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Abstract

Resting-state functional magnetic resonance imaging (fMRI) has provided

solid evidence that the default mode network (DMN) is implicated in self-

referential processing. The functional connectivity of the DMN has also been

observed in tasks where self-referential processing leads to self-prioritization

(SPE) in perception and decision-making. However, we are less certain about

whether (i) SPE solely depends on the interplay within parts of the DMN or is

driven by multiple brain networks and (ii) whether SPE is associated with a

unique component of interconnected networks or can be explained by related

effects such as emotion prioritization. We addressed these questions by identi-

fying and comparing topological clusters of networks involved in self-and emo-

tion prioritization effects generated in an associative-matching task. Using

network-based statistics, we found that SPE controlled by emotion is

supported by a unique component of interacting networks, including the

medial prefrontal part of the DMN (MPFC), frontoparietal network (FPN) and

insular salience network (SN). This component emerged as a result of a focal

effect confined to few connections, indicating that interaction between DMN,

FPC and SN is critical to cognitive operations for the SPE. This result was

validated on a separate data set. In contrast, prioritization of happy emotion

was associated with a component formed by interactions between the rostral

prefrontal part of SN, posterior parietal part of FPN and the MPFC, whereas

sad emotion reveals a cluster of the DMN, dorsal attention network (DAN)
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and visual medial network (VMN). We discussed theoretical and

methodological aspects of these findings within the more general domain of

social cognition.

KEYWORD S
default mode network, emotion prioritization, frontoparietal network, large-scale networks,
salience network, self-prioritization

1 | INTRODUCTION

The question of how the brain computes information
related to ourselves has been of research interest for over
three decades (see for review Frewen et al., 2020;
Northoff, 2016). Despite substantial recent progress
in disentangling neural substrates involved in self-
prioritization effects (SPE) (for review, see Sui &
Humphreys, 2017), our understanding of the connectivity
of these substrates underlying this complex brain
function remains uncertain. This study makes the step
forward in discovering neural properties of information
processing biases for self compared with other social enti-
ties using a large-scale brain network approach.

The way self-relevant stimuli guide us through
everyday perception is consistently described in the lit-
erature as effects gaining quicker access to visual
awareness (Macrae et al., 2017), habit (Verplanken &
Sui, 2019), engaging attention (Sui & Rotshtein, 2019),
driving behaviours (Desebrock et al., 2018) and facilitat-
ing performance (Golubickis et al., 2017). These effects
are conceptualized in ‘self-prioritization’ as an umbrella
term indicating biased information processing flow for
items associated with self compared with items related
to familiar or unfamiliar others. The SPE is robust and
well replicated in multiple independent research
using various experimental paradigms (Cunningham &
Turk, 2017; Klein, 2012; Lee et al., 2021; Sun
et al., 2016).

A large body of task-based functional magnetic reso-
nance imaging (fMRI) research has been devoted to
studying the neural basis of the SPE, mainly focusing on
brain regions. For example, it was suggested that the
causal coupling between the medial prefrontal cortex
(MPFC) and the left posterior superior temporal sulcus
(LpSTS) facilitates information flow between regions sen-
sitive to self-relevant features (Liang et al., 2021; Sui
et al., 2013; Yin et al., 2021). There is also evidence that
besides the MPFC and adjacent areas, processing of self-
relevant information is associated with activity in lateral
posterior areas, such as the inferior parietal lobule (IPL)
(van der Meer et al., 2010), posterior cingulate cortex
(PCC), bilateral angular gyrus (Yaoi et al., 2015) and

anterior insular cortex (ACC) (Molnar-Szakacs &
Uddin, 2013; Perini et al., 2018).

The profusion of findings indicates that the neural
substrates of self-relatedness engage broad brain regions.
However, understanding the connectivity of these regions
and the critical principles underlying brain responses
across studies relating the processing of self-relatedness
to brain activity is a challenging task for two reasons.
First, fMRI experiments on self-relatedness are often
crafted to single out a specific psychological process
(e.g. evaluating personality traits and social comparison),
and the correspondence across different experiments is
largely unknown. Second, most studies used standard
brain-mapping analyses that enable conclusions on the
involvement of specific brain regions in a task or stimuli
processing. Still, the magnitude of the signal does not
necessarily correlate with the importance of the
respective region for the task of interest and cannot be
standardized to quantify differences between brain
regions (Huber, 2009). Additionally, whereas several
studies have shown that task information representations
are distributed throughout the brain, such studies have
yet to reveal how these distributed representations are
coordinated and how other brain regions use information
in any one brain region to produce cognitive computa-
tions (Ito et al., 2017).

A recently emerged approach, which conceptualizes
the brain as a complex, hierarchical network of function-
ally connected regions, has offered a new perspective in
studying the neural substrates of self-relatedness
(Bressler & Menon, 2010 for review). Using this network
approach, studies have consistently reported that
processing of self-relevant information is associated with
a set of corresponding regions, including the MPFC and
posteromedial cortices, which activity has also been
observed in the absence of a specific task or stimulus
during a resting state (Northoff & Bermpohl, 2004). This
finding led to the suggestion that the resting-state net-
works, particularly the default mode network (DMN),
might be particularly implicated in supporting self-
referential processes (Qin & Northoff, 2011; Whitfield-
Gabrieli et al., 2011 for review). It was also proposed that
the interaction between resting state and self-relatedness
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is not limited to the DMN but may be linked to their bal-
ance to other networks such as central executive network
(CEN) and posterior parietal cortex (PPC) and sensorimo-
tor network (Northoff, 2016b).

