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Abstract: As an important parameter for concrete, fracture energy is difficult to accurately measure
in high loading rate tests due to the limitations of experimental devices and methods. Therefore, the
utilization of numerical methods to study the dynamic fracture energy of concrete is a simple and
promising choice. This paper presents a numerical investigation on the influence of loading rate on
concrete fracture energy and cracking behaviors. A novel rate-dependent cohesive model, which
was programmed as a user subroutine in the commercial explicit finite element solver LS-DYNA, is
first proposed. After conducting mesh sensitivity analysis, the proposed model is calibrated against
representative experimental data. Then, the underlying mechanisms of the increase in fracture energy
due to a high strain rate are determined. The results illustrate that the higher fracture energy during
dynamic tension loading is caused by the wider region of the damage zone and the increase in real
fracture energy. As the loading rate increases, the wider region of the damage zone plays a leading
role in increasing fracture energy. In addition, as the strain rate increases, the number of microcracks
whose fracture mode is mixed mode increases, which has an obvious effect on the change in real
fracture energy.

Keywords: concrete material; fracture energy; high loading rate; cohesive model; failure mode

1. Introduction

Concrete is one of the most widely used building materials. Generally, concrete
materials are mainly subjected to static loads in a structure, but under certain special
conditions, such as explosions and earthquakes, concrete can be subjected to dynamic
loads. These special circumstances usually cause huge economic losses and casualties, and
therefore, it is important to study the mechanical behavior of concrete under dynamic load.
Dynamic strength and fracture energy are the most important parameters that define the
onset of fracture in concrete. To date, the former parameter has attracted extensive attention
by scholars in attempts to reveal the rate-dependency effect caused by high strain rate
loading, whereas the latter parameter has seldom been the focus of research with respect to
revealing its rate-dependency effect. Therefore, it is necessary to study the fracture energy
of concrete under dynamic loading.

In recent decades, extensive experimental efforts have revealed that both the strength
and fracture energy of concrete are quite rate sensitive [1–12]. Test methods to study
the dynamic fracture energy of concrete include the direct tension test, the split test, the
bending test, and the spalling test. Yan and Lin [1] conducted a series of direct tension tests
under a relatively low strain rate range (10−5–10−0.3 s−1) using a hydraulic compression
device and concluded that fracture is forced to propagate through a region with greater
resistance upon a higher strain rate, hence resulting in an increase in fracture energy.
Cadoni et al. [2] used a modified Split Hopkinson Bar (SHB) to carry out direct tension
experiments on concrete under different strain rates (the largest strain rate being 10 s−1).
It was determined that the dynamic tensile strength of concrete, ultimate strain, elastic
modulus, and fracture energy all increase with increases in strain rate. However, one of
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the biggest limitations of the direct tension test is how to properly attach the specimen
to the testing machine [13]. In addition, the direct tension test is limited to lower strain
rates of deformation [14–16], up to approximately 10 s−1. The split test as an indirect
method is also used to test tensile properties [6–8]. However, dynamic fracture energy
cannot be easily obtained by the split test. Alternatively, bending tests were applied to
easily measure fracture energy in previous studies [10–12,17,18]. Wittmann et al. [12]
conducted three-point bending tests on concrete at different loading rates, and the results
showed that fracture energy tends to decrease with increases in loading rate at lower
loading rates, but it increases when the loading rate is increased at higher loading rates.
Ruiz et al. [11] investigated the influence of the loading rate (1.74 × 10−5–1.74 × 101 mm/s)
on fracture energy in different high strength concrete and obtained similar results to those
of Wittmann et al. [12]. Zhang et al. [10] measured fracture energy and peak load over a
wide range of loading rates (1 × 10−4–1 × 103 mm/s), and the results showed that they
both increase as loading rate increases. Notably, the bending test can only function to a
certain low loading rate where the inertia effect is small and inappreciable; however, it
cannot be applied at higher loading rates because of larger inertia effect [19]. In order to
reach higher levels of strain rates, the spalling technique that utilizes only the input bar of
the SHB device is commonly employed [3,4,9,20]. In this technique, one end of the sample
is connected to the input bar, and another end is free. Compressive pulse is generated at
one end of the input bar via bullet impact on the input bar. When the compressive pulse
travels through the bar and arrives at the free end of sample, the tensile pulse is introduced
indirectly from the reflection. Brara and Klepaczko [3] applied the spalling technique and
reported the effect of high strain rates (higher than 120 s−1) in tension on fracture energy.
Schuler et al. [4] also applied the spalling technique and measured particle velocity on
the free end of the concrete specimen, thus deducing the dynamic strength and fracture
energy of the concrete cylinder. It has been embraced that for medium strain rates, a slight
moderate increase can be observed until the threshold of approximately 10 s−1 is reached,
and at such a strain rate, an abrupt increase in fracture energy can be noticed. Although this
method can test the tensile properties of concrete at high strain rates, strong assumptions
on the material behaviors are introduced to facilitate data processing [21], and it is not clear
whether the incident compressive wave will affect the material before the tensile wave
returns [13]. Based on the abovementioned studies, researchers have reached a consensus
that the fracture energy of concrete increases with increases in loading rate at high loading
rates, but a controversy regarding the change trends of concrete fracture energy at low
loading rates still exists.

