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The blood vessels and nerve trees consist of tubular objects interconnected into a complex tree- or web-like structure that has
a range of structural scale 5 μm diameter capillaries to 3 cm aorta. This large-scale range presents two major problems; one is
just making the measurements, and the other is the exponential increase of component numbers with decreasing scale. With
the remarkable increase in the volume imaged by, and resolution of, modern day 3D imagers, it is almost impossible to make
manual tracking of the complex multiscale parameters from those large image data sets. In addition, the manual tracking is quite
subjective and unreliable. We propose a solution for automation of an adaptive nonsupervised system for tracking tubular objects
based on multiscale framework and use of Hessian-based object shape detector incorporating National Library of Medicine Insight
Segmentation and Registration Toolkit (ITK) image processing libraries.

1. Introduction

Humans (indeed all biological multicellular organisms) are
made of multiscale hierarchy of structures ranging from
subcellular structures (10−7 m) to cells (10−5 m), basic
functional units (the smallest aggregation of diverse cells
that behaves like the parent organ 10−4 m), organs (10−2–
10−1 m), and bodies (100 m). In addition to the local scale
variation, biological structures are also characterized by
shape. For example, the blood vessels are tubular objects
interconnected into a complex network and have a range
of structural scale (5 μm diameter capillaries to 3 cm aorta).
This large-scale range presents two major problems; one
is just making the measurements, and the other is the
exponential increase of component numbers with decreasing
scale. Quantitative analysis of such systems, for example,
blood vessel trees and networks of neurological dendrites
and axons, seem to be best measured from 3D images of
those structures. With the remarkable increase in the volume
imaged by, and resolution of, modern day imagers, the
practical problem now is the extraction of this multiscale

data from those large, detailed image data sets. Thus, there
is a need for an automatic tool which mines data across both
space and scale to capture local information about the objects
which describes the feature and now becomes associated with
its appropriate position and scale.

Without prior information for a scale description of
the image content, an image has to be studied at all
scales. The basis for design of an automatic tool for such
description could be derived from human perception model
[1]. The human eye comprises a large number of individual
receptors (over 150 million rods and cones). Such “imager”
has no prior information about input, and therefore, it is
designed to extract the information by applying sampling
apertures at a wide range of sizes simultaneously [1, 2].
Since the information from a single individual sensor is
almost meaningless, the sampling should be done not by
the individual rods and cones in a human eye or detectors
in imagers but by the sensor neighborhoods. Such sensor
neighborhoods implement fundamental “multiscale percep-
tion” at different scales simultaneously but at this point no
memory or analysis is involved yet. The very first level of
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analysis starts when grouping and storing the information
from the local neighborhoods into meaningful sets (so-called
“blurring signal”) and establishing interconnections between
neighborhoods. Since a priori size of the features in the
object (signal) is unknown, the “blurring” is used by both
humans and machines for adaptive multiscale representation
of meaningful signal features of a different size. Within the
next step when we extract an object, certain properties have
been already attributed to it, and the rest of the information
is now considered as nonobject and often called “noise” or
“background”. As both noise and object are always parts of
the perception process, there is no way to separate the noise
from the object if models of the object and of the noise are
absent. To distinguish noise from object, we need to model
the image content. That could be achieved by using certain
mathematical operators, “feature detectors”, interacting with
the data followed by analysis of the results of “feature
extraction”. Since objects in images comprise features with
varying size, it is quite logical to perform feature extraction
at the scale which matches the local feature size, “its native
scale”. A recipe for automatic feature extraction in multiscale
framework can be given as follows: (i) build multiscale rep-
resentation by smoothing the image at each scale; (ii) choose
an appropriate “feature detector” to compute local structural
properties (e.g., gradients, curvatures, flows); (iii) compute
“local extrema” of a “feature detector response” function; (iv)
find the strongest local response of the structural properties
which is considered as feature identification.

