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Abstract

An RNA secondary structure is locally optimal if there is no lower energy structure that can be obtained by the addition or
removal of a single base pair, where energy is defined according to the widely accepted Turner nearest neighbor model.
Locally optimal structures form kinetic traps, since any evolution away from a locally optimal structure must involve
energetically unfavorable folding steps. Here, we present a novel, efficient algorithm to compute the partition function over
all locally optimal secondary structures of a given RNA sequence. Our software, RNALOCOPT runs in O(n3) time and O(n2)
space. Additionally, RNALOCOPT samples a user-specified number of structures from the Boltzmann subensemble of all locally
optimal structures. We apply RNALOCOPT to show that (1) the number of locally optimal structures is far fewer than the total
number of structures – indeed, the number of locally optimal structures approximately equal to the square root of the
number of all structures, (2) the structural diversity of this subensemble may be either similar to or quite different from the
structural diversity of the entire Boltzmann ensemble, a situation that depends on the type of input RNA, (3) the (modified)
maximum expected accuracy structure, computed by taking into account base pairing frequencies of locally optimal
structures, is a more accurate prediction of the native structure than other current thermodynamics-based methods. The
software RNALOCOPT constitutes a technical breakthrough in our study of the folding landscape for RNA secondary structures.
For the first time, locally optimal structures (kinetic traps in the Turner energy model) can be rapidly generated for long RNA
sequences, previously impossible with methods that involved exhaustive enumeration. Use of locally optimal structure leads
to state-of-the-art secondary structure prediction, as benchmarked against methods involving the computation of minimum
free energy and of maximum expected accuracy. Web server and source code available at http://bioinformatics.bc.edu/
clotelab/RNAlocopt/.
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Introduction

Kinetics of RNA secondary structure formation plays an

important role in many biological functions, as shown by co-

transcriptional folding [1] of large RNA molecules, the host-killing

(hok) and suppression of killing system (sok) system [2] to control

plasmid copy number in E. coli, the kinetically driven trans-splicing

of a 5’ codon in Leptomonas collosoma [3], and the kinetic control in

the formation of the Tetrahymena ribozyme [4].

RNA secondary structure kinetics depends on the distribution of

locally optimal secondary structures, where a structure is said to be

locally optimal if it is not the case that by adding or removing a

single base pair, one can obtain a structure having lower free

energy. In the context of the Nussinov energy model [5], where the

energy of a base pair is {1, locally optimal structures are exactly

the saturated secondary structures, as first defined by M. Zuker [6].

(A secondary structure is saturated if one cannot add any base pairs

without violating the definition of a secondary structure; i.e.

without either creating a base triple or pseudoknot.) In the paper

[7] we developed an algorithm to compute the partition function

for all saturated secondary structures of a given RNA sequence.

Exploiting the idea behind this algorithm, in the papers [8,9], we

subsequently proved that the asymptotic number of saturated

secondary structures is 1:07427:n{3=2:2:35467n, which (surpris-

ingly) is not substantially less than the asymptotic number

1:104366:n{3=2:2:618034n of all secondary structures, a result

earlier proved by Stein and Waterman [10]. In Waldispühl and

Clote [11], we extended our previous algorithm [7] to compute the

partition function of all saturated secondary structures, with

respect to the widely used Turner energy model [12]. In the

Turner energy model, a secondary structure is decomposed into

loops, as described in Zuker [13], and the free energy is computed

by summing the energy contributions of all loops. A k-loop consists

of k{1 base pairs (excluding the closing base pair) and u unpaired

bases. The energies of 1-loops (hairpins), 2-loops (stacks if u~0,

bulges or interior loops if uw0), 3-loops and 4-loops (also known as

3-way and 4-way multiloop junctions) are obtained by least

squares fit of enthalpy and free energy change at 37C0, determined

by optical melting (UV absorption) of small model systems [14,15].

Even though free energies for the most common multiloops (3-way
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and 4-way junctions) have been experimentally determined [15],

for computational efficiency it is usual to define the free energy of

arbitrary multiloops (kw2) by the affine approximation

azb(k{1)zcu, where a, b and c are constants.

