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This study created and tested a database of adult, age-specific MRI brain and head
templates. The participants included healthy adults from 20 through 89 years of age.
The templates were done in five-year, 10-year, and multi-year intervals from 20 through
89 years, and consist of average T1W for the head and brain, and segmenting priors
for gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF). It was found that
age-appropriate templates provided less biased tissue classification estimates than age-
inappropriate reference data and reference data based on young adult templates. This
database is available for use by other investigators and clinicians for their MRI studies,
as well as other types of neuroimaging and electrophysiological research.1
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Introduction

Morphological and volumetric brain changes that occur with aging are well-documented (see
Galluzzi et al., 2008 for a recent review). Despite these changes, many studies aimed at identifying
volumetric changes use reference data for tissue segmentation solely derived from young adults.
The issues associated with using young adult reference data have been documented and studies have
shown that study-specific reference data can improve segmentation results (Ashburner and Friston,
2000; Good et al., 2001; Thompson et al., 2001; Huang et al., 2010). In the current study, we suggest
the use of age-specific reference data as an alternative to young adult or study-specific templates. We
created and tested a database of age-specific reference templates. Findings suggest that age-specific
reference templates can be used to increase segmentation accuracy in developmental neuroscience,
neuropsychology and neurology research and clinical practice.

Volumetric brain changes occur with change in age during adulthood. Fotenos et al. (2005)
measured whole brain volume differences from age 30 and reported a mean decline in total
volume of −0.45% per year after age 65. A common strategy is to distinguish the changes
in partial volume estimates (PVEs) of gray matter (GM), white matter (WM), and less often,
cerebrospinal fluid (CSF). The most consistent partial volume change is a reduction in GM
volume. Ge et al. (2002) reported % GM decline in subjects beginning at age 20 with a constant
linear reduction across the span of early to late adulthood. Good et al. (2001), Sato et al. (2003),
Sullivan et al. (2004), Taki et al. (2004), Smith et al. (2007) and Lemaître et al. (2005) reported
similar negative linear relationships between cortical GM volume and age. Most of these studies

1http://jerlab.psych.sc.edu/NeurodevelopmentalMRIDatabase/

Frontiers in Aging Neuroscience | www.frontiersin.org 1 April 2015 | Volume 7 | Article 44

http://www.frontiersin.org/Aging_Neuroscience
http://www.frontiersin.org/Aging_Neuroscience/editorialboard
http://www.frontiersin.org/Aging_Neuroscience/editorialboard
http://dx.doi.org/10.3389/fnagi.2015.00044
http://www.frontiersin.org/Journal/10.3389/fnagi.2015.00044/abstract
http://www.frontiersin.org/Journal/10.3389/fnagi.2015.00044/abstract
http://www.frontiersin.org/Journal/10.3389/fnagi.2015.00044/abstract
http://community.frontiersin.org/people/u/115962
http://community.frontiersin.org/people/u/224385
http://community.frontiersin.org/people/u/68554
https://creativecommons.org/licenses/by/4.0/
mailto:richards-john@sc.edu
http://dx.doi.org/10.3389/fnagi.2015.00044
http://jerlab.psych.sc.edu/NeurodevelopmentalMRIDatabase/
http://www.frontiersin.org/Aging_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Aging_Neuroscience/archive


Fillmore et al. Age-specific adult templates

show decline in GM beginning about age 20. However, recently
Richards and Xie (2015) found that the decline in GM actually
begins in the early adolescent years. Changes in WM volume
have been found but are not as consistent in the literature. Ge
et al. reported % WM changes in a quadratic pattern, with slight
increases until age 40, and decreases thereafter. Salat et al. (2009)
also reported a quadratic relationship between WM volume and
age, with relative preservation or rise in volume until the late 50 s,
followed by a steep decline. Lemaitre et al. reported significant
WM decline (1.7 cm3/year) in their subjects aged 63–75 years.
In contrast, Good et al., Sato et al., Sullivan et al., and Taki et al.
reported no global WM loss in their subjects. An associated linear
increase in CSF volume has also been reported. This finding
is consistent across volumetric studies that report CSF results
(Good et al., 2001; Lemaître et al., 2005; Smith et al., 2007).

Tissue segmentation is a crucial step for these volumetric
studies. These studies classify brain tissue into three primary
types: GM, WM, and CSF (or ‘‘other matter’’, OM). Typically
these studies used automated or semi-automated procedures
for guiding the segmentation (e.g., FSL’s FAST, Zhang et al.,
2001; SPM’s USN, Ashburner and Friston, 2005; Freesurfer,
Dale et al., 1999; Atropos, Avants et al., 2011b). These
automated procedures usually require a priori reference
data (Zijdenbos et al., 2002) to guide tissue classification. These
spatial priors generally come from a common anatomical
reference template. This requires that individual structural brain
images be first registered to the common anatomical space,
a process known as spatial transformation or normalization.
Accurate spatial normalization to a common template confers
many advantages, in that it facilitates inter-subject, inter-
sample and inter-population comparisons (Evans, 2005).
Thus, an important piece in the accuracy of this process is
the choice of both templates and normalization methods
which can provide a good match between the population
of interest and the participants under study. The most
often-used MRI template was created by the Montreal
Neurological Institute (MNI; Evans and Collins, 1993;
Mazziotta et al., 2001a,b). The original MNI template was
developed from 305 MRIs, with another one developed later
from 152 MRIs. Each used MR images of participants with
an average age of about 23 years. Some of the volumetric
studies mentioned (Sato et al., 2003; Taki et al., 2004;
Mandal et al., 2012) relied on this reference data for their
analyses.

