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Abstract 

Background:  Patients with severe Coronavirus disease 19 (COVID-19) typically require supplemental oxygen as an 
essential treatment. We developed a machine learning algorithm, based on deep Reinforcement Learning (RL), for 
continuous management of oxygen flow rate for critically ill patients under intensive care, which can identify the 
optimal personalized oxygen flow rate with strong potentials to reduce mortality rate relative to the current clinical 
practice.

Methods:  We modeled the oxygen flow trajectory of COVID-19 patients and their health outcomes as a Markov deci-
sion process. Based on individual patient characteristics and health status, an optimal oxygen control policy is learned 
by using deep deterministic policy gradient (DDPG) and real-time recommends the oxygen flow rate to reduce the 
mortality rate. We assessed the performance of proposed methods through cross validation by using a retrospective 
cohort of 1372 critically ill patients with COVID-19 from New York University Langone Health ambulatory care with 
electronic health records from April 2020 to January 2021.

Results:  The mean mortality rate under the RL algorithm is lower than the standard of care by 2.57% (95% CI: 
2.08–3.06) reduction (P < 0.001) from 7.94% under the standard of care to 5.37% under our proposed algorithm. The 
averaged recommended oxygen flow rate is 1.28 L/min (95% CI: 1.14–1.42) lower than the rate delivered to patients. 
Thus, the RL algorithm could potentially lead to better intensive care treatment that can reduce the mortality rate, 
while saving the oxygen scarce resources. It can reduce the oxygen shortage issue and improve public health during 
the COVID-19 pandemic.

Conclusions:  A personalized reinforcement learning oxygen flow control algorithm for COVID-19 patients under 
intensive care showed a substantial reduction in 7-day mortality rate as compared to the standard of care. In the 
overall cross validation cohort independent of the training data, mortality was lowest in patients for whom intensiv-
ists’ actual flow rate matched the RL decisions.
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Background
Over the course of the past year, the rapid global spread 
of severe acute respiratory syndrome coronavirus-2 
(SARS-CoV-2), has motivated multidisciplinary investi-
gation efforts to identify effective medical management 
against coronavirus disease 2019 (COVID-19). Respira-
tory distress, including mild or moderate respiratory 
distress, acute respiratory distress syndrome (ARDS) 
and hypoxia, is a common complication of COVID-19 
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patients. The therapy of COVID-19 is guided by the 
knowledge and experience of moderate-to-severe ARDS 
treatment [1]. Oxygen therapy is recommended as the 
first-line therapy of COVID-19-induced respiratory and 
hypoxia by the Centers for Disease Control and Preven-
tion (CDC) and the World Health Organization (WHO). 
Oxygen therapy consists of different kinds of supple-
mental oxygen therapies including nasal cannula, simple 
mask, venturi mask, non-rebreather masks, and high flow 
oxygen systems. The key factor in different supplemental 
oxygen methods is the setting of different levels of oxygen 
flow rates [2]. Thus, the selection of appropriate oxygen 
flow rate is a crucial decision in COVID-19 treatment. 
To improve the treatment efficiency, the administration 
of oxygen therapy should be determined by the severity 
of COVID-19-induced respiratory failure, incorporating 
the uncertainties in measurements of patient health sta-
tus and prediction of individual outcomes to the oxygen 
decisions. It certainly requires a comprehensive investi-
gation of the optimal and personalized oxygen flow rate. 
Our research aims to explore effective oxygen therapy 
for COVID-19 patients based on continuous respiratory 
support and vital signs monitoring.