2. Background and Principle

To build the multiscale representation of the image, the
proper aperture (windowing) function as an operator should
be chosen. Formalism for the scale-space representation
was introduced by Witkin [3] and further developed by
Koenderink [4]. The idea of this approach is to generate a one
parameter family of smoothed images I(x, y; t) obtained by
convolving the original image I0(x, y) with a Gaussian kernel
G(x, y; t) of size t

I
(
x, y; t

) = I0
(
x, y

)∗G
(
x, y; t

)
,

where G
(
x, y; t

) = 1
2πt

e−(x2+y2)/2t .
(1)

In case of Gaussian kernels, the kernel size t is called variance,
which is related to standard deviation σ as t = σ2. The
parameter t in this family represents the scale at which
the finer image structures are still “perceptible” whereas
the spatial structures with size smaller than

√
t = σ will

be smoothed out as shown in Figure 1. As pointed out by
Koenderink [4] and Hummel [5], this family of smoothed
images may also be derived as the solutions of the diffusion
equation

∂I
(
x, y; t

)

∂t
= ∇[c(x, y; t

)∇I(x, y; t
)]

= c
(
x, y; t

)
ΔI
(
x, y; t

)
+∇c(x, y; t

)∇I(x, y; t
)
.

(2)

If c(x, y; t) is constant, it reduces to the isotropic diffusion
equation ∂I(x, y; t)/∂t = cΔI(x, y; t), and the linear spatial
scale-space representation can be generated using Gaussian
(continuous) or Binomial (discrete) kernels [2–4, 6–10].
Data sampled in the temporal domain (e.g., the movie frames
are samples taken at regular intervals) can also be scaled in
similar to the spatial domain fashion. To treat a multiscale
context over the temporal domain, it was suggested to use
the Poisson kernels [11–13]. Perona and Malik [14] extended
the scale-space concept to nonlinear scale-spaces based on
nonlinear diffusion formulation with nonconstant diffusion
coefficient c(x, y; t); (see (2)). Comprehensive overview of
nonlinear scale-spaces based on parabolic partial differential
equations could be found in [15, 16]. For such nonlinear
cases, the Bessel scale-space can be built [17].

The scale spaces could be generated by using various
kernel functions. Recently, wavelets and their applications to
signal and image processing have attracted attention of the
scientists in many fields. A very good collection of papers
on the wavelet theory and its applications can be found in
the book by Heil and Walnut [18]. The relationship between
the wavelets and the scale spaces was demonstrated by Mallat
and Hwang [19]. In [20–22], methods for generating scale-
space representations based on wavelets were suggested, and
the results of application of wavelets were very promising. As
an extension of the Gaussian and wavelet approaches, Wang
and Lee [23] proposed the scale-space representation derived
from B-splines.

Even though different kernel functions have been pro-
posed to generate the scale-space representations, the Gaus-
sian kernels remain the best candidates so far [1–10].
Such “uniqueness” of the Gaussian kernels was shown by
Babaud et al. [24] and is based on a priori scale-space
constraint formulated by Witkin [3], Koenderink [4], and
Yuille and Poggio [6]: “No new feature points (no “spurious
detail”) should be created with increasing scale”. Florack et
al. [25, 26] extended constraints and formulated the mathe-
matical requirements known as “axioms for an uncommitted
visual front-end” [27] which should be satisfied for the
systems without any a priori knowledge about inputs: (i)
linearity: no “feedback” from the system; (ii) spatial shift
invariance: no preferred spatial or temporal location; (iii)
isotropy: no preferred spatial or temporal orientation; (iv)
scale invariance: no preferred size or scale of the aperture.

Another motivation to use the Gaussian scale spaces has
some support from neurophysiological and psychological
experiments which has shown that receptive field profiles
in the mammalian retina and visual cortex can be well
modeled by sums of Gaussian [28] and Gaussian derivative
components [29–31].

All these properties make the linear Gaussian scale spaces
the best choice for development of the automatic unsuper-
vised systems for multiscale signal and image analysis, when
there is no in advanced information available concerning
preferable scales. The recipe which allows adaptively choos-
ing the proper local scale parameter at every geometrical
location was suggested by Lindeberg [32, 33]. This recipe
comprises a two-step procedure: (i) convolving the original
image I0(x, y) with a Gaussian kernel G(x, y; σ) of size σ ;
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Figure 1: Smoothing the finer spatial image structures out with increase of Gaussian kernel size: (a) original image with structure sizes sigma
= 2; 10; 40 (a). Convolution with Gaussian using various kernel size sigma = 2 (b), 10 (c), 40 (d). With Gaussian kernel size increasing, finer
image structures are disappearing.