The idea that interaction between the DMN and other
brain networks may serve as a substrate for maintaining
self-referential processing opens an interesting perspec-
tive. However, although it is generally accepted that self-
referential processes are prominent at rest, the involve-
ment of other resting-state networks and their interaction
remain to be characterized. In particular, recent evidence
indicated that there are at least three other networks
involved in the SPE: (i) right frontoparietal network
(rFPN), which is thought to be vital for generating self-
awareness (Uddin et al., 2007); (ii) salience network
(SN) contributing to self-awareness, subjective salience of
stimuli and attention allocation towards intrinsically
relevant information (Uddin, 2015; Uddin et al., 2017);
and (iii) cognitive control network (CCN), which is nec-
essary when tasks require both internally and externally
directed attention, as active self- or other-referential tasks
do (Finlayson-Short et al., 2020). In line with this, a
recent review proposed a neural framework defining the
key networks supporting information flow for self-
referential processing (Sui & Gu, 2017). According to this
framework, self-referential processing is supported by
the interaction between the ‘core self’ where the
functional gradient between ventromedial and dors-
omedial prefrontal cortices (vmPFC and dmPFC) is
linked to self-other-related judgements and cognitive
control that regulate the processing flow in bottom-up
and top-down manner contributes to a form of ‘social
saliency’ in the presence of self-related stimuli. The inter-
action between the ‘core self’ and the SN, particularly
between the vmPFC and insular cortex, has been associ-
ated with the magnitude of self-biases in perception and
memory (Sui & Gu, 2017).

Taken together, the work mentioned above points
towards multiple networks involved in the generation of
the SPE. However, this assumption has not been tested
directly yet. As such, some important questions remain
unanswered. Is the SPE, for instance, generated by
interactions between several networks or supported by
the DMN only? If the former is true, which networks are
crucial for the SPE, and what is the nature of
interactions between them? Furthermore, although the
link between self-referential effects and DMN received
extensive empirical investigations, it is still unclear which
part of the DMN contributes to the ‘core self’. For
example, some studies suggested that the vmPFC is a
self-representation hub related to the functions of
self-anchor in decision-making, self-binding and rep-
resenting the personal value of self-related information

(D’Argembeau, 2013; Sui et al., 2013; Sui &
Humphreys, 2017; Wagner et al., 2012 for review). In
contrast, other studies endorsed a tripartite core-self
model (MPFC, PCC, left IPL) in which self-relatedness is
thought to be driven via PCC as a region coordinating
mental representation and exerting its influence on
MPFC and IPL (Davey et al., 2016) via its unique anatom-
ical position as a brain-wide connectivity hub (Tomasi &
Volkow, 2011).

In the present study, we aim to shed light on these
questions using a novel approach in which neuroimaging
data of the human brain are modelled as a set of net-
works. The underlying assumption of this approach is
that neural responses to a stimulus or task are associated
with changes in neural activity in some areas of the brain
and a global reorganization of connectivity patterns
(Bressler & Menon, 2010). A recent line of research dem-
onstrated that cognitive performance relies on the coordi-
nation of large-scale networks of brain regions that show
highly correlated spontaneous activity during a task-free
state (Cole et al., 2014, 2016; Ito et al., 2017; Kieliba
et al., 2019). It was suggested that the functional network
architecture identified using resting-state functional con-
nectivity (FC) could plausibly reflect the routes by which
activity flows during cognitive task performance (Cole
et al., 2014; Smith et al., 2009; Thomason et al., 2008; van
den Heuvel et al., 2009). Following these findings, explor-
ing the cognitive relevance of task-relevant neural topol-
ogy in self-referential processing may provide new
insights into information flow across the brain and
underlying group structure in large-scale networks to
shape the SPE.

Our primary hypothesis is motivated by the proposi-
tion that interactions between the ventromedial part of
the DMN, cognitive control and saliency networks sup-
port the processing of self-relevant information (Sui &
Gu, 2017). On the other hand, the SPE may emerge from
an interaction between parts of the DMN such as PCC,
MPFC and IPL. The plausibility of this hypothesis is
determined by fMRI evidence of the involvement of these
areas in self-related processes and their broader associa-
tions with a goal-directed behaviour (Davey et al., 2016;
Tomasi & Volkow, 2011). We tested these hypotheses by
examining the changes in large-scale brain networks for
self versus others using a network-based statistics (NBS)
approach. The NBS is a validated statistical method to
assess the whole set of interactions of brain networks by
identifying topological clusters among the set of all
connections (Fornito et al., 2015; Zalesky et al., 2010;
Zhu et al., 2021). Importantly, in NBS, the most basic
equivalent of a cluster is a connected graph component
sounds to represent any putative experimental effect. A
component’s presence can be considered as evidence of
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an interconnected configuration of networks rather than
being confined to a single connection or distributed over
several connections that are in isolation of each other.
Therefore, identifying a component including the frontal
part of the DMN, cognitive control and SN for shapes
associated with self compared with shapes associated
with others would provide support for our primary
hypothesis.

An interesting question then would be whether self-
prioritization is associated with a unique component of
interconnected networks or can be explained mainly by
related effects such as emotion prioritization. Evidence
from behavioural, electrophysiological and imaging stud-
ies demonstrated that people prioritize emotionally
valences information compared with emotionally neutral
and the emotion-prioritization effects are compatible
with those generated by self-relatedness. For example,
both of them can generate robust facilitation effects on
visual attention selection (Fields & Kuperberg, 2016), per-
ceptual learning (McIvor et al., 2021) and carryover
effects (Wang et al., 2016). Based on this evidence, it is
not surprising that many neuroimaging studies reported
neural overlap between self-referential and emotion
processing in the MPFC, ACC and PCC (Gutchess &
Kensinger, 2018; Northoff et al., 2009). However, whether
self and emotion processing shares some neural sub-
strates is under continuing debate (Daley et al., 2020;
Oosterwijk et al., 2017). We aim to contribute to the
debate by identifying whether the brain forms the same
components of interconnected networks for prioritizing
self (controlling for emotion) and emotion-relevant
information.