A large collection of artificial intelligence (AI) and deep 
learning (DL) approaches have been proposed to accel-
erate the drug discovery and the process of diagnosis 
and treatment of COVID-19 disease [3, 4]. Clinical stud-
ies in oxygen therapy and respiratory support have been 
made in a short period in the treatment of COVID-19 
pneumonia [5, 6]. However, respiratory failure remains 
the leading cause of death (69.5%) for SARS-CoV-2 [7]. 
Thus, we provide an AI algorithm for the oxygen flow 
control, based on the deep deterministic policy gradient 
(DDPG) [8], a widely used reinforcement learning (RL) 
method for continuous state and action spaces. DDPG 
uses off-policy data and the Bellman equation to learn 
the Q-function and then utilizes the resulted Q-function 
(critic network) to learn a deterministic policy (actor net-
work). To stabilize the training, it considers slow-learn-
ing target networks, i.e., actor/critic target networks are 
updated slowly, hence keeping the estimated targets sta-
ble. The optimized policy can recommend personalized 
optimal oxygen flow rates for COVID-19 patients based 
on the knowledge of patient health status estimated from 
patients’ electronic health records (EHRs).

Reinforcement learning has been successfully applied 
in the past to different healthcare problems such as mul-
timorbidity management [9], HIV therapy [10], cancer 
treatment [11], and anemia treatment in hemodialysis 
patients [12]. For critical care, given the large amount and 
granular nature of electronically recorded data, RL is well 
suited for providing sequential optimal treatment recom-
mendations and improving health outcomes for new ICU 

patients [13]. Recent studies include treatment strategies 
for sepsis in intensive care [14] and personalized regime 
of sedation dosage and ventilator support for patients in 
Intensive Care Units (ICUs) [15].

Focusing on RL-based oxygen flow rate control (RL-
oxygen), we studied its impact on mortality in COVID-
19 patients with respiratory failure. The evolution of 
patients’ ICU histories, including treatments, vitals, and 
health outcomes, was modeled using a Markov decision 
process (MDP) [14, 16]. At each decision epoch, based on 
the state (observed patient characteristics, including age, 
sex, race, smoking status, BMI, and comorbidity diagno-
ses, 36 daily observed lab test values, and 6 unique vitals), 
RL selected an oxygen flow rate (ranged from 0 to 60 L/
min) and obtained a reward defined based on patient’s 
7-day survival. Then, following the oxygen flow rate sug-
gested by RL policy, an estimated mortality rate was 
predicted to compare with the mortality rate in actual 
practice.

Methods
Study design and participants
Our research team used a retrospective cohort of the 
New York University Langone Health (NYULH) EHR 
data on COVID-19 patients to derive and validate the RL 
algorithm. Eligible patients had positive COVID-19 PCR 
test and had oxygen therapy in hospital between March 
1st 2020 and January 19th 2021. We excluded COVID-
19 patients aged below 50 and not been hospitalized as 
the lacked consistent documentation of vital signs, treat-
ments, and laboratory tests. This study was approved 
by the NYULH IRB and the data were de-identified to 
ensure anonymity.

For each patient, we had access to demographic data, 
including age, sex, race, ethnicity and smoking status, 
ICU admits and discharge information, in-hospital liv-
ing status, comorbidities, treatments, and laboratory test 
data. The comorbidities, including hyperlipidemia, coro-
nary artery disease, heart failure, hypertension, diabetes, 
asthma or chronic obstructive pulmonary, dementia and 
stroke, are defined based on the International Classifica-
tion of Diseases (ICD)-10 diagnosis codes. To reduce the 
feature dimensionality, we selected 36 laboratory tests 
based on two criteria: (1) less than 28% missing values; 
and (2) COVID-19 related tests and vital signs. In spe-
cific, we explore the associations between laboratory tests 
and COVID-19 based on existing literature and clinical 
findings. For example, recent studies have shown that a 
reduced estimated glomerular filtration rate (eGFR), low 
platelet count, low serum calcium level, increased white 
blood cell count, Neutrophil-to-lymphocyte ratio (NLR), 
and red blood cell distribution width-coefficient of vari-
ation (RDW-CV) are related to high risk of severity and 
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mortality in patients with COVID-19 [17–21]. Addition-
ally, some research suggests well-controlled blood glu-
cose is associated with the lower mortality in COVID-19 
patients with Type-2 diabetes [22] and continuous renal 
potassium level has correlation of hypokalemia, which is 
common among patients with COVID-19 [23]. Arterial 
blood gas analysis, including pH, Oxyhemoglobin satu-
ration (SaO2), oxygen saturation (SpO2), partial pressure 
of oxygen (PaO2) and bicarbonate (HCO3), is commonly 
used biomarkers measuring the severity of ARDS [24, 
25].