Computational studies of RNA kinetics are currently performed

either by repeated Monte-Carlo simulations, as in software

Kinfold of Flamm, Fontana, Hofacker and Schuster [16], Kinefold

of Xayaphoummine, Bucher, and Isambert [17], and RNAKI-

NETICS of Danilova, Pervouchine, Favorov, and Mironov [18], or

by direct solution of the master equation from chemical kinetics

dPi tð Þ
dt

~
X

j

Pj(t):kj,i{Pi(t):ki,j

� �
:

Here, Pi(t) is the probability that the RNA molecule is in

secondary structure Si at time t, and ki,j is the transitional

probability of moving from structure Si to neighboring structure

Sj , which differs from Si by the addition or removal of a single

base pair, and where
ki,j

kj,i
~ exp ({(Ej{Ei)=RT). By construct-

ing probabilistic roadmaps for RNA secondary structure

formation, a technique derived from robotic motion planning,

Tang, Kirkpatrick, Thomas, Song and Amato [19] and Tang,

Thomas, Tapia, Giedroc and Amato [20] are able to apply both

Monte Carlo methods and the master equation over a smaller set

of structures.

Flamm, Fontana, Hofacker and Schuster [16] describe RNA

folding at an elementary step resolution, by using a Monte Carlo

algorithm to study the kinetics of folding. Their Kinfold program

is an implementation of Gillespie’s Monte Carlo algorithm

[21,22] for stochastic folding, where elementary steps consist of

either adding, removing or shifting a single base pair. In that

paper, Flamm et al. describe the barrier tree, whose leaves are those

locally optimal secondary structures having free energy that lies

below a user-defined threshold. The barrier tree is constructed by

using the program RNAsubopt [23] to exhaustively generate all

secondary structures, whose free energy lies below a user-defined

threshold, then aggregating structures into basins containing a

locally optimal structure. As more structures are aggregated,

using the imagery of flooding a landscape, two basins may be

gradually joined together by folding paths, all of whose

intermediate structures lie in one of the two basins, for which

there exists a saddle structure of highest free energy along the

path. Flamm, Hofacker, Stadler and Wolfinger [24] present

additional applications of the Barriers program, while Wolfinger

et al. [25] describe a coarse-grained approach by applying the

master equation of chemical kinetics to macrostates consisting of

basins of structures aggregated near locally optimal structures.

For additional results on saddle points and energy barriers, see

Stadler and Flamm [26], Flamm, Hofacker, Stadler, and Stadler

[27], as well as the recent paper by Hofacker, Flamm, Heine,

Wolfinger, Scheuermann et al [28], who introduce the notion of

barmap which ‘‘links macrostates of temporally adjacent land-

scapes and defines the transfer of population densities from one

‘snapshot’ to the next’’.

Other groups have studied various aspects of kinetically driven

RNA folding. Shapiro, Bengali, Kasprzak and Wu [29] compute

likely folding intermediates in the earlier described hok/sok

system. Danilova, Pervouchine, Favorov, and Mironov [18]

describe the web server, RNAKINETICS, which models the

secondary structure kinetics of an elongating RNA molecule.

Xayaphoummine, Bucher, and Isambert [17] and Isambert [30]

introduce the Kinefold web server, which stochastically folds a

user-given RNA sequence into a low energy structure that may

include pseudoknots. Quite recently, Dotu, Lorenz, Van Henten-

ryck and Clote [31] describe an efficient program RNATABUPATH

to compute near-optimal folding pathways between two secondary

structures of a given RNA sequence. For an overview of RNA

folding kinetics, see the review articles by Chen [32] and Al-

Hashimi and Walter [1].

In this paper, we describe a novel, efficient algorithm,

RNALOCOPT, to compute the partition function over all

secondary structures that are locally optimal in the Turner

energy model. Locally optimal structures form kinetic traps, hence

create basins of attraction in the energy landscape. The structure of

this paper is as follows. In the introduction sections, we provide

background definitions for the Turner energy model and loop

decomposition. To allow the paper to be self-contained, we

additionally describe McCaskill’s classical algorithm for the

partition function [33].

In the Results section, we present three types of analysis using the

software RNALOCOPT. First, by performing computational exper-

iments on RNA sequences of increasing length, we show that the

number of locally optimal structures is asymptotically the square

root of the number of all structures, as depicted in Figure 5.

Secondly, we compare the structural diversity, as measured by four

different metrics, of the set of locally optimal structures with that of

the Boltzmann ensemble of all secondary structures. Structural

diversity appears to depend on the type of RNA; for instance, in the

case of precursor microRNAs and 5S-rRNA, the structural diversity

of the collection of locally optimal secondary structures is markedly

lower than that over the Boltzmann ensemble, while structural

diversity for TPP riboswitch aptamers appears to be about the same.

Thirdly, we demonstrate how to combine McCaskill base pairing

probabilities with those from sampled locally optimal structures in

order to compute a modified maximum expected accuracy structure

[34,35], which appears to be closer to the native structure than

structures produced by other thermodynamics-based algorithms.