(see (1)) and (ii) analyzing a response R(x, y; σ) function
from derivatives or some (possibly nonlinear) combination
of derivatives of that convolution [32]

R
(
x, y; σ

) = ∂m+nI
(
x, y; σ

)

∂xm∂yn
, (3)

where m and n are orders of derivatives.
The strongest response of such function (with respect

to σ) over scales then indicates the proper Gaussian scale
probe (Gaussian observation kernel) σprobe with width
corresponding to object feature size σobj has been found
[34]. Due to the commutative properties of the convolution
and taking derivative operations, the order of operations in
the procedure above could be changed to convolving the
original image I0(x, y) with the operators constructed from
the derivatives of Gaussian (so called “Gaussian derivatives”).
The distinguishing characteristic of such operators is a
combination of the opposing properties, localization, and

optimal response to noise [35–37]. To demonstrate this
principle, we modeled the original image with an object
with Gaussian intensity profile of kernel size σobj = 5
and convolved this image with the first- (Figure 2) and
second- (Figure 3) order Gaussian derivatives with kernel
sizes varying over the range σprobe = 1–15 (in the figures
only σprobe = 1, 5, 10 are shown). Then, we measured
intensity values of response functions (see (3)), across the
object and extracted the strongest responses for all scales of
the Gaussian probe. The strongest responses to both first and
second Gaussian derivatives with kernel probe varied over
the range σprobe = 1–15 and convolved with the original
image with feature size σobj = 5 are shown in Figure 4. These
plots demonstrate the property of the response functions
such that it has the strongest response when Gaussian probe
size approaches the object size.

Unfortunately, the amplitude of Gaussian derivative
operators tends to decrease with increasing scale due to the
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(a) (b)

(c) (d)

Figure 2: Original image convolved with first-order Gaussian derivatives. (a) Original image having an object with Gaussian intensity profile
of kernel size σ = 5. (b) Original image convolved with first order Gaussian Derivative of kernel size σ = 1. (c) Original image convolved
with first-order Gaussian derivative of kernel size σ = 5. (d) Original image convolved with first-order Gaussian derivative of kernel size
σ = 10.

fact that with increasing scale, the response is increasingly
smoothed. This gives more preference to smaller scales. To
compensate such increase and, thus, improve accuracy of the
automatic scale selection, Lindeberg [10, 32, 34] suggested
using the so-called γ-parameterized normalized derivatives

∂m+n

∂um∂vn
= σ (m+n)γ ∂m+n

∂xm∂yn
. (4)

This method of scale selection allows feature detectors to
find such points in the image that the γ-normalized operator
response has an extremum with respect to both position and
scale.

In the case of tubular-like structures in an image, ridge
detection with automatic scale selection can be done using
a second derivative of Gaussian kernel function [38, 39].
Depending on values of the γ-parameter, the detected object
features can be quite different. Analyzing the influence of
the γ-parameter on feature detection with automatic scale
selection, Lorenz et al. [40] chose γ to be 1.5 which worked
well for variety of intensity line profiles (e.g., Gaussian,
bar-, triangle-like). However, for elongated structures with

bar-like intensity profiles (such intensity profiles can be
found in high-quality imagers with narrow point spread
functions [41, 42] or imagers that use deconvolution prepro-
cessing algorithms [43, 44]), the ridge detector creates false
responses at small scales (basically these are “edge responses
at small scales”) as depicted in Figure 5. The line intensity
profiles demonstrating the problem are shown in Figure 6.
Since in automatic approaches there is no the preferred scale
(all scales should be treated equally) in an image, a number
of solutions have been proposed to avoid or suppress these
false responses in scale space. Koller et al. [45] suggested
applying a nonlinear operator that combines the response
of two edge-detectors on both sides of a hypothetical ridge.
Lorenz et al. [40] used an edge-indicator to suppress the
response to edges. Lindeberg [34] used a hybrid approach
taking the useful properties from both the scale-space height
ridge and the second derivative scale-space ridge. While
studying the problem of the influence of the γ-parameter on
feature detection with automatic scale selection, Majer [38,
39] derived the g-normalization parameter value from the
statistical approach based on a white noise sampling model.
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Figure 3: Original image convolved with second-order Gaussian derivatives. (a) Original image has an object with Gaussian intensity profile
of kernel size σ = 5. (b) Original image convolved with second-order Gaussian derivative of kernel size σ = 1. (c) Original image convolved
with second-order Gaussian derivative of kernel size σ = 5. (d) Original image convolved with second-order Gaussian derivative of kernel
size σ = 10.

In these studies, he concluded that the ridges generated by
a second-order Gaussian derivative operator do not suffer
from the false responses to edges if the value γ = 1.25
is used.