In this study, we employed leave-one-hospital-out vali-
dation to evaluate the model performance. The whole 
dataset was divided into 4 batches by the hospital and 
then we take one batch as validation set and the rest as 
training set in each simulation.

RL algorithm overview
We model patient health trajectory and the clinical deci-
sions during a course of intensive care over a period of 
ICU stay by a Markov decision process (MDP) with state, 
action, and reward. The state of a patient includes the 
observed patient demographics, vital signs, and labora-
tory tests at each time t . The action refers to the oxygen 
flow rate. After a sequence of actions, the patient receives 
a reward if he/she survives in the next 7 days; otherwise, 
a penalty to death will be given. The cumulative return 
is defined as the discounted sum of all rewards of each 
patient received during the ICU stay. The intrinsic design 
of RL provides a powerful tool to handle sparse and time-
delayed reward signals, which makes them well-suited 
to overcome the heterogeneity of patient responses to 
actions and the delayed indications of the efficacy of 
treatments [14]. The details of state, action, and reward 
are listed as follows.

•	 State st : observed patient’s characteristics at each 
time t with information, including demographics, 
COVID-19 lab tests, and vital signs.

•	 Action at : oxygen flow rate ranged from 0 L/min to 
60 L/min.

•	 Reward rt : the reward of an action at time t is meas-
ured by its associated ultimate health outcome given 
the patient’s health state. Similar to [14], we used in-
hospital mortality as the system-defined penalty and 
reward. When a patient survived, a positive reward 
was released at the end of the patient’s trajectory (i.e., 
a `reward’ of +15); a negative reward (i.e., a `penalty 
of −15) was issued if the patient died. We find that 
such a reward function can propagate the final health 
outcome backward to each decision and interven-
tion over the period so that RL can predict long-term 

effects and dynamically guide the optimal oxygen 
flow treatment.

•	 Discount factor γ : determines how much the RL 
agents balance rewards in the distant future relative 
to those in the immediate future. It can take values 
between 0 and 1 [16]. After considering the ICU stay 
tends to be short and conducting side experiments, 
we chose a value of 0.99, which means that we put 
nearly as much importance on late deaths as opposed 
to early deaths for each recommended oxygen flow 
rate.

The schematic of the proposed scheme with EHR 
cohort is shown in Fig.  1. As shown in the bottom 
part of this diagram, the electronic health data were 
collected from New York University Langone Health 
(NYULH) by following the clinical guide. At each time, 
the oxygen flow rate decision, denoted by a , was cho-
sen based on current health state, denoted by s , of the 
patient and then a new heath state s′ was observed 
at the next measurement time. We record the tuple 
(

s, a, s′, r
)

 in the experience replay memory with the 
zero reward r = 0 . At the end of the treatment, a posi-
tive reward was recorded (i.e., a `reward’ of + 15) if 
patient survived; and a negative reward (i.e., a `penalty 
of -15) was issued if the patient died. Then we applied 
deep deterministic policy gradient (DDPG), as shown 
at the top part of Fig.  1, to learn the optimal decision 
policy from the experience replay memory. DDPG, 
composed of actor and critic networks, takes historical 
samples 

(

s, a, s′, r
)

 from EHR data to concurrently learn 
a critic network (Q-function approximation) and an 
actor network (policy). The critic network, denoted by 