Using a template derived from the brains of young adults
for analyses with the brains of older adults can be problematic.
As Huang et al. (2010) point out, despite the widespread
use of the MNI and other such normalizing templates, inter-
subject variation in brain structures for special populations
such as older adults can result in less than ideal compensation
for brain region discrepancies after spatial normalization with
these templates. An alternative to using the MNI template
is to create a study-specific template, derived from structural
images of the participants in the study. To demonstrate this,
Huang et al. used a study-specific template rather than one
developed from young adult images for spatial normalization
within a functional MRI (fMRI) data analysis. Huang et al.

found that more voxels were identified as significant in older
adults when a study-specific template was used. The main
advantage conferred by the construction of study-specific
templates in this case is a very precise mapping to the common
space, since it is derived from the actual participants of the
study.

Study-specific templates have also been implemented within
voxel-based morphometry (VBM; e.g., Peelle et al., 2012).
VBM is an automated method used for voxel-wise statistical
investigation of focal differences in brain anatomy as measured
by MRI (Ashburner and Friston, 2000). In this context, creating
a study-specific template may involve segmenting a group of
images from the sample with MNI tissue priors, averaging
those partial volumes to come up with study-specific tissue
priors, and then using those priors to re-segment all of
the images in the sample (see Lemaître et al., 2005 for an
example). Studies comparing a study-specific template to the
MNI template for VBM demonstrated that using a study-
specific template reduced anatomical biases in the analysis
(Ashburner and Friston, 2000; Good et al., 2001; Thompson
et al., 2001). Again, it is likely that this is due to the precision
in mapping afforded by a study-specific template. Recent work
has shown that the use of high-resolution nonlinear spatial
normalization tools further reduces these biases (Callaert et al.,
2014).

A study-specific template is an improvement over the
MNI template, but a second, possibly better, solution is the
development of age-appropriate a priori reference data. This
solution confers several advantages over study-specific templates.
First, age-appropriate templates can be used over multiple studies
allowing for easier study-to-study comparisons. Results using
study-specific templates cannot easily be compared to the results
of another study using a different study-specific template. Age-
appropriate templates alleviate this issue. Second, a study-specific
template may be created by averaging images from a broad age
range, depending on the study goal. Age-appropriate templates
can be created in smaller increments and may be more similar to
any one individual image than a broad study-specific template
(c.f. Rohlfing et al., 2009). Several age-appropriate templates
have been done for pediatric ages (Wilke et al., 2003; Altaye
et al., 2008; Yoon et al., 2009; Fonov et al., 2011; Sanchez
et al., 2012a). Age-appropriate templates have been used with
pediatric neuroimaging data and improve classification of tissue
types in pediatric samples (Wilke et al., 2003; Sanchez et al.,
2012a,b).

There are a few reported age-specific templates for adults.
Lemaître et al. (2005), created a T1-weighted probabilistic
brain atlas representing an average of 662 subjects aged 63–75
years. These subjects were a sub-sample of the Epidemiology
of Vascular Aging cohort, a longitudinal study on vascular
aging and cognitive function in healthy older adults (see
Dufouil et al., 2001 for details of study). MR images for these
subjects were acquired between 1995 and 1997 on a 1.0T MR
scanner. Farrell et al. (2009) created four age-specific templates,
T1- and T2-weighted templates representing 54 subjects aged
65–70 years and 25 subjects aged 75–80 years. These subjects
were sub-samples of the ‘‘National Aging Brain’’ Study cohort

Frontiers in Aging Neuroscience | www.frontiersin.org 2 April 2015 | Volume 7 | Article 44

http://www.frontiersin.org/Aging_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Aging_Neuroscience/archive


Fillmore et al. Age-specific adult templates

(MacLullich et al., 2002) and the ‘‘Simpson’s Study’’ cohort
(Shenkin et al., 2003), both studies of normal aging. The
‘‘National Aging Brain’’ subsample MRIs were collected on a
1.9T scanner. Sato et al. (2003) created reference templates
for a very wide age range that included older adults: 10
age-specific templates created from 1,600 Japanese subjects
aged 20–80 years. Reference templates were created with the
T1-weighted images, acquired on a 0.5T MR scanner. More
recently, Rorden et al. (2012) created matching CT and MRI
templates for use with stroke-aged populations. Fifty MRI
scans were used (mean age of participants 72.9 years) all
acquired on a 3T scanner. Perhaps most relevant to the current
work, Rohlfing et al. (2009) also proposed the use of age-
specific, as well as sex-specific, templates. Based on 64 subjects
(30 M/34 F) across various ages, they used a combination of
regression models and non-rigid registration methods to show
that decade-based age-specific templates provided increased
accuracy when compared with a study-wide template. The
current study follows the strategy of these studies to create
age-appropriate templates. The current investigation constructed
age-specific brain templates for adults 20–89 years of age. The
procedure for template construction involved gathering images
from open sources of adult MRIs and using a state-of-the-art
non-linear iterative averaging method. The MR images were
compiled from our own acquired MRI images, the Pediatric
MRI Data Repository created by the NIH MRI Study of Normal
Brain Development (NIHPD; Evans and BDCG, 2006; Almli
et al., 2007; Waber et al., 2007), the Information Extracted
from Medical Images (IXI) database (Heckemann et al., 2003;
Ericsson et al., 2008), and the Open Access Series of Imaging
Studies (OASIS; Marcus et al., 2007, 2010) cross-sectional and
longitudinal image sets. We compared the use of age-specific
templates to young adult and age-inappropriate templates
for brain tissue segmentation, with the hypothesis that age-
specific templates will provide less biased tissue segmentation.
We did this by using the manually segmented images from
the Internet Brain Segmentation Repository (IBSR; Filipek
et al., 1994; Rohlfing, 2012). Manual segmentation is often
considered a ‘‘gold standard’’ for tissue segmentation, though
this process is both time-consuming and subjective (Dale
et al., 1999). However, results from automated procedures may
be compared with the manual segmentation to compare the
relative accuracy of the automated procedures (e.g., Atkins
et al., 2002; Valverde et al., 2015). We also demonstrated the
potential usefulness of the age-specific templates by highlighting
their ability to confirm characteristics of brain aging. We
have previously constructed age-specific templates for 2 weeks
through 4 years of age (Sanchez et al., 2012a) and 4.5 through
20–24 years of age (Sanchez et al., 2012b). Thus together
with the current study, we have constructed a database of
normative age-appropriate average MRI templates across the
lifespan (Richards and Xie, 2015). These templates (head,
brain, and segmented priors) are publicly available through our
website.2