2 | METHOD

2.1 | Data sets and tasks

We employed fMRI data sets from a previously reported
study where healthy young adults performed two
associative matching tasks using personal and emotion
associations (Yankouskaya & Sui, 2021, Study 1). In the
personal task, participants learned associations between
simple geometrical shapes (e.g. square, circle and
triangle) and personal labels (e.g. square—you; circle—
friend; triangle—stranger). After learning these associa-
tions, they performed ‘shape-label’ matching, indicating
whether a presented shape-label pair matched or mis-
matched associations learned earlier. The procedure for
the emotion task was identical, differing only in stimuli
(schematic emotional expressions depicting sadness, hap-
piness and neutral) and different geometrical shapes
(e.g. diamond, pentagon and rectangle). To validate our

primary hypothesis, we used a separate data set reported
in Yankouskaya, Humphreys, et al. (2017) (Study 2)
where participants performed the personal task with two-
item associations (e.g. squire—you; triangle—friend).

Procedures, stimuli and stimuli presentation were
identical in Study 1 and Study 2. Geometric shapes
(circle, hexagon, square, rectangle, diamond and triangle)
were randomly assigned to conditions in each task. The
stimulus display contained a fixation cross (0.8� � 0.8�)
at the centre of the screen with a shape (3.8� � 3.8�) and
a label on either side of fixation. The distance between
shape and label was 10�. Presentations of the shapes and
labels were counterbalanced across trials. Each trial
started with a fixation cross for 200 ms, followed by the
stimulus display for 100 ms and a blank interval that
remained for 1000 ms. Trials were separated by a jittered
interstimulus interval (ranging between 2000 and
6000 ms). In each study, before entering the scanner, par-
ticipants performed a short practice with the task (12 tri-
als per task). Feedback on accuracy (words ‘Correct!’ and
‘Incorrect!’) and overall response time was provided after
each trial during the practice.

Imaging data acquisition for each data set and behav-
ioural performance are summarized in Table S1. Both
studies were approved by the Central University of
Oxford Research Ethics Committee (CUREC). All partici-
pants provided written informed consent.

2.2 | fMRI data preprocessing

Raw data from both studies were preprocessed and
analysed separately using SPM12 (Wellcome Trust Centre
for Neuroimaging, London, UK; www.fil.ion.ucl.ac.uk/
spm) running in Matlab R2020b (MathWorks, Inc.,
Natick, MA, USA). The preprocessing steps included slice
timing correction, functional realignment and unwarp,
segmentation and normalization. First, all scans were
corrected for differences in slice acquisition times to
make the data on each slice correspond to the same point
in time. Next, slice timing correction was performed
using the slice acquired at the middle of the TR as refer-
ence. Then the data were aligned across and within func-
tional sessions and unwarped (estimation and removal of
movement-by-susceptibility induced variance in fMRI
time series). This routine realigns a time series of images
acquired from the same subject using a least squares
approach and a six-parameter (rigid body) spatial trans-
formation. Structural data were registered to the first
functional frame and spatially normalized to Montreal
Neurological Institute (MNI) space using SPM12 unified
segmentation–normalization algorithm (Ashburner &
Friston, 2005). Finally, functional data were resampled to
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a 91 � 109 � 91 bounding box with 2-mm isotropic
voxels. No additional spatial smoothing was applied in
order to minimize artificial local spatial correlations in
the whole-brain analysis.

After the initial preprocessing in SPM12, each of the
data were submitted separately to the CONN toolbox
(Version 20a) for additional denoising steps and FC ana-
lyses. First, we used the ART procedure implemented in
CONN for artefact detection. The results of gross head
movement detection indicated that our sample did not
contain participants with a head displacement exceeding
3 mm in more than 5% of volumes in any sessions. It has
been suggested that FC can also be influenced by small
volume-to-volume ‘micro’ head movements (Van Dijk
et al., 2012). To ensure that micro-head movement arte-
facts did not contaminate our findings, functional data
with frame-to-frame displacements greater than 0.40 mm
were censored (Power et al., 2014).

Recent studies showed that FC results can be
severely affected by physiological noise (Birn
et al., 2014). To address this issue, we used an anatomi-
cal component-based noise correction method (aCo-
mpCor; Behzadi et al., 2007) that derives potential
physiological and movement effects on the BOLD time
series by evaluating the signal within white matter
and cerebrospinal fluid (CSF) areas. It was suggested
that this method does not suffer severely from
systematic introduction of negative correlation (Murphy
et al., 2009) while retaining some of the advantages of
global signal regression (GSR) (Chai et al., 2012). The
principal components of the signal from eroded white
matter and CSF masks were regressed out. In the main
text, we reported the results without GSR. The reason
behind this decision was that our analysis focuses on the
interactions across the whole set of brain networks and
therefore preserving global fluctuations across these net-
works would be beneficial for capturing the interactions
(Scalabrini et al., 2020). However, due to the ongoing
controversy associated with GSR (Caballero-Gaudes &
Reynolds, 2017), we also report key findings with GSR
in Table S2. The noise components from white matter
and CSF, estimated subject-motion parameters (three
rotation, three translation parameters plus their associ-
ated first-order derivatives) and outlier scans were
regressed out as potential confounding effects. We also
included session and task effects as additional noise
components to reduce the influence of slow trends and
constant task-induced responses in the BOLD signal.
Finally, a high-pass filter (e.g. [0.008 inf], which
implements the standard 128-s high-pass used in SPM
for regular task analyses) as an acceptable compromise
between minimizing cross-talk/spillage of the BOLD
signal between session/conditions while still benefiting

from the increased signal-to-noise ratio (SNR) afforded
by filtering was applied to functional data.