The Discussion section provides additional comments on the energy

model of RNALOCOPT and benchmarking issues, and as well

describes intended future applications and possible extensions of the

software. In particular, in forthcoming work, we will introduce a

new method using RNALOCOPT to quickly and accurately determine

the mean folding time for a given RNA sequence, a synthetic biology

application for de novo RNA design.

In the Methods section, we begin by describing the intuition

behind the new O(n3) time and O(n2) space algorithm, whose

details and recurrence relations are then provided. Though our

software RNALOCOPT additionally can sample a user-specified

number of structures from the Boltzmann subensemble of

locally optimal structures, we do not describe details of the

construction, since it is analogous to the construction of Ding

and Lawrence [36,37], albeit where the McCaskill partition

function is replaced by the partition function for locally optimal

structures.

Background
An RNA molecule is a biopolymer consisting of nucleotides,

adenine (A), cytosine (C), guanine (G) and uracil (G), oriented in a

natural left-to-right fashion given by the 5’ to 3’ direction. Given

an RNA sequence a1, . . . ,an of length n, an RNA secondary

structure S is defined to be a set of base pairs (i,j), where (a) if

(i,j) [S, then (ai,aj) [ fAU ,U A,GC,CG,GU ,U Gg (base pairs

are canonical, i.e. either Watson-Crick or wobble pairs); (ii) if

(i,j) [S, then jwizh, where by convention h~3 (minimum of h
unpaired bases in a hairpin loop); (iii) if (i,j),(i,k) [S, then j~k
and if (i,j),(k,j) [S, then i~k (non-existence of base triples); (iv) if

Partition Function for RNA Kinetic Traps
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(i,j),(k,‘) [S, and ivk, then ‘vj (non-existence of pseudoknots).

See Figure 1 for three equivalent representations of the secondary

structure for RNA from human accelerated region HAR1F, a region

of the human genome that seems to have been under

evolutionary pressure in the divergence of humans from great

apes [38]. While secondary structures satisfy a planarity

condition, pseudoknots violate that condition, as shown in

Figure 2. Although pseudoknots and non-canonical base pairs play

important roles in RNA tertiary structure formation [39], the

secondary structure forms rapidly and serves largely as a scaffold

for the formation of tertiary contacts [40]. In this paper, we are

interested in developing an efficient algorithm to explore the

energy landscape of kinetically trapped RNA structures. Since

Lyngsø and Pedersen [41] have proved that it is NP-complete to

compute the minimum free energy structure for a given RNA

sequence, when general pseudoknots are permitted, we will

restrict our attention throughfoout the paper to secondary

structure.

Nearest neighbor energy model
The Turner nearest neighbor energy model is an additive

model, where the free energy of an RNA secondary structure is

computed as the sum of distinct loop free energies in a unique

decomposition of the structure. Figure 3 illustrates the different

types of possible loops for an example RNA secondary structure.

The structure contains 8 loops of 4 basic different types. Hairpins

are formed when a base pair (i,j) encloses an unpaired region of

RNA; thus a hairpin contains the nucleotides ai, . . . ,aj , where

due to steric constraints, j{iwh, for h~3, and positions

iz1, . . . ,j{1 are unpaired. Stacked base pairs are loops containing

adjacent base pairs, (i,j), (iz1,j{1), as shown in loops L2 and

L7. Left bulges are loops containing the closing base pairs

(i,j), (iz1,j{k) for kw1, where j{kz1, . . . ,j{1 are unpaired;

right bulges contain the closing base pairs (i,j), (izk,j{1) for

kw1, where positions iz1, . . . ,izk{1 are unpaired. Loop L3

depicts a left bulge. Internal loops are loops bordered by 2 base

pairs (i,j), (k,‘), where iz1vk and ‘z1vj. Loop L5 depicts an

internal loop. A multiloop is a loop bordered by 3 or more base

pairs. For instance, L4 is a multiloop closed by the base pair

(3,28), which here is a 3-way junction (i.e. bordered by three base

pairs) and which has two components (i.e. stems bordered by base

pairs (5,15) and (17,26)). The number k of base pairs that border

a loop can be use to classify the loop; k~1 in hairpins, k~2 in

stacked base pairs, bulges, and internal loops, and kw2 in

multiloops. Finally, external loops, depicted in L8, are technically

not loops, but rather are defined to be regions containing

nucleotide positions x for which there is no base pair (i,j)
satisfying iƒxƒj.