Fig. 1  The diagram of the proposed RL scheme with the actor-critic 
architecture using electronic health records from New York University 
Langone Health (NYULH)
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Qπ (s, a|θ) , is a nonlinear function that approximates the 
Q value function

of the action a (i.e., oxygen flow rate) given a patient’s 
health state s . The actor network representing a policy, 
denoted by πφ(s) , proposes an action for each given state 
through the mapping or equation a = πφ(s) . The  critic 
loss, defined by the mean squared TD-error (see Eq.  (5) 
in Additional file  1), is used to improve the approxima-
tion of Q-function. Based on the expected Q-value com-
puted by the critic network, we use the policy gradient 
method to optimize the actor network. In sum, DDPG 
learns a scoring rule (critic network) which evaluates 
the performance of a candidate policy, i.e., it returns an 
oxygen flow rate given a patient’s health state, and then 
uses such a rule to improve the decision making policy 
(actor network) by optimizing the score. See more details 
in Reinforcement Learning Algorithms Section of Addi-
tional file 1.

Model evaluation
We evaluated the RL-recommended oxygen therapy 
by comparing its efficacy with the observed one on the 
cohort from each validation hospital. At each decision 
time, the RL algorithm recommends an oxygen flow 
rate for the patient. If the absolute difference of recom-
mended and the observed oxygen flow rate is less than 10 
L/min, we say that RL is “consistent” with the critical care 
physicians.

When RL is discrepant with the oxygen flow rate used 
by physicians, the efficacy of the RL-recommended oxy-
gen therapy is not directly observed. The problem then 
becomes how to assess the health outcomes in the future 
after taking RL recommendations. For this reason, we 
predicted the outcome of the RL-recommended treat-
ment using Cox proportional hazards model, a regression 
model commonly used for investigating the associa-
tion between the survival probability of patients during 
a period and predictor variables of interest in medical 
observational studies [26, 27]. In short, a patient was 
labeled as “alive” if he/she survived after a treatment 
within seven days; otherwise, labeled as “deceased”. Then 
we fitted a Cox survival model with demographics, vital 
signs, and lab tests as predictors and evaluated the effect 
of decision using the leave-one-hospital-out validation.

To assess the performance of the survival models, we 
compared predicted and observed outcomes (7-day living 
status) using 4 metrics: similarity, accuracy, Chi-squared 
test, and concordance index. Overall, the cosine similar-
ity between predicted and actual survival is greater than 

Qπ (s, a) = E

[

∞
∑

t=0

γ t rt |st = s, at = a,π

]

99.9%, and the concordance index is 0.83. Both metrics 
indicate that the predictive model can effectively estimate 
unobserved health outcomes. Moreover, the paired Chi-
squared test (p-value < 0.0001) shows no significant dif-
ference between true and predicted survival.

Results
Overall, 1362 patients in NYULH EHR samples had a 
PCR-based COVID-19 diagnosis between March 2020 
and January 2021. The demographic and clinic character-
istics summary of the analysis cohort is shown in Table 1. 
Overall, patients’ mean age is 69.7 and the cohort is com-
prised of 483 females (35.2%). On average, COVID-19 
patients showed BMI of 28.61 kg/m2, pO2 (partial pres-
sure of oxygen) of 104.8  mmHg, SaO2 (Oxygen satura-
tion in arterial blood) of 94.1% and SBP of 123.4 mmHg. 
Hypertension, hyperlipidemia, diabetes, and coronary 
artery disease are the top 4 common comorbidities for 
COVID-19 patients aged above 50, diagnosed in 85.2%, 

Table 1  Demographics and clinical characteristics of NYULH-
EHR patients with COVID-19

Categorical variables are summarized with frequencies (percentages) unless 
otherwise indicated. Continuous variables are summarized as the mean 
(standard deviation) of biomarkers

Demographics and clinic characteristics Number 
of patients 
(N = 1372)

Age (years, Mean (SD)) 69.72 (10.75)

Male (N (%)) 64.49 (0.47)

Race (N(%))

 African American 180 (13.12)

 Native American 5 (0.36)

 Asian 120 (8.75)

 Caucasian (White) 730 (53.21)

 Multiple races 19 (1.39)