2http://jerlab.psych.sc.edu/NeurodevelopmentalMRIDatabase/

Materials and Methods

Participants
The MRI images came from adults, ranging from 20–89
years of age. The images came from several sources. USC-
MCBI: Some participants came from studies performed at the
University of South Carolina McCausland Center for Brain
Imaging. The USC-MCBI participants (N = 132; 50 M/80
F/2 Unknown; 20–65 years were all normal, healthy adults
with no history of neurological or psychiatric illness, head
trauma with loss of consciousness, or current or past use of
psycho-stimulant medications, cardiovascular disease, and no
abnormal findings on the MRIs. NIHPD: One set of participants
came from the Pediatric MRI Data Repository created by the
NIHPD (Evans and BDCG, 2006; Almli et al., 2007; Waber
et al., 2007). The NIHPD participants (N = 26; 14 M/12 F,
20–24 years) were recruited across six Pediatric Centers using
community-based sampling techniques to reflect the gender,
income, and race/ethnicity variation in the United States
Census 2000. Participants were screened for the presence of
behavioral/emotional/academic problems, factors that adversely
impact healthy brain development and factors that would
prohibit the full completion of the study protocol. IXI: A third
set of participants came from the IXI database (Heckemann
et al., 2003; Ericsson et al., 2008). These participants (N = 546;
241 M/304 F/1 Unknown; 20–86 years) consists of 600 MRIs
from normal, healthy adults, with no cognitive impairment,
collected at three different hospitals in the London, UK area;
cardiovascular or other health status is unknown. OASIS-CS:
The fourth set of participant came from the cross-sectional
database of the OASIS (Marcus et al., 2007). The OASIS-CS
participants (N = 283; 102 M/181 F; 20–89 years) came from a
study that included ‘‘non-demented’’, and early stage Alzheimer’s
disease. Only those participants who were non-demented were
included, and cardiovascular or other health status is unknown.
OASIS-LONG: The final set of data came from the longitudinal
portion of the OASIS project (Marcus et al., 2010). This data set
consists of a longitudinal collection of 150 participants ranging
from 60–96 years of age all acquired on the same scanner
using identical scan sequences. Each participant was scanned
on two or more visits, separated by at least 1 year for a total
of 373 imaging sessions. Again, only those classified as ‘‘non-
demented’’ were included in the present project. We used a total
of 175 scans from 72 participants (22 M/50 F) from the OASIS-
LONG project. Repeated scans from the OASIS longitudinal
study were used in the construction of the templates for the
appropriate age of the scan; we did not keep track of the repeated
scans in any of the analyses. Overall 1162 scans from 1059
participants were used for creation of the templates. All projects
had institutional review board approval and informed consent
for participants.

The participants were grouped into five-year age groups (i.e.,
20–24, 25–29, etc.) through age 89 years, 10-year age groups
(e.g., 20–29, 30–39, etc.) or multi-year age groups (25–39, 40–59,
60–89). Average templates for the study were created for the three
grouping types (5-, 10-, multi-year; see Table 1 for age group
information broken down by five-year group).
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TABLE 1 | Demographic information by five-year age group broken down by gender and image source.

Age Total Gender % Female IXI MCBI NIHPD Oasis Longitudinal
range N (# Female) n n n n

Cross-sectional

20–24 244 139 57 42 88 26 88 0
25–29 101 62 61 58 15 0 28 0
30–34 79 29 37 52 16 0 11 0
35–39 50 22 44 44 1 0 5 0
40–44 61 37 61 47 4 0 10 0
45–49 65 33 51 41 3 0 21 0
50–54 57 38 67 38 2 0 17 0
55–59 73 45 62 55 2 0 16 0
60–64 83 58 70 61 0 0 11 11
65–69 89 54 61 51 1 0 14 23
70–74 101 70 69 37 0 0 24 40
75–79 61 41 67 12 0 0 9 40
80–84 62 43 69 6 0 0 17 39
85–89 36 22 61 2 0 0 12 22
Total 1162 693 60 546 132 26 283 175

Additionally, we used images from the IBSR3 to compare
the outputs of our automated segmentation routines to those
attained by manual segmentations. These images served as an
external test set, and were not used for template creation.
The IBSR dataset is composed of two image sets: (1) the
IBSR20 (Filipek et al., 1994) which was created based on a
semi-automated intensity contour mapping algorithm (Kennedy
et al., 1989) and manually edited signal intensity histograms
(N = 18, 10 M/10 F, 23–38 years for data used; two
subjects were excluded from the original 20 due to large bias
artifacts); and (2) the IBSR 18 (Rohlfing, 2012), which was
hand segmented with a three-class model (GM, WM, CSF),
and includes both adult and child images. For the current
study, we used only the adult data (N = 10, 7 M/3 F, 35–71
years).