Early vision perception occurs at all scale simultaneously
and can be modeled by generating the image scale-space
representation that introduces an additional variable, spatial
scale size [1–4]. At this point, such early vision system is
fully ignorant of the geometry. As soon as the local scales are
established, the early analysis of an image starts with analysis
of intensity variations and directions by means of spatial
derivatives to reveal local image structure. For example,
for elongated objects, the derivative value along the object
is close to zero whereas the derivatives across the object
are large negative values and their ratio is close to unity.
Following the scale-space ideas developed so far, a complete
hierarchical set of scaled differential operators has to be used
[25]. The Gaussian derivative operators described earlier
in this paper constitute the natural differential operations
on a given scale. Thus, a set of Gaussian derivatives and
their combinations could be used for very complex object

models and analysis. Some well-known combinations of
the high-order derivatives have special names like Hessian,
Laplacian, and so forth and are used to build special
functions for identification of certain shape patterns in
images. Such mathematical functions model human and
machine perception and are ultimately used in unsupervised
object tracking systems [1, 2, 35, 36]. For this purpose, the
Hessian-based multiscale object enhancement filters were
developed [4, 25, 46–48]. In these anisotropic filters, the
pixel intensity transformation is locally governed by the
“objectness measure” functions which are built using the
combination of local Hessian eigenvalues and calculated in
multiscale framework [45, 49–54]. The responses of the
filters based on these functions are computed at different
scales and are expected to have a maximum value at a
scale corresponding to the width of the object [32, 54].
Such selectivity to the object shape along with capability
to adaptively choose the optimal scale allows these filters
to extract the looked-for objects at their native local scales.
As noted by others [32, 55], this is especially important for
tubular-like objects axis tracking applications.
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Figure 4: Responses to convolution of the original image with the
first- (a) and second- (b) order Gaussian derivatives. Original image
has an object with Gaussian intensity profile of kernel size σobj = 5.
Gaussian derivative probes scanned over kernel width range σprobe =
1–15.

The Hessian matrix H( f ) (or simply Hessian) is the
square matrix composed of second-order partial derivatives
of some scalar-valued multivariable function f (x1, x2, . . . ,
xn), and it describes the local curvatures of this function
f (x1, x2, . . . , xn). Assuming continuity of the second-order
derivatives, the mixed derivatives do not depend on the
order of differentiation (e.g., ∂2 f /∂x1∂x2 = ∂2 f /∂x2∂x1, etc.).
The Hessian is then a symmetric matrix which for a 3D
image I(x, y, z) can be written a 3× 3 matrix (see (5))

H(I) =

⎡

⎢
⎢
⎢
⎣

Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz

⎤

⎥
⎥
⎥
⎦
. (5)

In (5), Ixx = (∂2/∂x∂x)I(x, y, z), Ixy = (∂2/∂x∂y)I(x, y, z),
Ixy = Iyx, and so on. Due to symmetric property of the Hes-
sian, for 3D images only, six out of nine values have to be cal-
culated. Let the eigenvalues of the Hessian H(I) be λ1, λ2, and
λ3 with their corresponding eigenvectors e1, e2, and e3. If the
eigenvalues ordered as λ1 > λ2 > λ3, then the eigenvector e1

gives the direction of the maximum of the second derivative.
Following the scale-space ideas described earlier, the

partial second derivatives of the image I(x, y, z) in the
Hessian H(I) have to be replaced by the γ-parameterized
normalized Gaussian derivatives (see (4)), convolved with
the image which results in that now the eigenvalues λ1, λ2,
and λ3 become adjusted to the local size of the tubular object
in an image.

Various algorithms for multiscale tubular object tracking
and enhancement were developed depending on the way
Hessian eigenvalues are combined in the objectness measure
function. For instance, Sato et al. [49–51] suggested the
“objectness” measure function which used only two out of
three values of Hessian eigenvalues

f (λ1; λc) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

exp

(

− λ2
1

2(α1λc)
2

)

λ1 ≤ 0, λc /= 0

exp

(

− λ2
1

2(α2λc)
2

)

λ1 > 0, λc /= 0

0 λc = 0.