For quality assurance, we evaluated denoising out-
puts for each participant and each functional run using
quality-control functional connectivity (QC-FC) method
(Ciric et al., 2017). This method computes FC between
randomly selected pairs of points within the brain and
evaluates whether these connectivity values are corre-
lated with other QC measures such as subject-motion
parameters. Distributions of between-subject correlations
between FC values and QC measures after denoising
indicated lack of noticeable QC-FC associations in both
data sets.

2.3 | Network analysis

After the preprocessing and denoising steps, the residual
time series from each session/task within each study
were concatenated to form a condition-specific time
series of interest, in each brain region. For the first-level
analysis, we used region-of-interest to region-of-interest
(ROI-to-ROI) connectivity (RRC) measures of large-scale
networks. The large-scale networks ROIs were defined
from default CONN’s networks atlas (derived from ICA
analyses based on the Human Connectome Project
[HCP] data set of 497 subjects). The networks atlas
delineates an extended set of classical networks: DMN
(four ROIs), SensoriMotor (two ROIs), Visual (four
ROIs), Salience/Cingulo-Opercular (seven ROIs), Dors-
alAttention (four ROIs), FrontoParietal/Central Execu-
tive (four ROIs), Language (four ROIs) and Cerebellar
(two ROIs). The Cerebellar ROIs were not included as it
only had partial coverage in the participants. In total, we
analysed 30 ROIs. However, rather than focusing on any
of these networks in isolation, we treated all ROIs as
‘nodes’ within a whole-brain network.

To assess changes in whole-brain connectivity
between conditions, we used the NBS analysis (Zalesky
et al., 2010). First, we defined condition-specific FC
strength (i.e. FC during each task/condition) by comput-
ing weighted RRC matrices using a weighted least
squares linear model with temporal weights identifying
each individual experimental condition. The weights
were defined as a condition-specific boxcar time series
convolved with a canonical haemodynamic response
function. Weighted RRC matrices of Fisher-transformed
bivariate correlation coefficients between all ROIs/nodes
(30 � 30) were calculated for each task/condition/
participant. These matrices were submitted to the second-
level analysis where the differences between conditions
constituting self-prioritization (self > stranger) and emo-
tion prioritization (happy > neutral, sad > neutral) were
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calculated for every edge/connection using a general
linear model (GLM).

The resulting statistical parametric map for each
contrast was thresholded using a priori ‘height’ threshold
(uncorrected p < .001) to construct a set of sup-
rathreshold links among all ROIs/nodes of between-
condition differences. It has to be noted that this ‘height’
threshold is a user-determined parameter in NBS analy-
sis. It was suggested that sensitivity to the test statistic
threshold might reveal useful information about the
nature of the effect (Zalesky et al., 2010). For example,
effects presented at only conservative threshold
(e.g. p < .001) are likely to be characterized by strong,
topologically focal differences. Effects presented only at
relatively liberal threshold (e.g. p < .05) are likely to be
subtle yet topologically extended. Effects presented at
both thresholds combine features of topologically focal
and distributed differences. Although our analysis
focused on the former threshold, we also explored
changes in connectivity using the lower threshold.

Next, in the set of suprathreshold links, we identified
any connected components (topological clusters) and
defined the size of each component as the sum of
T-squared statistics overt all connections within each
component. The critical assumption inherent to the NBS
here is that connections for which the null hypothesis is
false are arranged in an interconnected configuration,
rather than being confined to a single connection or dis-
tributed over several connections that are in isolation of
each other. In other words, the presence of a component
may be evidence of a non-chance structure for which the
null hypothesis can be rejected at the level of the
structure as a whole, but not for any individual connec-
tion alone (Fornito et al., 2015). Finally, a FWE-corrected
p-value for each component were computed using per-
mutation testing. The basic assumption of the permuta-
tion procedure is that under the null hypothesis, random
rearranging correspondence between data points and
their labels does not affect the test statistics. This would
not be the case if the null hypothesis were false. The
labels for each tested contrast (e.g. self > stranger) were
randomly rearranged for corresponding data points
according to a permutation vector of integers from 1 to
the total number of data points. The same permutation
vector was used for every connection (830 in total) to
preserve any interdependencies between connections and
constrained to remain within the same participant. The
size of the largest component was recorded for each
permutation, yielding an empirical null distribution for
the size of the largest component size. This procedure
was performed 1000 times. A FWE-corrected p-value for
a component of given size was then estimated as the
proportion of permutations for which the largest

component was of the same size or greater and, thus, rep-
resenting the likelihood under the null hypothesis of
finding one of more components with this or larger mass
across the entire set of networks.

To characterize the properties of each component, we
report ‘size’ as the number of suprathreshold connec-
tions, ‘intensity’ (mass) measures as their overall
strength (i.e. sum of absolute T-values over these sup-
rathreshold connections) and p-values associated with
these measures. In addition, we provide complementary
statistics for each connection such as effect size for signif-
icant components calculated by averaging the test statis-
tic values across significant connections and dividing by
the square root of the number of subjects and between-
subject variability for each connection within a compo-
nent to gain more insight into contrasts of interest.