MRI Data Acquisition
The procedures for the MRI sequences differed across the
datasets. USC-MCBI: The data at the USC-MCBI were collected
on a Siemens Medical Systems 3T Trio. The MRI protocol has
been described in detail in Sanchez et al. (2012a). Briefly, a
3D T1-weighted ‘‘MPRAGE’’ RF-spoiled rapid flash scan in the
sagittal plane was employed with the following parameters: TR
= 2250 ms, TE = 4.52 ms, flip angle = 9◦, FoV = 256 mm ×

256 mm, matrix size = 1 × 1 × 1 mm3 (the sagittal dimension of
the T1W ranged from 160–212 slices. NIHPD: The procedures
for the NIHPD are described in detail by others (Evans and
BDCG, 2006; Waber et al., 2007). Briefly, a 3D T1-weighted
spoiled gradient recalled (SPGR) echo sequence was employed
with following parameters: TR = 22–25 ms, TE = 10–11 ms,
flip angle = 30◦, FoV = 256 mm IS × 256 mm AP, matrix
size = 256 × 256: 1 × 1 × 1 mm3 voxels, 160–180 slices
of sagittal orientation. The scans were conducted at different
sites with Siemens Medical Systems (Sonata, Magnetom) and
GE (Signa Excite) scanners. IXI: The IXI data consisted of

3www.nitrc.org/projects/ibsr

multislice spin echo T1 images collected at 3 sites with 1.5
and 3T scanners (FoV = 256 mm × 256 mm, matrix size
= 0.9375 × 0.9375 × 1.2 mm3). OASIS: The OASIS study
implemented a T1-weighted MPRAGE on a 1.5T Vision Scanner
(TR = 9.7 ms, TE = 4.0 ms, flip angle = 10◦, FoV = 256 mm
× 256 mm, matrix size = 1 × 1 × 1 mm3). IBSR: T1-
weighted images, scanner/scan parameters unspecified, with
128 saggital slices (FoV:256 × 256 mm, variable matrix size:
0.8370/0.9375/1.0 × 1.5 × 0.8370/0.9375/1.0 mm3).

File Preparation
The MR images were prepared for processing in three steps.
First, the brains were extracted from the whole-head MRI volume
using the brain extraction tools of FSL. An automated bash
script using the FSL tools (Smith et al., 2004; Woolrich et al.,
2009) completed this task with the following actions: register
the head to the MNI-152 head (Collins et al., 1995; Mazziotta
et al., 2001a); inverse-transform an MNI-brain-mask to the
participant space; use the mask to get a preliminary brain;
use betsurf to get a binary skull mask; use the skull mask
to delineate a second preliminary brain; use bet2 to extract
the brain from the second preliminary brain mask for the
final brain (Smith, 2002; Jenkinson et al., 2005). We visually
inspected each brain for accuracy, and adjusted the bet2 variables
(e.g., fractional intensity threshold, center of gravity, starting
sphere size) to get a well-formed brain volume (Jenkinson et al.,
2005).

Second, we adjusted the MRI intensity variations found in
the datasets (NIHPD, USC-MCBI, OASIS, IXI, MUSC) that
stemmed from different machines, different recording sites and
slight differences in protocol. First, bias field inhomogeneity
was corrected with a N4 bias field correction procedure
(Tustison et al., 2010; Avants et al., 2011b). Second, the MRI
voxel levels were normed so that GM peak intensity was
100. This was done by first segmenting the brain with the
FSL FAST procedure, ‘‘FMRIB’ s Automated Segmentation
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Tool’’ (Zhang et al., 2001) into GM, WM, and OM. The
MRI voxels with PVEs of 1.0 in the GM segments were
averaged to determine the average voxel intensity for GM.
The scan was then renormed with this value to have a
value of 100, which resulted in the peak of the GM
intensity in the MRI histogram curve equaling 100. These
procedures ensured standardization among all the scans (see
Ba ğcı et al., 2010, for a more detailed discussion of intensity
standardization).

Third, the individual participant MRI volumes were classified
into GM, WM, and OM. We used two initial procedures to
do this, in order to compare segmentation used with MNI
or no reference: first, the FSL FAST procedure was used to
segment the T1W scans without using any prior classification
volumes (‘‘Image’’) and second, the FSL FAST procedure was
used with the MNI priors (‘‘MNI’’). Both methods resulted in a
separate PVE for GM, WM, and OM, for each participant’s MRI
volume.

Construction of Age-Specific Templates
We constructed the age-specific templates with the iterative
routines found in Sanchez et al. (2012a,b); also see Guimond
et al., 2000; Yoon et al., 2009; Fonov et al., 2011, for examples
of similar iterative routines). The whole-head MRI volumes
and brain-extracted MRI volumes were performed separately.
Figure 1 is a schematic representation of the steps used in
the construction of the template for a specific age group for
both whole-head and brain-extracted templates. The first step
of the iterative procedure was to construct a tentative average
(Figure 1, ‘‘A0’’). A rigid rotation (FLIRT 6 parameter linear
registration and transformation; Jenkinson and Smith, 2001) to
the MNI-152 adult template ensured all images were oriented
in the same way prior to averaging (ICBM-152 defined in
Mazziotta et al., 2001a; Joshi et al., 2004). The second step of
the iterative procedure consisted of a non-linear registration

(ANTS, ‘‘Advanced Normalization Tools’’; Avants et al., 2008,
2011a) to the current reference average (An−1), a transformation
of each participant MRI into the template space (Vn), and
then a averaging of the transformed MRIs (An). This average
was then used as the reference model in the next iteration
(An−1 on next step). The first non-linear registration was done
with low resolution (50 × 0 × 0 iterations), the second with
medium resolution (50 × 50 × 0 iterations), and the final
steps with fine resolution (50 × 50 × 50). The root mean
square (RMS) difference between successive average reference
models was calculated, and the iterative procedure was done
until leveling of the successive RMS values was obtained.
The final reference model is the ‘‘age-specific’’ template. More
details of this procedure may be found in Sanchez et al.
(2012a).