(6)

In (6), λ1 ≈ 0 and λ2 ≈ λ3 � 0 (for a bright line on
dark background), λc = min(−λ2, −λ3), and α1 < α2. That
filter showed good performance in object enhancement in
noisy environment. However, it did not have a parameter
to control noise (background) suppression. Frangi et al.
[52] extended the “objectness” measure function so that it
includes the combination of all three Hessian eigenvalues and
a factor with a parameter which controls noise suppression
(see more details later in this paper). That function reflects
shape and scale of the objects, has a single maximum on
the center of the vessels segments, and has bell-shape close
to Gaussian with width proportional to object size. This
approach showed very good performance and has “de facto”
become a basis for building even more sophisticated hybrid
filters. Manniesing et al. [53] used this response function
to develop an effective denoising filter, where the image
intensity transformation is based on anisotropic “diffusion”
governed by the “objectness” measure function in multiscale
framework. Such an approach, which incorporates the shape
pattern analysis along with multiscale data representation,
would give us an extremely powerful tool to model artificial
system learning. For neuron network reconstruction from
3D confocal microscope images, the tubularity measure
function was used to design a statistical learning system for
training a classifier and generating the probability that a
given structure belongs to the tubular-like object [56, 57].
In pulmonology, the algorithms based on tube detectors
were effectively used for airway and lung vascular tree
reconstruction from 3D CT images [58, 59]. If properly
normalized, the multiscale tube detectors could be used to
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Figure 5: Original image convolved with second-order Gaussian derivatives. (a) Original image having an object with bar-like intensity
profile of size 2σ = 10. (b) Original image convolved with second-order Gaussian derivative of kernel size σ = 1. (c) Original image
convolved with second-order Gaussian derivative of kernel size σ = 5. (d) Original image convolved with second-order Gaussian derivative
of kernel size σ = 10.

build various cost and propagation functions required in the
level set and fast marching segmentation algorithms [60, 61].

To take the full advantage of the power of the multiscale
shape detector filter in object tracking algorithms applied for
a large variety of medical applications, in this work we focus
on the process of automation of this filter.

The filter itself has many control parameters which can
be separated into several groups: Brightness measure (objects
are bright relative to background); objectness measure
(shape description), scale description (range plus scale step
function), and background noise suppression parameter
(Frobenius norm scale factor) [52]. Parameters in all groups,
except the last one, describe general properties of the object
itself so they do not depend on the imaging system char-
acteristics. Since in vascular studies the object brightness,
tubularity, and range of diameters are known beforehand,
those parameters can be chosen in advance and then fixed.
Hence, the only parameter which prevents the algorithm to
be fully automated is control of the noise suppression. This
parameter depends on the acquisition system and imaging

conditions; therefore, it has to be experimentally found for
each image set. Such a procedure is very compute expensive.

We present our development of the multiscale Hessian-
based tubular object-tracking filter with automatic selection
of the parameter used for suppression of background noise.
That finalizes the automation of the filter. In our approach,
the information required for the parameter calculation is
acquired from the image being processed thus it automati-
cally takes into account all the individual properties of the
particular image such as voxel size and noise level. This allows
for increased automation as well as parallel processing—
thereby greatly decreasing processing time.

3. Methods

3.1. Images. For our studies, we used both gray-scale images
numerically derived and acquired by scanners. The modeled
images were programmed so to model environment with
certain features. Tubular objects with various widths were
placed amid different background: Gaussian random noise,
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Figure 6: Intensity profiles of responses to Gaussian (a) and bar-like
(b) ridge models.
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Figure 7: Mean Square Error (MSE) and Peak Signal-to-Noise
Ratio (PSNR) measurements for manual image processing.

nontubular objects, background with noise, and polynomial
varying intensity. For simulations of images degraded by
noise, we used the C++ classes contributed to the ITK
Insight-Journal by Lehmann [62]. These noise simulation
classes are implemented with multithread support and are
based on the Mersenne Twister uniform pseudorandom
number generator which has a period (219937–1), 632-
dimensional equidistribution, and up to 32-bit precision
[63]. Thus, this generator could be considered as a “true ran-
dom” which results in that generated noise does not produce

any “neighborhood artifacts” or periodic patterns. The noise
was generated with various Standard Deviations SD = 25.0,
50.0, 100.0, and Mean M = 0.0. We also used biomedical
images of the heart acquired by the micro-CT scanner [64],
Cerebellar Climbing Fibers [65–67], and Hippocampal CA3
Interneuron [67]. Specimen H61 (coronary artery branch
within a human heart wall) was a methyl methacrylate cast
prepared as described previously [68]. A cast of that coronary
arterial tree was scanned with an isotropic voxel size of
0.018 mm and 500× 500× 541 voxel CT image volume.

3.2. Micro-CT Scanner. The custom-made micro-CT scan-
ners generate images up to 2048×2048×1000 isotropic voxels
down to 4 μm on a side [64].