In sum, we first assessed changes in whole-brain
connectivity between conditions forming SPE
and emotion-prioritization effects through four
contrasts of interest: [self > stranger], [self > friend],
[happy > neutral], [sad > neutral]. Next, we refined our
account of SPE and emotion-prioritization effects, we
assessed changes in whole-brain connectivity by contra-
sting SPE and emotion-prioritization effects. Finally, to
validate our finding that processing of self-related infor-
mation was associated with temporal correlation across
multiple neural networks, we carried out NBS analysis
using separate data set (see details in Section 2.1).

3 | RESULTS

3.1 | SPE

3.1.1 | Connections between MPFC and
insular/DLPFC explained self-prioritization

Contrast [self > stranger] using p < .001 ‘height’ thresh-
old revealed one topological cluster (mass = 90.64,
p-FWE = .009; size = 4; Cohen’s d = .41, 90%CI [.29,
.53]) comprising connections between the DMN (MPFC)
and SN (bilateral anterior insula) and frontoparietal
network (bilateral lateral prefrontal cortex) (Figure 1a).
Although NBS concerns with the interconnected configu-
ration of networks, we also extracted connectivity values
for the connections comprising the component to visual-
ize the relative contribution of each connection to the
effect size of the component (Figure 2, contrast
self > stranger). No significant components were found
when we decreased the threshold to p < .05. Systematic
increasing the threshold by 10% showed that the effect
occurred at only conservative threshold (starting from
.007 to .001) (Table S3) indicating that the contrast
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self > stranger is likely to be characterized by strong,
topologically focal differences in FC.

Contrast [self > friend] using p < .001 ‘height’
threshold did not pass significance using p-FWE thresh-
old (observed p-FWE value = .058). However, we report
this contrast as the results are important for understand-
ing the nature of the SPE. We found one topological
cluster that resembles contrast [self > stranger] by indi-
cating interconnection between the DMN (MPFC),
frontoparietal network (left LPFC) and SN (left anterior
insula) (mass = 48.99, p-FDR = .048, p-FWE = .058;
size = 2, p-FWE = .32) (Figure 1b; Figure 2, contrast

self > friend). No significant components were found
when we systematically decreased the threshold up to
p < .05 (Table S4).

3.2 | Positivity and negativity effects

3.2.1 | Connections between MPFC and FEF
explained the negativity effect

Negative emotion bias (contrast [sad > neutral]) showed
one significant component including the DMN (MPFC),

F I GURE 1 Connectogram representation of changes in pairwise network functional connectivity for contrasts [self > stranger] (a),

[self > friend] (b), [sad > neutral] (c) and [happy > neutral] (d) and p-statistics associated with a topological component and FWE-corrected

at network level. Glass brain visualizes spatial location of connections comprising each component. Vertical colour bars indicate T-test

statistics for individual connections
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dorsal attention network (DAN) (bilateral frontal eye
fields) and visual medial network (VMN) (mass = 82.91,
p-FWE = .013; size = 4; Cohen’s d = .37, 90%CI [.19,
.51]) (Figure 1c; Figure 2, contrast sad > neutral). It has
to be noted that the component size displayed in
Figure 1c is determined by positive functional connectiv-
ity in both directions (DMN.MPFC to Visual. Medial and
Visual. Medial to DMN.MPFC). Systematic varying the
‘height’ threshold indicated that this effect occurred
only at more conservative threshold (p < .004–.0006)
(Table S5).

3.2.2 | Connections between MPFC and
RPFC/PPC explained the positivity effect

Positive emotion prioritization defined by contrast
[happy > neutral] reveal one topological cluster compris-
ing the MPFC of DMN network, frontoparietal network
(left PPC) and SN (left rostral prefrontal cortex [RPFC])
(p < .001, mass = 56.50, p-FWE = .034; size = 2; Cohen’s
d = .32, 90%CI [.15, .48]) (Figure 1d; Figure 2, contrast
happy > neutral). Decreasing the ‘height’ threshold
(p < .003) showed slightly larger component by addi-
tional connection between the DMN (MPFC) and
language network (posterior superior temporal gyrus
[p-STG]) yielding in total statistics with mass = 78.93,
p-FWE = .032; size = 3; Cohen’s d = .32, 90%CI

[.15, .48]. Further decreasing of the ‘height’ threshold
revealed no significant results (Table S6).

3.3 | Differences between self and
emotion prioritization effects

3.3.1 | Positive connections between MPFC/
r-FPN/SN and negative connections between
MPFC/FEF and LP/l-FPN explained the self-
negativity effect

Contrasting self- and sad-prioritization effects (defined as
[self > stranger] � [sad > neutral]) revealed a large com-
ponent comprising eight connections between the DMN,
SN (bilateral anterior insula), frontoparietal network
(bilateral lateral prefrontal cortex) and DAN (bilateral
frontal eye field) (‘height’ threshold p < .001; mas-
s = 198.91, p-FWE < .001, size = 8; Cohen’s d = .37 90%
CI [.20, .51]). Furthermore, the NBS indicated that the
difference between self- and sad-prioritization effects is
determined by interplay between DMN and left
frontoparietal and bilateral DAN (negative correlation)
and positive correlations between the medial part of the
DMN, SN and rFPN (Figure 3a). Interestingly, applying a
lower cluster-forming threshold (p < .05) identified a
large and spatially extended component comprising
66 connections (mass = 615.64, size = 66, p-FWE = .024)

F I GURE 2 Effect sizes of individual

connections (Figure 1) in contrasts defining

prioritization effects in the personal task

(self > stranger, self > friend) and emotion task

(sad > neutral, happy > neutral). The Y-axis

represents Pearson correlation values where the

sign indicates the direction of the effect.