 Other races 266 (19.39)

 Race unknown or patient refused 53 (3.86)

Smoking (N(%)) 1043 (6.88)

 Never 735 (53.57)

 Former 443 (32.29)

 Current 55 (4.01)

 Not asked 139 (10.13)

Body mass index (kg/m2), Mean (SD) 28.61 (6.74)

Hyperlipidemia (N(%)) 978 (71.75)

Coronary artery disease (N(%)) 562 (41.23)

Heart failure (N(%)) 406 (29.79)

Hypertension (N(%)) 1161 (85.18)

Diabetes (N(%)) 701 (51.43)

Asthma or chronic obstructive pulmonary (N(%)) 217 (15.92)

Dementia (N(%)) 133 (9.76)

Stroke (N(%)) 195 (14.31)
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71.8%, 51.4% and 41.2% patients respectively. The median 
hospital stay duration was 2.9  days since COVID-19 
diagnosis (interquartile range [IQR] 0.52–12.2 days). We 
trained the RL algorithm using patients from every 3 
hospitals and then assessed their performance using the 
remaining hospital encounters.

The performance of the RL-oxygen is summarized in 
Table  2. Overall, the RL-oxygen algorithm shows supe-
rior performance compared to the clinical practice of 
oxygen therapy for COVID-19 patients. The overall 7-day 
estimated mortality under Physician prescribed oxygen 
was 7.94% (95% CI: 7.41–8.47), while overall estimated 
mortality under RL-oxygen was 5.37% (95% CI: 4.94–
5.80), showing a 2.57% (95% CI: 2.08–3.06) reduction 
(P < 0.001). In addition, Table 2 depicts the characteristics 
of oxygen flow rate following the recommendations from 
both RL-oxygen and physicians. On average, the overall 

RL-oxygen flow rate was 1.28 L/min (95% CI: 1.14–1.42) 
lower than the rate delivered to patients.

The efficacy of the RL prescriptive algorithm was con-
sistently observed across age, gender, BMI, and comor-
bidity subgroups (Table  2). Demographically speaking, 
compared to the observed efficacies in patients of age 
75 and younger, COVID-19 patients of age older than 
75 observed higher efficacies from RL-oxygen recom-
mended therapy than physician’s recommendations. For 
example, 7-day estimated mortality rate under RL-oxy-
gen for patients of age older than 80 was 5.87% (95% CI: 
4.67–7.07) lower than under physician’s therapy. In con-
trast, the 7-day estimated mortality rate under RL-oxy-
gen was 0.55% (95% CI: 0.39–0.71) lower than that under 
physicians’ therapy for patients aged between 50 and 65. 
Table 2 also shows that the RL-oxygen tends to be more 
effective for patients with comorbidities. Especially for 
COVID-19 patients with Asthma or chronic obstructive 
pulmonary, Dementia and Stroke, RL-oxygen reduced 
the 7-day mortality by 5.69%, 5.11% and 3.8% respectively 
on average.

We further studied 7-days mortality when the actually 
administered oxygen flow rate differed from the oxygen 
flow rate suggested by the RL-oxygen in Fig. 2. It shows 
how the observed mortality changes with the flow rate 
difference between RL-oxygen and physicians. This phe-
nomenon suggests that increasing differences between 
the RL-oxygen and the observed delivering oxygen were 
associated with increasing observed mortality rates in a 
rate-dependent fashion. When the difference is mini-
mum, we obtain the lowest 7-day mortality rate of 1.7%. 
Another observation from Fig.  2A is that the mortal-
ity rate increases when the RL-oxygen flow rate is lower 
or higher than the one from physicians. It suggests that 
both the oxygen deficit (lower oxygen flow rate than 
RL-oxygen recommendation) and the oxygen excess are 
sup-optimal for patients’ outcomes. We observed a trend 
that RL-oxygen was in general lower than what was pre-
scribed by the physicians and might result in better out-
comes under a lower flow rate. It suggests that oxygen 
flow rates prescribed by doctors tend to be excessively 
high for some patients.