Although all the experimental studies on concrete fracture energy show that there
is a definite correlation between loading rate and fracture energy, due to the limitations
of the experimental techniques available as well as the difficulty of achieving accurate
measurements, experimental data are very scattered. Against this backdrop, numerical
simulation provides a powerful means to study the relationship between loading rate
and fracture energy. The numerical methods, mainly including (1) continuum-based
numerical methods, (2) discontinuum-based numerical methods and (3) hybrid methods,
are usually used to study response of concrete under high loading rate. The finite element
method (FEM) is a representative continuum-based method, and there are a lot of studies
on the dynamic fracture of concrete using this method [5,22–24]. FEM usually models
dynamic fracturing through damage degradation. However, large element deformation
will be generated using the FEM code for a high loading rate simulation, which may lead
to difficulties in achieving calculation convergence and to a high cost of computation
time. Advanced methods based on FEM have been developed to conquer the weaknesses
of FEMs. Extended finite element method (XFEM) adopts an appropriate enrichment
function and level set algorithm, thus explicitly representing jumps or discontinuities
across the fracture surface and successfully tracing the fracture evolution trajectory, which
has managed to be applied to crack propagation of concrete under high loading rate [25–27].
However, for an extreme breaking failure, the level set description for the complicated crack
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patterns is still not robust enough. The discrete element method (DEM), which regards
the material as bonded discrete blocks and easily models the material failure process
through breaking the bond between two distinct elements and successfully simulating the
fragment movement and interaction, is a typical discontinuous-based method. By defining
appropriate failure criteria, the method can correctly reflect the overall energy variation,
resulting in successful application to modeling the concrete damage and fragmentation
process under high loading rate. By defining appropriate failure criteria, the method
can correctly reflect the overall energy variation, resulting in successful application to
modeling the concrete damage and fragmentation process under high loading rate [28,29].
However, the DEM is stopped from being widely used in large-scale computations due
to the large computational cost. Compared with continuum- and discontinuum-based
methods, the hybrid method has more advantages in the simulation on dynamic concrete
fracture, and it is also a common method in the study of concrete fractures [30–33]. This
method adds cohesive interface elements to the finite element frame to track the initiation
and propagation of multiple cracks. The failure of cohesive interface elements can simulate
the branching and coalescence of fracture networks and finally form a new free surface. The
mechanical properties of the cohesive interface element are described by the constitutive
law of rate-dependent cohesive, usually represented by a softening curve. This softening
curve represents the gradual loss of strength as the opening degree increases, and the area
enclosed by the curve and the coordinate axis represents the dissipated energy. This feature
has certain advantages in the study of fracture energy.

Today, the intrinsic mechanisms for the dynamic enhancement of concrete strength are
basically understood through three different effects [34,35]: the microcrack inertial effect,
material viscosity, and the influence of inertia forces, which can significantly change the state
of stresses and strains of the material. However, despite extensive research efforts, questions
remain regarding the various mechanisms behind fracture energy increase in concrete
materials. The mainstream view is that fracture energy increases during high loading
rates due to the structure effect, while real fracture energy is not rate-dependent [13,31,34].
Specifically, there are a number of discrete macro- and microcracks whose total surface area
is impossible to accurately measure in dynamic experiments. Moreover, as the loading rate
increases, the region of the damage zone is wider, and the energy dissipated by damage
will also be calculated as energy dissipated by fracture. Inevitably, the total surface area
is underestimated and dissipated energy is overestimated, with the consequence that the
evaluated fracture energy is overestimated. In other words, the fracture energy obtained
from the dynamic experiment is often not the real fracture energy due to the limitations of
technology and equipment. In summary, the structural effects mentioned above definitely
exist, but it is not clear whether there are other factors that affect the rate dependence of
concrete fracture energy. In this paper, a rate-dependent cohesive model is proposed to
study the mechanisms for the increase in the fracture energy of concrete under high loading
rates. First, the proposed model is calibrated against representative experimental data, and
then concrete tension tests under different strain rates are simulated, and fracture energy
is calculated. Finally, the reasons for the increase in concrete fracture energy are discussed
from three aspects: the influence of rate-dependent material description, the region of the
damage zone, and the failure mode of microcracks.