Individual dots correspond to subject differences

in connectivity values of the conditions in each

contrast. Means are denoted as X, and medians

as horizontal lines within each box
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(Figure 3b). Gradual increasing of the threshold (up to
p < .008) supported the identification of this component
but spatially restricted (Table S7). As this component
presents across a range of threshold, it is likely to be
characterized by a combination of both subtle yet
topologically extended differences and strong but topo-
logically focal differences.

3.3.2 | Positive connections between MPFC/
SN/PPC/DLPFC explained the self-positivity
effect

The differences between self- and positive-emotion biases
defined by the contrast [[self > stranger] � [happy >
neutral]] at conservative thresholds (p < .001–.003)

F I GURE 3 Connectogram representation of changes in pairwise network functional connectivity for contrasts [self-bias > sad-bias]

(a,b) and [self-bias > happy-bias] (c). Self-bias was defined as contrast [self > stranger]; happy-bias and sad-bias were defined by contrasting

happy and sad emotions with a neutral expression. Glass brain visualizes the spatial location of connections. Vertical colour bars indicate T-

test statistics for individual connections. (d) The effect size of each connection within the components
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yielded in a component comprising connections between
DMN (MPFC) and SN (left anterior insula and left rostral
prefrontal cortex) and frontoparietal network (left PCC
and left lateral prefrontal cortex) (mass = 99.21, size = 4,
p-FWE = .007; Cohen’s d = .49, 90%CI [.42, .55]). This
effect was diminished at more liberal thresholds indicat-
ing strong, topologically focal differences (Table S8).

3.4 | Validation of the topological cluster
for self-prioritization

Similar to contrast [self > stranger] in the former data
set, contrast [self > friend] using p < .001 ‘height’ thresh-
old revealed one topological cluster (mass = 220.92,
p-FWE < .001; size = 4; Cohen’s d = .60, 90%CI [.23,
.96]) comprising connections between the DMN (MPFC)
and SN (bilateral anterior insula) and frontoparietal net-
work (bilateral lateral prefrontal cortex) (Figure 4a,b).
Systematic increasing of the threshold by 10% showed
that the effect occurred at both more liberal threshold
(.02) and conservative threshold (starting from .009 to
.00006) (Table S9).

4 | DISCUSSION

The involvement of the DMN in the processing of self-
related information is well established and often used as
a synonym of self-referential mental activity (Davey
et al., 2016). However, it remains unclear whether priori-
tization of self-related information solely depends on the

interplay between parts of the DMN or is supported by a
unique community of multiple brain networks. In the
present study, we addressed this question by identifying
topological clusters of networks involved in the SPE
through two task-based fMRI studies.

Previous studies examining the neural substrates of
self-referential processing used FC between brain regions
during task performance (Qin & Northoff, 2011) or
resting state (Sheline et al., 2010), or both (Davey
et al., 2016). Although these approaches have shown
undeniable merits in revealing neural correlates of
self-referential processing, they are limited in inferences
of how self-relatedness is mapped into a large-scale func-
tional architecture of the brain. The present study
addressed this limitation by testing the changes in the
intrinsic functional organization during a task that
robustly generates the SPE.

4.1 | Topological cluster for the SPE

Our results provided evidence that the processing of self-
related information was associated with temporal correla-
tion across multiple neural networks, including the
medial frontal part of the DMN (MPFC-DMN), insular
part of the salience network (AI-SN) and lateral prefron-
tal cortex of the frontoparietal network (LPFC-FPN). One
important observation in the previous studies is that the
part of the FPN that corresponds to the LPFC-FPN in the
present study exhibited positive correlations with the
DMN across various tasks, including self-referential
processing (Crittenden et al., 2015; Dixon et al., 2018).

F I GURE 4 (a) Connectogram representation of changes in pairwise network functional connectivity for contrasts [self > friend] in

separate data set (p-FWE < .001). (b) The effect size of each connection within the components
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For example, it was suggested that the LPFC-FPN might
preferentially contribute to executive control in the con-
text of introspective processes and emotion, exerting a
general constraint that keeps one’s focus on task-relevant
material. In addition, the DMN plays a role in bringing
conceptual–associative knowledge to bear on current
thought and perception (Dixon et al., 2018). The positive
coupling between these networks for self and negative
coupling for non-self (as follows from the contrast
[stranger > self]) indicate some forms of cognitive
control to facilitate self-representation or suppress non-
self-representation context in the MPFC. This interpreta-
tion aligns with recent evidence that FPN can flexibly
adjust connectivity to DMN exhibiting differential cou-
pling patterns in every task condition (Dixon et al., 2018).
Interestingly, evidence from evolutionary and develop-
mental studies suggests that the LPFC comprises some
human-specific efferent connections with the caudal part
of the MPFC (Badre & D’Esposito, 2009). Exploring the
strengthened links between the LPFC and the MPFC and
their role in maintaining the SPE may bring new ideas
on the nature of self-prioritization.

Interactions between the DMN, FPN and insular cor-
tex within the SN have been well documented in FC
studies in healthy individuals (Finlayson-Short
et al., 2020; Modinos et al., 2009; van Buuren et al., 2020)
and patients (Garrity et al., 2007). For example, it was
suggested that the interplay between the DMN and ante-
rior insula responded to the degree of subjective salience
(Menon & Uddin, 2010). Furthermore, there is evidence
of causal interactions between the FPN, DMN and SN
where the anterior insula plays a coordinating role in
switching the FPN and DMN across task paradigms and
stimuli (Sridharan et al., 2008). The switching function of
the SN was linked to facilitating access to attention and
working memory resources when a salient event is
detected and rapid access to the motor system (Menon &
Uddin, 2010). The proposed mechanisms can explain
behavioural results in the present study and in line with
other work using the associative matching task
(Desebrock et al., 2018; Schäfer et al., 2015; Wang
et al., 2016; Yankouskaya, Palmer, et al., 2017).