We used open-source and publicly available tools for
these methods. An automated image-processing pipeline was
constructed with the Linux bash scripting language. The FSL
FLIRT tool (Jenkinson and Smith, 2001) performed the rigid
rotation to the MNI-152 volume (6-degrees-of-freedom). The
ANTS program (Avants et al., 2008, 2011a) performed affine
and diffeomorphic registration (symmetric normalization, SyN)
of the source volumes to the reference volumes. The ANTS
program uses symmetric diffeomorphic normalization to capture
shape and intensity differences and enhance alignment of image
features. The ANTS tool, AverageImages (non-normed) was used
for the averaging step.

The transformation parameters from the averaging process
were used to create ‘‘Image’’ and ‘‘MNI’’ average tissue priors.
Each iteration step from the ANTS procedure resulted in
a coefficient matrix for the affine transformation, three
volumes with non-linear deformation values for the forward-
transformation (Warp x, y, z) of the source volume to the
reference volume, and three MRI volumes with non-linear
deformation values for the inverse transformation (InverseWarp

FIGURE 1 | The pipeline for age-specific template creation. First,
participant brains were rigidly registered to the MNI brain, maintaining the
volume and size of the original. Rigidly registered brains (V0) were then averaged
to create a rough template (A0). This template was used as the first registration

target, to which each participant brain was nonlinearly registered and
transformed (Vn). With each iteration, the participant brains were nonlinearly
registered to the new average (An−1), transformed and then re-averaged to
create a new, relatively more precise average (An) for the next iteration.
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x, y, z) of the reference volume to the source volume. The
spatial transformation coefficients and deformation-volumes
on the final iteration represent the linear and non-linear
registration of the individual participant MRI volumes
to the average volumes. The individual participant PVE
volumes were forward-transformed by the participant-template
transformation parameters into the average template size
and orientation. An average of the transformed participant
volumes was made separately for the GM, WM, and OM
volumes for each segmentation procedure in order to create
‘‘Image’’ and ‘‘MNI’’ tissue priors for each age-specific
template.

Tissue Classification Tests
First we used the manually guided segmentations from the
IBSR datasets in order to evaluate the relative fit between our
various automated methods and a ‘‘gold standard’’ manually
guided segmentation. The goal of this comparison was not
primarily an evaluation of the accuracy of these automated
methods, but rather to determine the best ‘‘proxy standard’’ to
use for our comparisons of age-specific priors, where manual
segmentations were unavailable. For this analysis we calculated
segmented GM and WM on the IBSR participants MRI volumes
for the following eleven procedures: (1) ‘‘Image’’, calculated
from the T1W with no priors; (2) ‘‘MNI-a priori’’: calculated
using the MNI template segmented GM/WM as priors only
at the beginning step (FAST—A option); (3) ‘‘Image-AVG-
a priori’’ used the ‘‘Image’’ averaged GM/WM volumes as
priors only on the beginning step (FAST–a option); (4) ‘‘Image-
AVG-a posteriori’’: used the ‘‘Image’’ averaged GM/WM
volumes as priors on the beginning and posteriori steps
(‘‘FAST–p’’); and (5) ‘‘MNI-a posteriori’’: Used the ‘‘MNI-
averaged’’ GM/WM on the beginning and posteriori steps
(‘‘FAST–p’’). For the analyses using the averaged GM/WM
volumes as segmenting priors, we used the priors from the young
adult template (20–24 years), the age-appropriate five-year
template, or the age-appropriate 10-year template. The Dice
coefficient, which measures degree of overlap (ranging from 0,
or no overlap, to 1, total overlap; Dice, 1945) and represents
the intersection of two similarly labeled regions divided by
the mean volume of the regions, was used to compare the
outputs of our various segmentations with each manually
segmented IBSR volume. Figure 2 is a schematic showing the
eleven segmented volumes that were compared against the
manually segmented IBSR volume. A list of these volumes is as
follows:

1. No priors (Image)
2. MNI priors (MNI-a priori)
3. Image-based young adult priors, a priori only (Image-AVG-

a priori)
4. Image-based 5-year age appropriate priors, a priori only

(Image-AVG-a priori)
5. Image-based 10-year age appropriate priors, a priori only

(Image-AVG-a priori)
6. Image-based young adult priors, a priori and a posteriori

(Image-AVG-a posteriori)

7. Image-based 5-year age appropriate priors, a priori and
a posteriori (Image-AVG-a posteriori)

8. Image-based 10-year age appropriate priors, a priori and
a posteriori (Image-AVG-a posteriori)

9. MNI-based young adult priors, a priori and a posteriori (MNI-
AVG-a posteriori)

10. MNI-based 5-year age appropriate priors, a priori and
a posteriori (MNI-AVG-a posteriori)

11. MNI-based 10-year age appropriate priors, a priori and
a posteriori (MNI-AVG-a posteriori)

Second, 56 participant volumes from the original image set
were chosen (four selected randomly from each five-year
age group, two males and two females) to compare the
effect of the age-appropriate and age-inappropriate templates
on media segmenting. We constructed segmented PVE’s
for each participant using the averaged segmented volumes
from five-year templates of successively older and younger
five-year age groups. Based on the results from the first
analysis, we chose the ‘‘Image-AVG-a posteriori’’ method for
this calculation (image-averaged priors from age-inappropriate
MRI template with priors applied at the beginning step and
a posteriorly, FAST–p). The Dice coefficient was used to
compare the age-appropriate segmentation with each of the
segmentations derived from the younger and older five-year
templates.