2. Constitutive Law of the Rate-Dependent Cohesive Model

In this study, it is assumed that the cracking procedure as well as the nonlinear be-
havior of concrete are represented by a cohesive constitutive model, and the bulk element
adopts a simple linear elastic material model. Although this method is generally con-
sistent with damage evolution in concrete, it is also necessary to select an appropriate
constitutive model for cohesive elements to reliably reproduce the damage process [31].
In this regard, cohesive elements were widely used in previous studies to investigate the
dynamic fracture of concrete. Though the rate dependency of peak tractions is consid-
ered, the rate dependency of the energy release rate is simplified or even ignored in the
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mode. For example, Zhou et al. [31] assumed that the energy release rate has no rate
dependence, and Rosa et al. [36,37] considered that the energy release rate and the peak
traction have the same dynamic increase factor (DIF). However, no evidence has been
shown that the energy release rate changes in the form of the above two cases. In addition,
the curve of the post-peak softening stage is usually simplified as a straight line. From
the experimental results [10,18], however, a curve with a different softening rate is closer
to the actual situation. A novel rate-dependent cohesive constitutive model is proposed,
which has been programmed as a user subroutine in the commercial explicit finite element
solver LS-DYNA. The rate dependence of tractions and energy release rate are considered
independently as follows:

T = T0 × DIFT and S = S0 × DIFT (1)

GIC = GIC0 × DIFG and GI IC = GI IC0 × DIFG (2)

where T and S are the peak tractions for pure mode I and pure mode II, respectively. T0
and S0 are the peak tractions for pure mode I and pure mode II at the reference loading
rate, respectively. Similarly, GIC is the energy release rate for pure mode I; GIIC is the energy
release rate for pure mode II; GIC0 is the energy release rate for pure mode I at the reference
loading rate and GIIC0 is the energy release rate for pure mode II at the reference loading
rate. The traction–displacement curve is shown in Figure 1a. DIFT and DIFG are the DIFs
of peak tractions and energy release rate, respectively, and can be evaluated as:

DIFT = 1 + A log(
.

w/
.

w0)(
.

w/
.

w0)
M

and DIFG = 1 + B log(
.

w/
.

w0)(
.

w/
.

w0)
N (3)

where A, B, N, and M are the parameters of the rate-dependent model that need to be
calibrated.

.
w0 is the reference opening velocity.

.
w is the opening velocity and can be

evaluated as:
.

w =

√
.

w2
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.
w2

t (4)

where
.

wn and
.

wt are the normal opening velocity and tangential opening velocity, respec-
tively. When the displacement is less than the displacement corresponding to the peak
traction, the tractions in normal and tangential traction are as follows:

ft =
T

wn0
wn and fs =

S
wt0

wt (5)

where ft and fs are normal traction and tangential traction, respectively. wn0 and wt0 are
the displacement corresponding to normal peak traction and tangential peak traction,
respectively. wn and wt are normal displacement and tangential displacement, respectively.
When the displacement is greater than the displacement corresponding to the peak traction,
the softening curve adopts an exponential curve with a different softening rate, and the
tractions in normal and tangential traction are as follows:

ft

T
=

(
1 −

√
wn − wn0

wnc − wn0

)2

and
fs

S
=

(
1 −

√
wt − wt0

wtc − wt0

)2

(6)

where wnc and wtc are the maximum normal displacement and maximum tangential
displacement, respectively, and can be evaluated as:

wnc = 6(GIC − 0.5 × T × wn0)/T + wn0
and wtc = 6(GI IC − 0.5 × S × wt0)/S + wt0

(7)
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wn0 and wt0 can be evaluated as:

wn0 =
T0

K0
and wt0 =

S0

K0
(8)

where K0 is the initial stiffness for the cohesive element. The global response of the cohesive
model may be affected by this parameter. This parameter be expressed by [31,38]:

K0 =
αE

hmesh
(9)

where E and hmesh correspond to the Young’s modulus of the bulk material and the element
mesh size in the cohesive zone, respectively, and α is a constant which needs to be deter-
mined. In reference [33], α = 50 is recommended. For mixed-mode behavior, the damage
initiation displacement is given by:

w0 = wn0wt0

√
1 + β2

(βwn0)
2 + w2

t0

(10)

where β is the mode mixity, and β = wt/wn, as shown in Figure 1b. The ultimate displace-
ment for mixed mode is:

wc = (1 + β2)

[(
1

wnc

)
+

(
β2

wtc

)]−1

(11)

In order to better characterize the situation where there is no failure, but damage has
occurred in the model, a damage variable is introduced, which can be evaluated as follows:

D =
GD
GC

(12)

where GD is the area enclosed by the unloading path and the previous loading path; GC is
the area enclosed by the loading path. GD is GID and GC is GIC when the failure mode is
pure mode I, as shown in Figure 1a.
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3. Model Setup and Calibration
3.1. Specimen Geometry and Loading Method

In order to evaluate the reliability of the proposed model for simulating the dynamic
fracture of concrete, the test conducted by Cadoni et al. [2] is modeled. The size of the
concrete specimen used in the test is a cube with a length of 60 mm. In order to save
calculation cost, only two-dimensional simulation is conducted. Therefore, the shape of
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the model is a square with a length of 60 mm. It should be emphasized that the cohesive
constitutive model in LS-DYNA is limited to 3D solid elements, so the plane model is
replaced by a model with a layer of 3D solid elements. Therefore, the geometric model
for the simulation has a thickness of 1 mm. The lateral boundaries remain stress-free.
Displacement constraints are imposed in the out-of-plane direction, such that there is
a plane strain state in the structure. Cohesive elements are incorporated between all
interfaces between the bulk elements, and the insertion method can refer to our previous
research [39].

At high loading rates, it is almost impossible to achieve homogeneous stress distribu-
tion in concrete specimens. Inhomogeneous stress distribution causes premature failure of
the specimen. Therefore, a special loading method is used in this study [13,31,40,41]. As
shown in Figure 2, the constant velocity of upper and lower boundaries v0 can be calculated
as follows:

v0 =
.
ε

h
2

(13)

where
.
ε and h correspond to the strain rate and height of the specimen, respectively. The

initial velocity of all nodes is calculated by:

v(y) =
2v0

h
y (14)

where y is the coordinate of the node, as shown in Figure 2.
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3.2. Model Calibration and Evaluation of DIF

The parameters in the proposed model need to be determined according to experimen-
tal data. Firstly, T0 is basically close to the quasi-static tensile strength obtained from the
test, and a tensile strength consistent with the experiment can be obtained after fine-tuning.
GIC0 of the model is often smaller than the fracture energy obtained by the quasi-static test,
because the energy dissipated by damage is ignored in the test. Generally, after determining
T0, compare the post-peak curves of the tension simulation and the tensile experiment to
determine GIC0. S0 and GIIC0 lack comparable experimental data. The shear properties
for the model are set according to the studies in [33], where S0 and GIIC0 are reported
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to be 4 times T0 and 10 times GIC0, respectively. Then, it is necessary to determine the
five parameters reflecting the rate dependence. Among them,

.
w0 is the reference opening

velocity, selected as 0.01 mm/s, and other parameters need to be calibrated according to
experimental data. In Figure 3a, the DIFT curves corresponding to the three groups of A
and M with different values and the DIFG curves corresponding to the three groups of B
and N with different values are drawn. It can be found that when the opening velocity is
low, both DIFT and DIFG are slowly increasing. As the opening velocity increases to some
extent, both DIFT and DIFG enter a sharp increase phase. When the opening velocity and
A remain the same, the larger M is, the larger DIFT is; when the opening velocity and M
remain the same, the larger A is, the larger DIFT is. Therefore, both A and M have positive
correlation with DIFT. Similarly, both B and N have positive correlation with DIFG. In order
to further understand the influence of these four parameters on the simulation results, five
simulations are conducted with various combinations of DIFT and DIFG at the strain rate of
10 s−1. Figure 3b shows the stress–strain curves corresponding to various combinations of
DIFT and DIFG. It can be seen from the figure that different combinations of DIFT and DIFG
mainly affect the peak of stress–strain curve and the slope of the post-peak curve. When
adopting the same DIFT curve and different DIFG curves, the slope of the post-peak curve
does not change significantly, but the DIFG curve with higher position in Figure 3a can
obtain higher peak of stress–strain curve, as shown in the blue, black, and purple curves in
Figure 3b. When adopting the same DIFG curve and different DIFT curves, the DIFT curve
with higher position in Figure 3a can obtain higher peak of stress–strain curve and larger
slope of the post-peak curves, as shown in the yellow, black, and green curves in Figure 3b.
Several simulations under different strain rates are then conducted, and by comparing the
stress–strain curves obtained by the simulations with the stress–strain curves obtained
from the experiment [2], the values of A, B, M and N are calibrated. All parameters after
calibration are shown in Table 1.
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Table 1. Parameters for the model.