3.3. Server for Image Processing. To be able to process large
images using the developed algorithms, we built a specialized
server with four 64 bit AMD Opteron 8350 Quad Core
2.0 GHz CPUs and 128 GB memory. The server is located in
a server room and it is accessible in multiuser mode through
the local network using remote clients.

3.4. Algorithms. For our software development, we used the
library of C++ classes from the National Library of Medicine
Insight Segmentation and Registration Toolkit (ITK) [69–
71]. The library was compiled with multithread support
based on the POSIX thread (Pthreads) model [72] using 64
bit C++ compiler GCC 4.3.2 [73–75] and installed on 64 bit
Debian Linux 2.6.26 [76, 77].

3.4.1. Automation of Multiscale Shape Detector Response
Function. The developed multiscale shape detector filter is
based on the objectness measure function suggested by
Frangi et al. [52] and the C++ classes contributed to the
ITK Insight-Journal [78–80]. After thoroughly conducted
studies and tests, we found that the C++ classes contributed
by Antiga [80] satisfy our purposes the best; therefore, our
further developments are based on those classes.

Let λk be the eigenvalue of the Hessian matrix at voxel
x ordered such that |λ1| ≤ |λ2| ≤ |λ3| (we drop the
dependency to x). In the case of the ideal bright tubular
structure, the voxels should satisfy the following relation for
eigenvalues |λ1| ≈ 0; |λ1| � |λ2|; λ2 ≈ λ3 and for bright
objects both λ2 and λ3 must be negative.

Frangi et al. [52] proposed to use the eigenvalues to
define Vesselness measure ν(x) as below:

ν(x)=

⎧
⎪⎪⎨

⎪⎪⎩

0 if λ2 > 0 or λ3 > 0,
(

1− exp

(

− R2
a

2a2

))

exp

(

− R2
b

2b2

)(

1− exp

(

− S2

2c2

))

,

(7)

where a, b, and c are the parameters that control the
sensitivity of the filter to the measures Ra, Rb, and S. The
measures have the following meaning. Ra = |λ2|/|λ3| is
used to distinguish between plate-like and line-like patterns.
Rb = |λ1|/sqrt(|λ2λ3|) is used to derive a blob-like pattern.
The measures Ra and Rb are gray intensity level invariant and
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(a) (b)

(c) (d)

Figure 8: Automatic processing. Input images with noise mean = 0 and standard deviation (a) SD = 25 and (b) SD = 50; processed images
(c) and (d).

capture only the topological information of the objects in the
image. The choice of the control parameters a and b defines
the object pattern to be studied. For example, if tubular-
like objects are chosen, the parameters are fixed to a = 0.5,
b = 0.5 [54].

The parameter c (see (7)), controls background noise
suppression in the Hessian-based object enhancement filter.
The Frobenius Hessian matrix norm is chosen as a measure
S = sqrt(λ2

1 + λ2
2 + λ2

3) to distinguish background noisy pixels.
Since the parameter c strongly depends on the individual
properties of particular image such as voxel size and noise
level, for every new study, the optimal parameter value
should be experimentally found again by trial. The very wide
search range of the optimal parameter value in concert with a
highly time-expensive calculation to derive the Hessian taken
in multiscale framework makes this algorithm very labor-
inefficient especially for large 3D biomedical images with
high resolution. For example, one trial run to process the
16 bit 500 × 500 × 514 gray-scale micro-CT image on our
server took about an hour; thus, the interactive search for
the parameter c might take hours for the user who operates
the program interactively.

The method for automating the selection of the param-
eter for suppression of background noise uses a scalar
function (nondirectional) of the image voxels the Laplacian
of the image. The Laplacian is a well known operator
in image processing which is easy to calculate [81–83].
Ultimately, the Laplacian calculates the trace of Hessian
matrix or, equivalently, the sum of its eigenvalues (λ1 + λ2 +
λ3) making it invariant with respect to a change of tensor
basis. This characterization can be used to steer the control
parameter responsible for noise suppression. The schematic
description of complete algorithm is below.

(1) For each voxel in the image, calculate the Laplacian.

(2) In the calculated Laplacian array, find the maximum
value of Laplacian, that is, (λ1 + λ2 + λ3)max.

(3) Take one tenth of that maximum value of Laplacian,
that is, (λ1 + λ2 + λ3)max/10.

(4) Assign the calculated value to parameter c.

In this approach, the information required for parameter
calculation is acquired solely from the image being processed;
thus, it automatically takes into account all the individual
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Figure 9: Neurological confocal microscopy image of Hippocampal
CA3 Interneuron with polynomial noisy background: (Image data
courtesy from Professor German Barrionuevo).

properties of the particular image such as a voxel size and
noise level.