Last, we observed that the RL-oxygen and physicians 
recommended consistent flow rates in most times; see 
Fig.  2B. The overall distribution of oxygen flow rates 
recommended by RL-oxygen and physicians are pre-
sented in Fig. 3. It depicts how many measurement times 
each oxygen flow rate was recommended by RL-oxygen 
and physicians. In twenty-nine percent of the time, the 
patients received an oxygen flow close to the suggested 
rate within 5 L/min while forty-four percent of the 
time, the difference between the administered and sug-
gested oxygen flow rates are within 10 L/min. Since the 

Table 2  Subgroup comparison of 7-day estimated mortality 
obtained using RL-oxygen algorithm and critical care physician 
decision guidance

Categorical variables are summarized with frequencies (percentages) unless 
otherwise indicated. Continuous variables are summarized as the mean 
(standard error) of biomarkers
* Variables indicate RL-oxygen is significantly different from physicians 
(p-value < 0.001)

Subgroups Estimated mortality (%) Average oxygen (L/min)

RL-oxygen Physician RL-oxygen Physician

Overall 5.37 (0.22) 7.94 (0.27) 19.24 (0.07)* 20.52 (0.07)

Male 6.13 (0.12)* 8.53 (0.14) 21.20 (0.09)* 22.66 (0.09)

Female 2.18 (0.11)* 2.99 (0.12) 6.33 (0.07) 6.41 (0.07)

Age

 50–65 1.19 (0.08)* 1.74 (0.09) 25.54 (0.12)* 22.27 (0.12)

 65–75 4.13 (0.14)* 5.43 (0.16) 19.63 (0.12)* 22.73 (0.12)

 75–80 14.76 (0.3)* 20.39 (0.34) 19.79 (0.14)* 21.45 (0.16)

 ≥ 80 15.86 (0.57)* 21.73 (0.65) 14.28 (0.18)* 18.96 (0.26)

Body mass index (kg/m2)

 < 25 7.74 (0.18)* 11.10 (0.21) 19.27 (0.11)* 20.58 (0.12)

 25–30 7.38 (0.19)* 9.21 (0.21) 23.39 (0.13)* 24.5 (0.14)

 30–35 2.72 (0.15)* 5.30 (0.21) 22.91 (0.16)* 21.42 (0.17)

 ≥ 35 5.35 (0.28)* 5.44 (0.28) 19.53 (0.18)* 22.78 (0.21)

Hyperlipidemia 7.43 (0.13)* 9.47 (0.14) 20.11 (0.09)* 20.94 (0.09)

Coronary artery 
disease

8.55 (0.18)* 11.39 (0.21) 18.13 (0.12)* 20.04 (0.11)

Heart failure 11.25 (0.23)* 12.59 (0.25) 18.35 (0.11) 18.22 (0.13)

Hypertension 6.96 (0.11)* 8.79 (0.13) 21.2 (0.08) 21.25 (0.08)

Diabetes 7.73 (0.15)* 8.25 (0.15) 25.22 (0.11)* 20.31 (0.1)

Asthma or 
chronic obstruc-
tive pulmonary

11.98 (0.32)* 17.67 (0.38) 15.57 (0.15)* 19.68 (0.18)

Dementia 10.71 (0.46)* 15.82 (0.56) 15.57 (0.23)* 14.19 (0.23)

Stroke 9.15 (0.31)* 12.95 (0.37) 21.78 (0.15)* 15.94 (0.19)
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high‐flow nasal oxygen (HFNO) therapy often increases 
flow rate in increments of 10 L/min up to 60 L/min [28], 
it suggests that RL-oxygen is consistent with physicians 
about 40–50% of the time.