Bulk Element Density ρ (kg/m3) Young’s Modulus E (GPa) Poisson’s Ratio υ

2418 44.9 0.2

cohesive element
T0 (MPa) S0 (MPa) GIC0 (J/m2) GIIC0 (J/m2) α

3.3 13.2 40 400 50
A B M N

.
w0 (mm/s)

0.0033 0.0001 0.735 0.8 0.01

Figure 4 shows the comparison between simulation results using the calibrated pa-
rameters and experimental data. The experimental stress–strain curves used for calibration



Materials 2021, 14, 7421 8 of 17

and the stress–strain curves of the simulations using the calibrated parameters are shown
in Figure 4a. It can be seen from the figure that the simulation results have good overall
consistency with the experimental data, indicating that the parameter calibration is success-
ful. Furthermore, in order to evaluate the reliability of the proposed model, the simulations
using the calibrated parameters with strain rates of 5 s−1, 20 s−1, 50 s−1, 80 s−1 and 100
s are conducted. As can be seen from Figure 4b, the DIF predicted by the model and the
experimental DIF have a reasonable correlation under different strain rates, which proves
that the model is capable to predict the response of concrete under high tensile loading
rate. Thus, the model is further applied to analyze the intrinsic mechanisms which govern
the increase in dynamic fracture energy.
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of simulations and experiments [2]; (b) DIF of tension strength for simulations and experiments [42].

3.3. Mesh Sensitivity Analysis

In order to analyze the mesh sensitivity of the model, the tension simulations of the
model with three mesh sizes (0.5 mm, 1 mm and 2 mm) under two different tensile strain
rates (1 × 10−6 s−1 and 100 s−1) are conducted. Figure 5 shows the nominal stress–strain
curve under two different strain rates. The nominal stress is calculated as the boundary
loading force divided by the cross section area. The nominal strain is determined by the
sum of the upper and lower boundaries divided by the height of the specimen. The nominal
strength refers to the peak value of nominal stress. From Figure 5a, it can be found that
the stress–strain curves obtained by the simulation of different mesh sizes in quasi-static
state almost coincide. This shows that the effect of mesh size is almost negligible at low
strain rates. However, when strain rate is 100 s−1, the stress–strain curve obtained with a
mesh size of 2 mm obviously deviates from other curves, especially after the curve peak,
as shown in Figure 5b. However, the curve with a mesh size of 1 mm is very close to the
curve with a mesh size of 0.5 mm, which means that using a mesh size of 1 mm appears to
be good enough even for a high strain rate. Therefore, in subsequent simulations, a mesh
size of 1 mm is used.
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4. Numerical Investigation on Dynamic Fracture Energy
4.1. Damage and Unpenetrated Crack

Some researchers believe that the increase in concrete fracture energy in the experiment
is due to the structural effect [13,31]. In order to study the influence of structural effects on
fracture energy, it is necessary to study the damage of concrete specimens under different
strain rates. Figure 6 shows the damage of the specimens under different strain rates.
It should be pointed out that in Figure 6, the damage value of the cohesive elements is
displayed on the adjacent bulk elements for more intuitiveness. In the quasi-static state,
there is only one penetrating crack, and there is basically no damage in any other region
except in the crack position, as shown in Figure 6a. When the strain rate is 1 s−1, there is
still only one penetrated crack, but obvious damage and a few unpenetrated cracks can
be observed in the other regions, as shown in Figure 6b. When the strain rate increases to
10 s−1, several unpenetrated cracks randomly distribute on the entire specimen and most
regions are damaged, though there is only one penetrated crack, as shown in Figure 6c.
When the strain rate increases to 100 s−1, the whole region is damaged, and there are several
penetrated cracks and a large number of unpenetrated cracks, as shown in Figure 6d. It
can be found that as the strain rate increases, damaged areas and the number of cracks
increase significantly.

