.nature.com/scientificreports/

meta-analysis was conducted, leading to spurious greater concordance between the two study designs. Without 
a pre-specified protocol, we cannot assess the extent of such practices.

Conclusion
This study indicates that evidence synthesis based on observational studies has been increasing in nephrology. 
When we examined ROR, we found no systematic differences in effect estimates between observational studies 
and RCTs when meta-analyses included both study design types. These findings might encourage researchers to 
justify the inclusion of observational studies in meta-analyses. This approach can increase statistical power and 
allow stronger causal inference. However, caution is needed when interpreting the findings from both obser-
vational studies and RCTs because the interpretations based on statistical significance were shown to be less 
concordant than those based on ROR. Further studies are necessary to explore the causes of these contradictions.

Data availability
The datasets used and/or analysed during the current study are available from the corresponding author on 
reasonable request.
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