3.4.2. Objective Measures for Perceptual Quality Evaluation
of Images. There are two measures commonly used for
objective evaluation of the perceptual quality of images:
Mean Square Error (MSE) and Peak Signal to Noise Ratio
(PSNR) [84–90]. These quality measures are defined as
follows. Consider two images being compared x = {xi | i =
1, 2, . . . ,N} and y = {yi | i = 1, 2, . . . ,N}, where N is the
number of points (pixels) in the data sets and xi and yi are
intensity levels in the images. Let x be an “ideal image” and
y be a “degraded image”. The MSE measure is then defined
as MSE = (1/N)

∑N
i=1(xi − yi)

2 and PSNR is, respectively,
PSNR = 10 log10(L2/MSE) where L is the dynamic range
of allowable pixel intensities. As follows from the definitions
above, the lower the values of MSE, the lower the error and
the higher the PSNR, the better quality of processed image.

The MSE and PSNR measures were developed using C++
classes from the ITK library [69] and contribution [62].

4. Results

4.1. Manual Mode. In manual mode, the control parameters
have to be provided by the operator before running the
code. If the result is not acceptable, the operator has to
change parameters and rerun the code again. The MSE and
PSNR measures were used for objective quality evaluation
of the processed image. As an “ideal image”, there was
used a modeled image comprised three tube-like objects

with Gaussian intensity profiles of different width. Then,
the ideal image was degraded by the random Gaussian
noise with Standard Deviation SD = 100.0 and Mean M =
0.0 and processed in manual mode by the algorithm. The
background suppression parameter value was sampled over
a wide range 10–500 to surely cover prospective optimal
control parameter. The results are depicted in Figure 7.
It can be seen that both measures indicate the optimal
value is about c = 200 which corresponds to MSE value
0.00214 and PSNR value 26.69. If run in automatic mode,
the algorithm finds even more precise the optimal value
c = 194.3 which corresponds to MSE value 0.00203 and
PSNR value 26.93. These results demonstrate capability of
the developed algorithm in automatically finding the optimal
control parameter for background suppression.

4.2. Fully Automatic Mode. To test efficiency of the algorithm
in fully automatic mode, we used the modeled images
described above. The control parameters were chosen and
fixed: brightness “on”, objectness measure “tubular”, scale
range “1–30”, scale steps “20”, step function “logarithmic”,
noise suppression mode “automatic”. Scale range was chosen
wide enough to cover all possible diameters. The step
function was made “logarithmic” so as to emphasize finer
scales.

4.2.1. Background with Gaussian Random Noise and Non-
tubular Objects. First, we processed the images with curved
tubular objects with various widths which were placed amid
nontubular objects. The images were degraded by Gaussian
random noise with SD = 25.0, 50.0, and M = 0.0. As can
be seen from Figure 8, the algorithm automatically finds the
optimal parameters and successfully tracks tubular objects.

4.2.2. Objects in Images with Nonlinear Background. We
also tested performance of the algorithm for neurological
confocal microscopy image processing affected by tiling,
shading, Gaussian noise, nonlinear background, and so forth
(see, e.g., Figure 9). The modeled images were programmed
so to present three parallel tubular objects aligned in the
Z-direction with different diameters and distance between
objects along with gray-scale distribution described by
Gaussian intensity profiles. The polynomial background was
added with and without Gaussian random noise (Figure 10).
In Figure 11, there are depicted intensity profiles across the
tubular objects with Gaussian intensity profiles in the pro-
cessed images with various polynomial noisy backgrounds
added SD = 0.0, 25.0, 50.0, and Mean M = 0.0. As could
be seen, the algorithm effectively suppresses the background
and successfully extracts the tubular images.

4.3. Speed Efficiency of Fully Automatic Mode. To evaluate
time efficiency of our automatic method, we processed the
500 × 500 × 514 (16 bits per voxel) micro-CT image with
0.018 cubic mm size in multithreaded mode using a Linux-
based server with the 16 processors and 128 GB memory
as described above. First, we ran the automatic algorithm
to find the parameter c. Then, we ran nonautomatic (the
found parameter was manually plugged into a program)
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Figure 10: Program-simulated images with polynomial noisy background and tubular objects with Gaussian intensity profiles.
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Figure 11: Intensity profiles across the tubular objects with Gaussian intensity profiles in the processed images with various polynomial
noisy backgrounds added. (a) Noise SD = 0; (b) SD = 25; (c) SD = 50.

version. The amount of CPU time spent for a single run in
non-automatic mode is 58 minutes whereas for automatic
mode is 64 minutes, which is just about 10% longer.
If the server is able to allocate enough memory for the
run, the time spent by the algorithm in fully automated

mode is comparable with time for the nonautomatic
mode.