For the simulation results of concrete dynamic tension, fracture energy can be calcu-
lated as follows:

G f = (W − ∆ED)/A f (15)

where Gf is the fracture energy, W is the work carried out by the boundary loading force,
and ∆ED is the increment in the kinetic energy. In order to avoid premature failure caused
by inhomogeneous stress distribution, the model has been specially treated, and the special
treatment makes the model have initial kinetic energy. In addition, kinetic energy cannot be
completely dissipated at the end of the simulation, such that the increase in kinetic energy
needs to be subtracted. Af is the fracture area. In order to compare with experimental
data, only the area of the penetrated cracks is calculated. The calculated fracture energy of
concrete at different strain rates is shown in Figure 7. It can be found that the simulation
results are in good agreement with the experimental results. This shows that the structural
effect does make a great contribution to the increase in fracture energy. Simultaneously, it
proves the reliability of this model again.
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4.2. The Real Fracture Energy

In the previous section, it has been proved that the structural effect makes a significant
contribution to the increase in fracture energy. However, it is not clear whether the real
energy dissipated per unit area at the fracture location, that is, the real fracture energy,
changes with the strain rate. Real fracture energy is closely related to the energy release
rate defined in the model. When cohesive element failure occurs at a constant velocity
in the normal direction, the GIC in the model is the real fracture energy. Similarly, when
a cohesive element failure occurs at a constant velocity in tangential traction, the GIIC in
the model is the real fracture energy. When mixed failure occurs, the real fracture energy
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is calculated by GIC and GIIC. Therefore, by verifying whether GIC and GIIC have rate
dependence, it can be proved whether the real fracture energy has rate dependence.

A simulation without considering the DIF of the energy release rate was conducted
when the strain rate was 10 s−1 (DIFG = 1). In addition, another simulation was conducted
in which the DIF of energy release rate was equal to the DIF of peak traction (DIFG = DIFT).
This is because in the studies of some researchers, the DIFG is set to be the DIFT [36,37].
The stress–strain curve is shown in Figure 8. It can be found that when DIFG = 1, the
pre-peak part of the stress–strain curve is very close to the calibrated result, and the peak
value of the stress–strain curve is slightly lower than the calibrated result. However, the
post-peak stress is significantly smaller than the calibrated result, and its ultimate strain is
much smaller than the calibration result. By contrast, when DIFG = DIFT, the peak value
of the stress–strain curve is higher than the calibrated result, and the post-peak stress
is significantly higher than the calibrated result. The stress–strain curve shows strong
plasticity, and strength still remains when the strain reaches 0.003. The corresponding
damage is shown in Figure 9. Compared with the calibration result, the simulation result
has two penetrated cracks when DIFG = 1 (as shown in Figure 9a), but there is only one
penetrated crack in the calibration result (as shown in Figure 6c). In addition, the damage
range is also significantly larger than the calibration result. When DIFG = DIFT, part of
the specimen is damaged, but no failure has occurred, and the damage range is much
smaller than the calibration result, as shown in Figure 9b. Through this evidence, it can be
confirmed that the real fracture energy has rate dependence, and this property has a great
influence on the break of the concrete specimen.
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Although all cracks can be measured in the simulation, the energy dissipated by the
damage is still not easy to calculate. Therefore, the method in Section 4.1 cannot be used
to calculate the real fracture energy. The only way to obtain the real fracture energy is to
record the energy of cohesive elements dissipated at every time step during the simulation
process. After the simulation, the sum of the energy dissipated by all failed cohesive
elements divided by the sum of the area of all failed cohesive elements is the real fracture
energy. The real fracture energy of concrete is shown in Figure 10.
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The real fracture energy of the quasi-static state is greater than when the strain rate is
1 s−1. This shows that, within the range of strain rate from 1 × 10−6 to 1 s−1, there must be
an interval where the real fracture energy decreases with an increase in strain rate. Since
the structural effect will definitely increase with the increase in strain rate, fracture energy
increases very little or even slightly decreases in this interval. Similar results have also been
found in some experimental studies [11,12]. The reason this phenomenon occurs in the
simulation results is that the peak traction of the cohesive element increases significantly,
but the energy release rate does not in this strain rate interval (see Figure 3). It can be seen
from Equation (7) that the maximum displacement will decrease in this case. As shown in
Figure 11, the opening velocity increases due to the continuous loss of strength, so the true
traction-opening curve may be as shown in the red line in Figure 11. The area enclosed
by the red line and the coordinate axis is significantly smaller than the area enclosed by
the quasi-static curve, in other words, the real fracture energy decreases as the strain rate
increases. It can be seen in Figure 11 that when the strain rate increases from 1 to 100 s−1,
the real fracture energy increases from 18 J/m2 to 63 J/m2. This illustrates that when
the strain rate is greater than 1 s−1, fracture energy increases with the increase in strain
rate. The red line in Figure 10 represents the proportion of the real fracture energy in the
calculated fracture energy (the real fracture energy value is divided by the fracture energy
calculated in Figure 6). It can be found that as the strain rate increases, the proportion of the
real fracture energy continues to decrease. In the quasi-static state, the proportion reaches
64%. The proportion is reduced to 15% when the strain rate is 1 s−1. When the strain rate
is greater than or equal to 10 s−1, the proportion is only 5%. It is indicated that when the
strain rate is low, the real fracture energy has a significant effect on fracture energy. When
the strain rate is high, although the real fracture energy increases with the increase in strain
rate, the main factor for the increase in fracture energy is the structural effect.
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4.3. The Failure Mode of Microcracks