Volumetric Analyses
To assess the ability of age-appropriate templates to confirm
previously discussed characteristics of brain aging, we calculated
GM, WM, and OM volumes (in mm3) for all participants using
the PVE volumes based on segmentation with age-appropriate
five-year template priors. We also calculated GM + WM volume.
As a point of comparison, we calculated inner skull volume
(also in mm3) using results of the betsurf program, a brain
extraction tool available in FSL (Smith, 2002). Betsurf produces
three additional surfaces: inner and outer skull, and outer scalp.
Further information on the betsurf program is available from
http://www.fmrib.ox.ac.uk/analysis/research/bet/.

Results

The database consists of age-specific templates divided into
five-year increments, 10-year increments and multi-year age
groups (25–39, 40–59, 60–89). Templates for T1W head and
T1W brain exist for each age group. Additionally, PVEs and
binary-segmented images were created for each template from
the two different segmentation methods: Image (no priors)
and MNI priors. The T1W average templates represent gray
matter values normalized to 100, so that variations in voxel
intensity between MRI volumes did not affect the averages. All
averaged templates result from an initial linear registration and
transformation with the MNI-152 template. Thus, the templates
are loosely oriented to the MNI-152 volume. Subsequent steps
utilized nonlinear transformations with age-specific templates
created from prior steps, which minimized the influence of the
MNI-152 template. The resulting age specific head and brain
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FIGURE 2 | Schematic of segmentation routines used on the IBSR
test subjects. All subjects had a baseline segmentation with no priors
(“Image”), as well as with the MNI152 prior set (“MNI a priori”). Using
age-based average MRI templates, segmentation with priors specified
both a priori and a posteriori using image-based averages, as well as

a posteriori using MNI-based averages. Each of these was conducted
using priors from three template age groups: a 20–24 year template, a
five-year age-matched template, and a 10-year age-matched template.
The eleven segmented volumes resulting from this, and the manual
segmented volume, are represented with dashed-line outlines.

templates represent the average size for the participants at that
specific age.

Axial (A) and mid-sagittal (B) slice for each five-year age-
specific T1W brain (A) and head (B) template are pictured in
Figure 3. The sagittal view of the averaged templates exhibits
small morphological structures in fine detail, as can be seen
with cortical and subcortical anatomy. Gradual brain atrophy is
noticeable especially when comparing the templates across age.
All templates appear to be relatively consistent in regards to level
of detail and clarity.

Tissue Classification Tests: IBSR and
Segmentation Methods
The purpose of this analysis was to evaluate the overlap
between the manually segmented brain volumes from the
IBSR and the primary segmentation routines (listed in
Figure 2). Figure 4 illustrates the general pattern of the
segmentation outputs for a single participant. We used a one-
way ANOVA to examine the relative fit of the five methods
(Image, MNI-a priori, Image-AVG-a priori, Image-AVG-
a posteriori, MNI-AVG-a posteriori) to the manually guided
segmentations, separately for GM and WM, and for each
IBSR dataset. The segment type main effect was significant
for all four comparisons; GM, IBSR-18, F(4,41) = 42.86,
p < 0.001; WM, IBSR-18, F(4,45) = 16.07, p < 0.001; GM,
IBSR-20, F(4,34) = 139.57, p < 0.001; WM, IBSR-20, F(4,34) =
81.61, p < 0.0001. Figure 5 show the means separately for
these five segmentation procedures; and the segmentations

with average template priors are shown separately for the
young adult, five-year and 10-year age-appropriate average
templates. We did post hoc tests to compare averages from
individual segment types, and there were many significant
differences. For GM, segmentation with age-appropriate
five-year template was the best fit and the participant’s
individual MNI segmentation was the worst fit. A particularly
relevant comparison is the Image and the Image-AVG-
a posteriori comparison, which showed a significantly larger
dice value for the age-appropriate segmentation. The same
general pattern occurred for WM, with the exception that
for WM, segmentation with age-appropriate Image-AVG-
a posteriori method was not significantly different from
the Image (no priors) segmentation (see Figure 5, bottom
figures).

A second analysis based on these data was a comparison
among the three segmentation methods with that used priors
from the average MRI templates (Image-AVG-a priori, Image-
AVG-a posteriori, MNI-AVG-a posteriori). A segment type (3) X
age-type (3: young adults, five-year age-appropriate, 10-year age-
appropriate) ANOVA was done on the Dice value. The segment
type main effects are a subset of the prior analysis, and so will not
be considered. For both media types and IBSR groups, there were
significant main effects of age-appropriate type, GM, IBSR-18,
F(2,36) = 16.32, p< 0.001; WM, IBSR-18, F(2,36) = 72.8, p< 0.001;
GM, IBSR-20, F(2,66) = 75.55, p < 0.001; WM, IBSR-20, F(2,66) =
55.54, p < 0.0001. We tested post hoc comparisons by examining
the three age-appropriate types for the three segmenting types.
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FIGURE 3 | Age-specific templates showing axial slice at AC-PC commissure (A) of brain extracted average template and mid-sagittal slice (B) of
whole head average template. T1W MRI volumes across ages of study.

For the Image-AVG-a posteriori method, the Dice value for
the five-year and 10-year age appropriate averages were not
statistically significant; whereas the Dice value for the two age-
appropriate averages were significantly larger than the young

adult average for the WM for IBSR-18 and IBSR-20 participants,
and for the GM for the IBSR-20 participants (see Figure 5). All
four comparisons for the MNI-AVG-a posteriori showed this
pattern (5 year = 10 year > young adults); there was no significant
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FIGURE 4 | Example two-class MR volume segmentation from a
60-year-old female. Volume was segmented and then gray matter (GM) and
white matter (WM) were combined into a two-class volume. Red = WM; Blue =
GM; Gray = other brain tissue. Label above volume indicates which set of tissue
priors was used to segment the volume. Comparing the Image to the MNI, the

MNI seems to classify more voxels as WM and fewer voxels as GM.
Age-appropriate (“Image-AVG a posteriori”) and Image match one another
rather closely, however age-appropriate does seem to identify slightly more
voxels as GM.

difference among the age-appropriate types for the Image-AVG-
a priori segmenting type.