4.4. Biomedical Images. The result of applying our automatic
algorithm to the micro-CT image of the coronary arteries in
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(a)

(b)

Figure 12: Maximum Intensity Projection (MIP) of micro-CT
image of rat heart coronary arteries. (a) Input image; (b) Processed
image.

a heart in concert with the nonprocessed image is shown
in Figure 12 using Maximum Intensity Projection (MIP)
images. Before preprocessing (a) there are the “blobs” of
white material due to a contrast medium accumulation in
a cardiac chamber. Those “blobs” are selectively removed by
the algorithm as can be seen in right panel (postprocessing).

In Figure 13, there are the not processed (a) and
processed (b) MIP images of cerebellar climbing fibers. As
expected, the tubular measure filter effectively suppresses
the fixed pattern background and noise and “delineates” the
tubular objects.

We also explored the efficiency of the algorithm as an ini-
tial filter in the central line extraction pipe line. The original
image Sample H61 was processed with the developed filter
and then segmented using the region growing connected
threshold algorithm [69–71]. The seed for segmentation
was allocated at the beginning of the main tree root thus
the side trees were excluded. Afterwards, a center line was
extracted using the 3D thinning approach based on the C++
classes submitted to the insight journal by Homann [91].
Images along with the extracted center lines are depicted in
Figure 14. As could be seen from the figure, the algorithm

(a)

(b)

Figure 13: Histological image of cerebellar climbing fibers. (a)
Input image; (b) Processed image (Image data courtesy from
Professor Giorgio Ascoli).

effectively suppresses background and delineates the tree.
The centerlines are extracted correctly as well.

5. Discussion and Future Work

We have presented a method for automation of adaptive
nonsupervised system for tracking tubular objects that is
based on analysis of local structures performed in multiscale
framework. The designed filter has demonstrated a great
potential for complete automation and showed very good
performance in both background noise suppression and
tubular object tracking.

The developed approach can be used in the reconstruc-
tion pipeline right after image deconvolution operation.
Even though the convolution operator will reconstruct the
object features at finer scales, those features will appear
in increased noise environment which in return might
require additional postprocessing for noise suppression yet
to preserve extracted features.

Another application is the object feature extraction
pipeline. This filter can be used as a preprocessing filter for
vessel enhancement and background noise suppression right
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(a)

(b)

Figure 14: Specimen H61 (coronary artery branch within a human
heart wall). (a) Not processed image with extracted center line; (b)
Segmented processed image with extracted center line.

before segmentation or immediately in the segmentation
algorithms itself, for instance, in the family of segmentation
algorithms which require distributed seeds [70, 71]. By
using the thresholded output of the vessel enhancement
filter as a seeder, it can increase the speed efficiency of the
segmentation process considerably.

Since the response function is built using exponents,
with proper normalization this function can be considered
as a probability function with values distributed over the
interval “0.0-1.0”. In this case, after processing, the output
image holds voxels with values of probability of the event
that “a voxel belongs to the object with tubular shape”. These
probabilities can be used in many ways. The most traditional
way is to rescale it back to a gray-scale image. Although
such images do not keep a proper intensity calibration, they
still can be used for morphometric analysis. If calibration is
of concern, the probabilities could be converted to a mask
for sampling the original micro-CT image from which the
calibration could be recovered.

Since the filter generates the response function with
only one maximum across scale space at a scale that is
proportional to the diameter of the tubular object and
that maximum is located at the center of the object, the
probability image is more suitable to construct various cost
functions. The images with cost functions can further be
used as the “feature image” in various image processing
pipelines, for instance, such as in flux-driven centerline
extraction algorithms [92, 93], level-set and fast-marching
segmentation algorithms [61, 69–71], and so forth. As the
multiscale vessel enhancement filter is very robust against
noise, it can be superior over traditional approaches like,
for example, in a filter pipeline “segmented image, distance
map, and cost function”, since it can directly generate the
cost function avoiding steps for producing segmentation and
distance map. In addition, the multiscale space feature can be
used to build the cost function in multiscale representation
and use it for multiscale vessel tracking as suggested in [54].
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