Some researchers believe that with the increase in loading rate, the failure mode of
microcracks also changes. In general, there is a tendency for the failure mode to change
from mode I to mixed mode with the increase in loading rate [43,44]. Through acoustic
emission technology, Chen et al. [18] proved that the proportion of shear failure increases
with the increase in strain rate. Does the microcrack’s failure mode really change at high
loading rates? Is there a certain connection between the change in the failure mode and the
rate dependence of fracture energy? This section discusses the above two issues.

In the rate-dependent cohesive model used in this study, parameter β can reflect the
failure mode of the failed cohesive element (form Equation (10)). From its definition, it
can be seen that when β is close to zero, it means that the failure mode is close to mode-I
failure. When β approaches infinity, the failure mode is close to mode-II failure. In the
simulations, in order to explain the change in the microcrack’s failure mode, the β of all
the failed cohesive elements is output. Figure 12 shows the β value statistics of all failed
cohesive elements under different strain rates. In the figure, a is the average value of β
of all failed cohesive elements. In the quasi-static state, the β value of the failed cohesive
elements obeys an exponential distribution, and the average value is 0.14, as shown in
Figure 12a. The β of most failed cohesive elements is close to 0, which indicates that the
failure mode of most cohesive elements is close to pure mode I in the quasi-static state.
When the strain rate is 1 s−1, the β distribution basically obeys the exponential distribution.
The β of most failed cohesive elements is also close to 0, but compared to the quasi-static
state, the average value has increased to 0.19, as shown in Figure 12b. Compared with the
strain rate of 1 s−1, when the strain rate increases to 10 s−1, the number of failed cohesive
elements with a β greater than 0.6 increases significantly, and the average value increases
to 0.29, as shown in Figure 12c. When the strain rate is increased to 100 s−1, the number of
failed cohesive elements with β in the range of 0.2–0.4 is the largest, and the average value
also reaches 0.30, as shown in Figure 12d. When the strain rate increases from 10 to 100 s−1,
the average value of β does not increase significantly. From the change in β, it can be seen
that with the increase in strain rate, the failure mode of the most microcracks changes from
mode I to mixed mode. However, when the strain rate is greater than 10 s−1, the average
value of β begins to become constant, which means that as the strain rate increases, the
failure mode of most microcracks first changes from close mode I to mixed mode, and then
stabilizes with constant mode mixity.
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It has been proven that the failure mode of microcracks will change with the increase in
strain rate; specifically, mode mixity will increase with the increase in strain rate. According
to the definition of mode mixity, an increase in mode mixity means an increase in the ratio
of tangential displacement to normal displacement. Since tangential peak traction and
energy release rate are much greater than the normal direction, if the β value increases, the
energy dissipated by the failed cohesive element will increase, and the real fracture energy
will also increase. The real fracture energy is obtained by outputting the dissipated energy
and area of all failed cohesive elements. In fact, the dissipated energy of the cohesive
element is the sum of the work carried out by normal traction and tangential traction.
In order to prove the above point, the percentage of shear energy under different strain
rates is calculated (add strain rate of 5 s−1, 50 s−1, and 200 s−1), as shown in Figure 13. It
can be found that in the quasi-static state, shear energy is only a small proportion, which
shows that the failure mode is closer to the mode-I fracture. As the strain rate increases,
the proportion of shear energy continues to increase. When the strain rate is greater than
10 s−1, the proportion of shear energy tends to be constant, which is possibly because the
β of most failed cohesive elements tends to be constant. In summary, the change in the
microcrack failure mode has an obvious effect on the increase in real fracture energy.