Building upon this knowledge, our finding of a com-
ponent of interacting networks (DMN, FPN and SN) sug-
gests that the self-related processing requires control of
information processing and generating the ‘salience
map’ to motivate the information processing (Shi
et al., 2021). This finding is in line with a recently pro-
posed neural model of the self as an object (Sui &
Gu, 2017). However, it places some constraints on the
view that self-reference is an automatic mechanism
(Soares et al., 2019). Although it is generally accepted
that self-relatedness is associated with FC within the

DMN, which activity is more prominent at rest, the
effortlessness of self-referential mental processes is lim-
ited when decision-making is required (Hugdahl
et al., 2015; Vatansever et al., 2017).

The NBS indicate that the component of networks
associated with the SPE emerged as a result of a strong
focal effect confined to relatively few connections.
Although specific characteristics of focal versus distrib-
uted network connectivity and its relation to behavioural
effect remain largely unknown, evidence from funda-
mental neuroscience indicates that pooling together
information from more neurons does not improve behav-
ioural sensitivity (Bouton et al., 2018; Kok et al., 2012;
Shadlen et al., 1996). For example, it was demonstrated
that damage of these focal regions dramatically disrupted
task performance, whereas distributed lesions did not
impair task performance (Bouton et al., 2018). The
authors suggested that focal activity is critical for
cognitive processes such as perceptual decisions, whereas
distributed activations across regions could reflect the
reuse of sensory information for higher level operations,
such as extraction of meaning. Hinging on these findings,
we interpret the focal effect of connectivity between
DMN, FPC and SN as critical to cognitive operations for
the SPE.

4.2 | Validation of the topological cluster
for SPE

The NBS analysis using our validation data set confirmed
that SPE is associated with the interaction between
DMN, FPC and SN. However, in contrast to our former
finding that the interaction between the three networks
was confined to a strong focal effect, we observed both
focal and distributed effects. The difference between
these findings reflects the nature of contrasts we assessed
(i.e. self > stranger in the former data set and
self > friend in the validation set). Previous behavioural
and fMRI studies using the shape-label matching task
consistently reported that both associations with self and
associations with friend bias perception compared with
associations formed with a stranger (Macrae et al., 2017;
Sun et al., 2016). However, the magnitude of other-
associations depends on personal closeness to the self
(Oyserman et al., 2012; Yankouskaya et al., 2020), iden-
tity relevance (Golubickis et al., 2020) and culture (Jiang
et al., 2019). From this perspective, it is unsurprising that
these factors could add a distributed effect to the interac-
tion between networks. The most important finding is
that the same topological component of interconnected
networks was observed in both self > stranger and
self > friend contrasts in separate data sets. The
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consistency of this finding suggests that SPE is a product
of information flow between DMN, FPN and SN and
these three networks’ involvement is critical for generat-
ing this effect. What remains to be seen, however, is how
the information flows. In particular, the DMN has been
suggested as a ‘global hub’ or ‘integrator’ exerting its
influence over the FPN during conscious processing of
information (Hugdahl et al., 2015; Sui, 2016; Vatansever
et al., 2017). In line with this notion, our findings showed
increased positive connectivity between the MPFC of the
DMN and two other networks (FPN and SN) for
self > other. However, the topological component does
not reveal temporal correlations between the FPN and
SN. Although we cannot rule out that the interaction
between these networks is orchestrated by the DMN, the
limitations of NBS in exploring the directionality of infor-
mation flow call for future research.

4.3 | The uniqueness of topological
cluster for the SPE

Our results demonstrated that the SPE could not be
explained by related prioritization effects such as emo-
tion. Instead, we found that happy emotion was associ-
ated with a distinct component formed by interactions
between the left rostral prefrontal part of SN (RPFC),
posterior parietal part of FPN and MPFC of DMN, while
sad emotion reveals a cluster of the DMN, DAN and
VMN. These findings are in line with the broad literature
on organizational principles of the human brain func-
tional connectome during the processing of affective
information (Iordan & Dolcos, 2017; Sheline et al., 2010;
Zhang et al., 2015). For example, it was proposed that the
RPFC is coupled with the DMN and posterior parietal
cortices during emotion processing in healthy individ-
uals. However, in aberrant functional connectivity within
nodes of the DMN, FPN and SN, the RPFC ‘hot-wires’
the tree networks together, leading to various depressive
symptoms (Fadel et al., 2021; Scalabrini et al., 2020;
Sheline et al., 2010).

Our finding that the SPE is associated with a distinct
set of interacted networks highlights two important
points. One of them is theoretical and reflects the long-
standing debates about the relationship between the self
and emotion processing within the more general domain
of social perception (Heinzel & Northoff, 2014; Sui &
Gu, 2017). A large body of research, including our previ-
ous work, reported overlapped neural substrates for
emotion-prioritization effect and SPE (Kim et al., 2016;
Smith et al., 2018). In particular, the effects of positive
emotion resemble those triggered by self-relatedness
(Yankouskaya & Sui, 2021). Most of the work used a