Tissue Classification Tests: Younger and Older
Age Average Priors
The ‘‘Image-AVG-a posteriori’’ method with age-appropriate
MRI template was the best fit over both GM/WM and two
IBSR groups. We therefore used the Image-AVG-a posteriori
method to compare the age-appropriate segmentation as a proxy
for the manual segmentation. The purpose of these ANOVA’s
was to evaluate the effect of use of age-inappropriate priors,
by examining the overlap between the segmented brain PVE’s
based on the participant’s age-appropriate five-year template and
successively older and younger five-year templates (see Figure 2).
We conducted separate tests for GM and WM. For GM, a 14
(template age) × 26 (age difference) mixed ANOVA revealed a
main effect of age difference, F(25,492) = 17.68, p < 0.0001, and
an interaction between age and age difference, F(143,492) = 1.47,
p = 0.0014, but no significant age main effect. The pattern of
findings for WM were similar: a main effect of age difference,
F(25,492) = 7.76, p < 0.0001, and an interaction between age and
age difference, F(143,492) = 1.38, p = 0.0062. Figure 6 demonstrates
the change in fit of successively older and younger five-year
templates for four selected age groups (20–24, 40–44, 60–64, and
85–89). Figure 7 shows the changes for younger and older ages
summed over all age groups. The same general pattern is present
in all graphs. The overlap between segmentation based on age-
appropriate and age-inappropriate templates decreases as the age
is further from the participant’s age. We tested the age-difference
main effect for all 14 age groups, and found a significant age-
difference effect at each group. These post hoc tests shows that

the interaction between age and age-difference occurred because
of the differing patterns across different ages (e.g., Figure 6).

Volumetric Analyses
To assess the ability of age-appropriate templates to confirm
previously discussed characteristics of brain aging, we calculated
GM, WM, and OM volumes (in mm3) for all participants using
the PVE volumes based on age-appropriate five-year template
priors. The results closely match previous volumetric studies
in that GM volume shows a linear decrease throughout the
adult lifespan, whereas WM volume stays somewhat stable, even
increasingly slightly up until age 50, and then starts to decline
(Figure 8). OM volume shows a small, associated increase in
volume, especially after age 50 (Figure 8). We also calculated GM
+ WM volume and as a point of comparison, we calculated inner
skull volume (also in mm3) using results of the betsurf program
(described in section 2.7). Results demonstrate that at younger
ages, the volume of GM + WM closely approximates that of the
inner skull volume but over age a separation occurs such GM
+ WM volume is not as large as inner skull volume (Figure 8).
This separation is likely due to the loss in GM and WM volume
accompanied by an increase in OM volume.

Discussion

The purpose of the current work was to create a set of age-specific
adult brain templates that could be used for anatomical image
processing. Our rationale for creating age-specific templates
as an alternative to study-specific templates or young-adult
templates (e.g., MNI) was two-fold. First, we wanted to create
age-appropriate templates that could be used for multiple studies
and second, we wanted to create templates in increments small
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FIGURE 5 | Comparing segmentation methods across age ranges.
Dice similarity values are shown for both gray matter (GM) and white
matter (WM) for comparisons to the manually segmented IBSR18 and
IBSR20 datasets. Values are shown for the MNI-based and Image-based
prior sets, for a priori and a posteriori specification, and for
age-appropriate five-year (“5”) and ten-year (“10”) templates, as well as

our young adult (“20–24”) template. “MNI” refers to the standard MNI152
priors, and “Image” refers to segmentation from the base image, without
explicitly specifying priors. Note that performance is generally best for
a posteriori specification, using age-appropriate priors within a five-year
range. Selected significant post hoc comparisons are highlighted; the
“MNI” template had the lowest Dice values for each comparison.

enough to meaningfully represent neuroanatomical changes
over age. We were successful in creating a set of templates
that meaningfully represent neuroanatomical changes that occur
throughout adulthood. The templates are based on a large
number of images (>1000) and a wide range of ages (20–89), and
provide five-year, 10-year, and multi-year increments. The age-
specific templates created for this study should provide increased
accuracy when used for the tissue classification steps often used
with structural MRI analysis pipelines. The templates used in the
current study are available online.4

The issues with using brain templates derived from young
adult data for studies with special populations have been
well-documented (Huang et al., 2010). These limitations are
especially apparent when using young adult reference data
as a tool for segmenting images from a range of ages into
the different tissue types. As a potential solution, studies
investigating differences in brain volume with VBM began
using study-specific templates to improve tissue classification

4http://jerlab.psych.sc.edu/NeurodevelopmentalMRIDatabase/

results. Early investigations comparing a study-specific template
to the MNI template for tissue segmentation found that
the study-specific template provided less biased estimates
(Ashburner and Friston, 2000; Good et al., 2001; Thompson
et al., 2001). Similar to these studies, we found that age-
specific tissue priors provided less biased tissue estimates than
did MNI or other young-adult tissue priors, especially for
older adults. Age-specific five-year or 10-year tissue priors
performed similarly and may prove equally useful in practical
application. Additionally, we found that age-specific tissue
average priors created with MNI priors as a base reference,
while better than simply using the MNI, provided more
biased tissue estimates than age-specific tissue priors that did
not start with MNI base priors, especially for older adults.
Aging investigations using study-specific priors that start with
MNI base priors may offer a large increase in accuracy over
simply using the MNI (e.g., Lemaître et al., 2005), however
our results suggest age-specific tissue priors that do not start
with MNI priors as a base reference may provide even better
results.
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FIGURE 6 | Age-appropriate segmentation priors compared to
those from inappropriate ages. Partial volume estimates (PVE’s) for
both gray matter (GM) and white matter (WM) were derived from
segmentation using age appropriate (five-year range) priors, as well as

priors derived from younger and older age groups. These PVE’s were
compared, and mean Dice similarity values are shown for several
representative ages. Note the consistent drop off in similarity, as utilized
priors grow farther from the appropriate age range.