Materials 2021, 14, 7421 15 of 17
Materials 2021, 14, x FOR PEER REVIEW 16 of 18 
 

 

 
Figure 13. The percentage of shear energy in all dissipated energy. 

5. Conclusions 
In this study, a novel rate-dependent cohesive constitutive was proposed and 

successfully applied to simulate the dynamic tension test of concrete materials. The 
softening stage of this constitutive takes an exponential curve, and the rate dependences 
of peak traction and energy release rate are independently considered. After verification, 
a direct tensile test of concrete under four different strain rates (quasi-static, 1, 10, and 100 
s−1) was simulated. Finally, the influence of the structural effect, the rate dependence of 
the real fracture energy, and the fracture mode of the microcracks on the change in 
fracture energy with the strain rate were analyzed. Based on the results, the main 
conclusions can be drawn as follows: 
(1) Two reasons contribute to the fact that fracture energy changes when increasing the 

strain rate. One is that the damage range and unmeasurable cracks of concrete 
increase with the increase in strain rate (structural effect), and the other is the rate 
dependence of concrete real fracture energy; 

(2) As the strain rate increases, the damage range on the specimen becomes larger, and 
the number of unpenetrated cracks increases, which leads to more pronounced 
structural effects; 

(3) There is a sub-interval in the range of strain rate from 1 ×10−6 to 1 s−1, where the real 
fracture energy decreases with the increase in strain rate. With the strain further 
increasing to 1 s−1, the real fracture energy increases with the increase in strain rate. 
However, despite the increase in real fracture energy at this stage, the proportion of 
real fracture energy in fracture energy drops, indicating that structural effects 
dominate the increase in fracture energy; 

(4) As the strain rate increases, more microcracks will change from mode-I type to mixed 
fracture mode. Meanwhile, change in fracture mode has obvious effects on real 
fracture energy. 

Author Contributions: P.Z. completed the development model, implemented the simulation, and 
wrote this paper. Z.W. provided research ideas and gave great guidance in the research process. 
Y.L. provided technical support during the compilation of the model. Z.C. offered suggestions for 
revising the structure and language of this paper. All authors have read and agreed to the published 
version of the manuscript. 

Funding: This work is supported by National Science Foundation of China (51908431); and the 
Open Fund of State Key Laboratory of Water Resource Protection and Utilization in Coal mining 
(WPUKFJJ2019-05). 

Conflicts of Interest: The authors declare no conflict of interest. 
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5. Conclusions

In this study, a novel rate-dependent cohesive constitutive was proposed and success-
fully applied to simulate the dynamic tension test of concrete materials. The softening
stage of this constitutive takes an exponential curve, and the rate dependences of peak
traction and energy release rate are independently considered. After verification, a direct
tensile test of concrete under four different strain rates (quasi-static, 1, 10, and 100 s−1)
was simulated. Finally, the influence of the structural effect, the rate dependence of the
real fracture energy, and the fracture mode of the microcracks on the change in fracture
energy with the strain rate were analyzed. Based on the results, the main conclusions can
be drawn as follows:

(1) Two reasons contribute to the fact that fracture energy changes when increasing
the strain rate. One is that the damage range and unmeasurable cracks of concrete
increase with the increase in strain rate (structural effect), and the other is the rate
dependence of concrete real fracture energy;

(2) As the strain rate increases, the damage range on the specimen becomes larger,
and the number of unpenetrated cracks increases, which leads to more pronounced
structural effects;

(3) There is a sub-interval in the range of strain rate from 1 ×10−6 to 1 s−1, where the
real fracture energy decreases with the increase in strain rate. With the strain further
increasing to 1 s−1, the real fracture energy increases with the increase in strain rate.
However, despite the increase in real fracture energy at this stage, the proportion
of real fracture energy in fracture energy drops, indicating that structural effects
dominate the increase in fracture energy;

(4) As the strain rate increases, more microcracks will change from mode-I type to mixed
fracture mode. Meanwhile, change in fracture mode has obvious effects on real
fracture energy.
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