seed-to-voxel connectivity analysis with the MPFC as a
seed commonly reported in both self-referential and emo-
tion processing. Although this approach can provide us
with valuable information about the functional network
of a particular region, it cannot capture the complexity of
interactions between intrinsic brain networks that may
be functionally relevant. Our results demonstrated that
the MPFC is involved in either positive emotion prioriti-
zation or self-prioritization. However, the difference
between these two effects reflects the interaction between
the MPFC as part of the DMN and other networks such
as SN and FPN. In particular, self-prioritization is associ-
ated with positive coupling between the MPFC, SN (ante-
rior insula) and FPN (lateral prefrontal cortex) and
negative coupling between the MPFC, the rostral prefron-
tal cortex of the SN and the posterior parietal part of the
FPN. The second point is methodological. The network-
based approach allowed us to pin down some properties
of perceiving sad emotion and its relation to self that
other existing techniques cannot easily capture. Previous
attempts to localize areas involved in the processing of
sad emotional expression provided highly inconsistent
results reporting activity in the orbitofrontal areas, amyg-
dala, insula, frontoparietal areas, ACC and MPFC (for
review, see Lindquist et al., 2012; Touroutoglou
et al., 2015). Our finding of a distributed component for
perceiving a sad emotional expression at the lower
threshold commonly reported for statistical inferences
(FWE < .05) may partly explain this inconsistency. How-
ever, we also found a strong focal component where the
DMN (MPFC) showed positive interaction with bilateral
DAN and VMN for sad versus neutral expression. The
DAN comprises areas of the ‘dorsal attention’ system,
which is typically engaged in the appraisal of arousing
information (Sander et al., 2018). According to recent
research, emotion schemas are embedded in the visual
system reflecting top-down modulations from higher cor-
tical areas (Kragel et al., 2019). The coupling between the
DMN, DAN and VMN may indicate the mainstream of
information flow for processing sad emotion and contrib-
ute to our understanding of the neural basis of its carry-
over effects (Qiao-Tasserit et al., 2017).

4.4 | Two models of ‘core-self’ system

Recently, two neural models of ‘core-self’ system were
proposed (Davey et al., 2016; Sui & Gu, 2017). One of
them includes the MPFC, PCC and left IPL as key nodes
operating within the DMN (Davey et al., 2016).
According to this model, self-related processes are driven
via PCC, which had a positive influence on activity in
MPFC and IPL, and MPFC had a moderating influence
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on PCC. The coordinating role of the PCC is thought to
be driven by rich anatomical and functional connections
between the PCC and the rest of the brain that places this
region as a good candidate to orchestrate mental repre-
sentations such as self-reference (Davey et al., 2016). The
second model put forward the hypothesis that the inte-
grative property of the self is associated with the func-
tions of the MPFC as part of the DMN and how this
region is coupled with the SN and regions involved in
cognitive control such as DLPFC (Guan et al., 2021;
Sui & Gu, 2017). The results of the NBS in the present
study support the integrative ‘core-self’ model (Sui &
Gu, 2017) by demonstrating that the SRE is generated via
interactions between the MPFC and areas outside the
DMN such as LPFC and AI. Furthermore, our findings
indicate that the MPFC may play the hub role in this
interaction. Measures of directed influence based on mul-
tivariate fMRI time series such as conditional Granger
causality analysis (Zhou et al., 2009) and transfer entropy
(Ursino et al., 2020) may provide a precise estimation of
the directionality and the strength of connectivity
between neural populations within the component of
interacting networks supporting the SPE. However, our
finding that the FPN and SN are linked to the MPFC but
not to each other points towards the integrative role of
the MPFC that is supported by mounting evidence
from the literature (D’Argembeau, 2013; Meyer &
Lieberman, 2018; Northoff, 2016; Wagner et al., 2012).

It has to be noted that recent large-scale meta-
analysis (Qin et al., 2020) indicates that the contradiction
between two models of the ‘core-self’ system can be
explained if self is considered as nested hierarchically
organized layers of different aspects of self such as intero-
ceptive self, extero-proprioceptive self and mental (cogni-
tive) self. According to this meta-analysis, each of the
hierarchical levels of self recruits both overlapping and
separate regions depending on which aspect of self is
engaged. For example, embodied self (extero-
proprioceptive self), which is close to our task, recruits
regions associated with the MPFC-node of the DMN,
whereas cognitive self may recruit parietal nodes of FPN.
Our results of the self-related processing (e.g. MPFC and
insula) are consistent with this meta-analysis. However,
our results indicate that the MPFC rather than the insula
was a connection hub for emotion-related processing
when self-referential information was absent.

4.5 | Limitations

The literature is highly inconsistent in the precision map-
ping of brain networks. This inconsistency stems from
different approaches to anatomical and functional

parcellations (Arslan et al., 2018; Bressler &
Menon, 2010; Power et al., 2011), related controversies
about isomorphism between anatomical and functional
spaces (Cole et al., 2014; Eickhoff et al., 2018; Petersen &
Sporns, 2015) and the lack of consistent naming conven-
tions and the number of large-scale networks (Uddin
et al., 2019). The substantial disparity in parcellation
scales and nomenclature across different studies limits
comparisons between our study and previous work.

5 | CONCLUSION

We found that the processing of self-related information
is a product of information flow between DMN (MPFC as
a hub), FPN and SN, suggesting that the SPE requires
control of information flow and generating the ‘salience
map’ to motivate the information processing. Our find-
ings indicate that the MPFC may play the hub role in
orchestrating interactions between these networks. The
SPE could not be explained by related effects such as pri-
oritization of positive or negative emotions. We found
that happy emotion was associated with a distinct com-
ponent formed by interactions between the left rostral
prefrontal part of SN, posterior parietal part of FPN and
MPFC, whereas processing of sad emotion formed a clus-
ter of the DMN, DAN and VMN. These findings contrib-
ute to theoretical debates about the relationship between
the self and emotion processing within the more general
domain of social cognition and mood disorders.
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