The database from which we constructed the templates
had approximately equal numbers of males and females.
Generally template construction used for young adults does
not distinguish gender. Our templates come primarily from
Caucasian participants, though the exact distribution of racial
and ethnic groups is unknown. It has been shown by others that
templates based on Asian young adult samples have markedly
differing characteristics to those based on primarily Caucasian
samples. For example, Lee et al. (2005) found that a standard
Korean brain template created based on Korean adults was
shorter, wider, and less in height compared to the ICBM-152
template. Tang et al. (2010) created a Chinese MRI brain template
and found similar results. This suggests that age (Huang et al.,
2010) and race/ethnicity (Lee et al., 2005; Tang et al., 2010) may
both be important factors when considering MRI template usage.

We also evaluated the templates with a small external
validation dataset not used in the creation of the templates.
We did this by using the manually segmented images from the
IBSR (Filipek et al., 1994; Rohlfing, 2012) and comparing the

automated segmentation with our segmenting priors applied
on those MRI volumes with the manually segmented GM
and WM. The age-appropriate average priors created with no
base reference (see Figure 2) were the best fitting method for
the external validation data set. This method outperformed
MNI priors, age-appropriate priors with the MNI as the
base reference set, and young-adult template priors (see
Figure 4). These results suggest our age-specific templates
will provide more accurate tissue segmentation in future
datasets. The IBSR data volumes might be considered a ‘‘gold
standard’’ manual segmentation against which to compare the
classification methods. These comparisons show how well the
age-appropriate average priors performed relative to a manual
segmentation.

The quality and usefulness of these age-specific templates is
validated through their ability to replicate age-related volumetric
change trends in the literature. We found changes in GM and
WM over adulthood with the segmented PVE volumes based
on the participants’ age-appropriate five-year template. Similar
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FIGURE 7 | Age-appropriate segmentation priors compared to those
from priors of different ages. Partial volume estimates (PVE’s) for both gray
matter (GM) and white matter (WM) were derived from segmentation using
age appropriate (five-year range) priors, as well as priors derived from younger
and older age groups. These PVE’s were compared and averaged across
participants and age groups, and mean Dice similarity values are shown by
age difference from the participant. Note the consistent drop off in similarity, as
utilized priors grow farther from the appropriate age range.

FIGURE 8 | Whole brain tissue and volume measures across age.
(A) Gray matter (GM), white matter (WM), and other matter (OM) volumes
(in mm3) over five-year age group (all participants) using the PVE based on
age-appropriate five-year template priors. (B) GM + WM and inner skull
volume (in mm3) over five-year age group (all participants). Inner skull volume
was taken from results of the betsurf program. Ticks on each bar represent
+/− one standard error.

to prior studies, the results showed a linear decrease in GM
volume over the course of adulthood (Good et al., 2001; Ge et al.,

2002; Sato et al., 2003; Sullivan et al., 2004; Taki et al., 2004;
Lemaître et al., 2005; Smith et al., 2007), a quadratic change in
WM, with slight increases up to age 50, followed by decreases
thereafter (Ge et al., 2002; Lemaître et al., 2005; Salat et al.,
2009), and a slight associated increase in OM (Good et al., 2001;
Lemaître et al., 2005; Smith et al., 2007). There was a small
apparent increase in the amount of GM at our oldest two ages
(Figure 8), which seems different than the regular decline in GM
at these ages reported in other study. However, this may be due
to sampling biases or other exclusion factors in these data. It is
worth noting that a similar analysis of these adult data along
with child and adolescent data from our ‘‘Neurodevelopmental
MRI Database’’ (Richards and Xie, 2015) showed that the GM
volume peak occurs somewhat earlier, in late childhood or
early adolescence (e.g., 10–12 years). This implies that the age
trends noted in several studies reflect only the changes from
the youngest age of the participants in the study, generally
young adults.

The method of template creation that we used here
should prove useful to the research and clinical communities,
in particular for researchers focused on neuroimaging and
aging. We utilized publicly available image post-processing
software programs (FSL, ANTS) to produce our age-specific
templates. Similar to others (Fonov et al., 2011; Sanchez
et al., 2012a,b), the age-specific templates were created through
an iterative approach that minimized the influence of MNI
a priori data and maximized the preservation of the different
sizes, shapes and tissue distribution of the adult data. The
processing pipeline refined the images recursively, such that
the optimization procedure was applied to the data at
different resolutions, with successively higher resolution during
the nonlinear registration. Our pipeline procedure should
be useful to others who wish to create adult templates
based on different parameters using state-of-the-art averaging
programs.

Conclusions

Discrepancies between aging brains and the current reference
data available continue to be an issue and the need for age-
specific reference data is apparent. Several large-scale normative
samples have provided the opportunity to address the need
for age-specific brain templates. We implemented an automatic
image-processing pipeline for template creation that has worked
well with pediatric and infant images (Sanchez et al., 2012a,b)
and created age-specific adult templates using state-of-the-art
averaging techniques. The age-specific templates provide more
precise a priori information to guide segmentation. Similar to
study-specific templates (Ashburner and Friston, 2000; Good
et al., 2001; Thompson et al., 2001), use of age-specific reference
data will hopefully facilitate the generation of more reliable
conclusions about the volumetric changes that occur with aging.
The images from the current study complement our earlier
studies and result in a database of normative age-appropriate
average MRI templates across the lifespan (Richards and Xie,
2015).
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