Discussion
We used a RL approach to learn an optimal policy to 
continuously control the oxygen device for critically ill 
patients with COVID-19 who require oxygen therapy. As 
most people who become seriously unwell with COVID-
19 have an acute respiratory illness [29, 30], our algo-
rithm has strong potential to improve individual health 
outcomes and reduce the COVID-19 mortality rate 
caused by respiratory failure. We designed the reward as 
the ultimate health outcome which is used to assess the 
performance of oxygen flow decisions along the treat-
ment trajectory. As such, the reinforcement learning 
approach took uncertain outcomes and long-term treat-
ment effects into consideration and made it smarter in 
understanding the long impact of an early decision on the 
final outcomes.

Our analysis suggests the current practice remains 
some potential to be improved as actual oxygen flow 
rate administered by intensivists showed more than 
fifty percent discrepancy with RL-oxygen recommenda-
tions. Importantly, we observe that RL-oxygen tends to 
prescribe lower oxygen flow rate than physician’s pre-
scribed rates but leads to better outcomes. This finding 
is especially important in the context of the ongoing and 

persistent medical oxygen shortages in some develop-
ing regions. As COVID-19 patient-care protocols have 
evolved, medical-grade oxygen is still considered as an 
essential resource to treatments for critically ill patients. 
In regions such as Africa, Middle East, and Asia, the 
surge in demand for medical oxygen to treat COVID-19 
exacerbates preexisting gaps in medical-oxygen supplies, 
leading to substantial supply shortages.

Our analysis also identified some clinical patterns that 
RL-oxygen particularly works well. For example, patients 
with high risk (i.e., of age older than 75) observed higher 
efficacies than patients aged between 50 and 75 by using 
relatively lower averaged oxygen flow rate than actu-
ally administered. RL-oxygen also recommends a higher 
averaged oxygen flow rate may improve the health out-
comes for patients aged from 50 to 65. Moreover, we also 
notice significant therapeutic discrepancies in patients 
with stroke and diabetes comorbidities. In both cases, 
RL-oxygen recommended higher averaged oxygen flow 
rate than doctors while showing a significant reduc-
tion in estimated mortality. In fact, these findings agree 
with recent studies which reported that “stroke survivors 
who underwent COVID-19 developed more acute res-
piratory distress syndrome and received more noninva-
sive mechanical ventilation” [31] and “diabetic patients 
required more oxygen therapy (60% vs. 26.9%)” [32].

Although our evaluation methodology controls for sev-
eral confounding factors and shows high validation accu-
racy, sample scarcity and a large proportion of missing 

Fig. 2  A Comparison of the estimated 7-days mortality rates (y-axis) varying with the difference between the oxygen flow rate recommended 
by the RL optimal policy and that administered by doctors (x-axis) averaged over all time points per patient. The shaded area represents the 95% 
confidence interval. The smallest oxygen difference is mainly associated with the lowest 7-days mortality rates. The further away the dose received 
was from the suggested oxygen flow rate, the worse the outcome. B The histogram of oxygen flow rate difference between RL-oxygen and 
physicians (labels on the vertical axis)
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value may increase estimation uncertainty and affect the 
treatment recommendations. Larger training data are 
necessary to cover more of the state space and improve 
the policy optimization. Moreover, the COVID-19 cohort 
from NYULH may not be representative of the U.S. 
COVID-19 population or the oxygen clinical practices 
in other countries. To ultimately validate the efficacy of 
the RL algorithm, randomized clinical trials with patients 
randomly assigned to RL and clinician oxygen therapy 
would be needed.

Conclusion
Through analyzing the EHR data from multiple ambu-
latory care centers, we demonstrated the feasibility of 
using reinforcement learning based oxygen therapy to 
improve the intensive care for COVID-19 patients. The 
RL-oxygen showed medium concordance (44%) with 
the current practice of critical care physicians. For all 
COVID-19 patients requiring oxygen therapy, RL rec-
ommendations significantly reduce the mortality rate 
compared to the current practice. The algorithm has 

the potential to be integrated into the clinical decision 
support system and assist physicians to provide timely 
personalized recommendations of oxygen flow rate for 
COVID-19 patients in ICU.
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