In the Turner energy model, there are free energies for each

type of loop. For the example structure S depicted in Figure 3, if

we denote the energy of loop Li by E(Li), it follows that the free

energy of S is

E(S)~
X8

i~1

E(Li):

The Turner rules were fit to enthalpy and folding free energy

change at 37uC, determined by optical melting of small model

systems [12,51]. For instance, Turner’s rules assign stacking free

energy of {2:24 kcal/mol to
5’{AC{3’
3’{UG{5’

and of {3:26 kcal/mol

to
5’{CC{3’
3’{GG{5’

. Stacked base pairs constitute negative (stabilizing)

free energy contribution; hairpins, bulges, internal loops, and

multiloops generally contribute positive (destabilizing) free ener-

gies, although certain 1|1 and 2|2 internal loops contribute

stabilizing energies.

Figure 1. RNA from human accelerated region HAR1F, a region of the human genome that differs from highly conserved regions of
our closest primate relatives and is active in the developing human brain between the 7th and 18th gestational weeks [38].
Secondary structure representation in conventional form (left), as a circular Feynman diagram (center) and as a linear Feynman diagram (right).
Sequence and consensus secondary structure taken from Rfam [42]; graphics produced with jViz software [43].
doi:10.1371/journal.pone.0016178.g001
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Figure 2. Long range pseudoknot PKB239 in the 59 untranslated region (UTR) of human immunodeficiency virus HIV-1. Secondary
structure with pseudoknots displayed in conventional form (left) and as a circular Feynman diagram (right). Sequence and structure of PKB239 taken
from Pseudobase [44]; graphics produced with jViz software [43].
doi:10.1371/journal.pone.0016178.g002

Figure 3. The Turner energy model is an additive loop model, whereby the free energy of an RNA secondary structure is defined to
be the sum of loop free energies in a unique decomposition of the structure into loops. In this figure, the free energy of the depicted
structure is the sum of free energies of loops L1 through L8 . The Turner rules include free energy parameters for different types of loops, illustrated
here for hairpins (L1,L6), stacked base pairs (L2,L7), bulges (L3), internal loops (L5), multiloops (L4) and external loops (L8). The Turner parameters are
derived from a series of UV absorption (optical melting) experiments described in a number of papers including the references [12,45–49]. For a
complete list of all references, see http://rna.urmc.rochester.edu/NNDB/ref.html. Images created using the software VARNA [50].
doi:10.1371/journal.pone.0016178.g003
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Important aspects of the Turner energy model are additivity

and locality. Both of these properties are critical in the

development of an efficient computation of the partition

function; indeed, it is this local nature of the energy model

that renders it possible to inductively determine all locally

optimal structures.

The algorithm to compute the partition function of all

locally optimal structures is a modification of McCaskill’s

algorithm, which we will review now. McCaskill’s algorithm

recursively computes the partition function for structures on

subsequence ai, . . . ,aj by table look-up of the previously

computed partition function values for proper subwords of

ai, . . . ,aj . Each recursion step involves the addition of either

one base pair or one unpaired base to groups of structures

whose partition function is already known. Our modification to

McCaskill’s algorithm is to make sure at each step that the base

pair or base added does not cause the occurence of non-

optimal structures. This will require additional information to

be stored at each step, but does not change the basic structure

of the McCaskill recursions.

McCaskill’s partition function
In order to provide a self-contained treatment, we now review

the construction of McCaskill’s algorithm [33] to construct the

partition function for RNA secondary structures.

Given RNA nucleotide sequence a1, . . . ,an, we let EHP(i,j)
denote the free energy of a hairpin closed by base pair (i,j), while

EIL(i,j,i’,j’) denotes the free energy of an internal loop enclosed by

the base pairs (i,j) and (i’,j’), where ivi’vj’vj. (Internal loops

comprise the cases of stacked base pairs, left/right bulges and

proper internal loops.) The free energy for a multiloop containing

Nb base pairs and Nu unpaired bases is given by the affine

approximation azbNbzcNu.

Given an RNA sequence a1, . . . ,an, for 1ƒiƒjƒn, the

McCaskill partition function Z(i,j) is defined by
P

S e{E(S)=RT ,

where the sum is taken over all secondary structures S of ai, . . . ,aj ,

E(S) is the free energy of secondary structure S, R is the universal

gas constant, and T is absolute temperature. In the sequel we write

a½i,j� to abbreviate ai, . . . ,aj .

Definition 1 (McCaskill’s partition function)

N Z(i,j): partition function over all secondary structures of a½i,j�.
N ZB(i,j): partition function over all secondary structures of

a½i,j�, which contain the base pair (i,j).

N ZM (i,j): partition function over all secondary structures of

a½i,j�, subject to the constraint that a½i,j� is part of a multiloop

and has at least one component.

N ZM1(i,j): partition function over all secondary structures of a½i,j�,
subject to the constraint that a½i,j� is part of a multiloop and has

at exactly one component. Moreover, it is required that i base-

pair in the interval ½i,j�; i.e. (i,r) is a base pair, for some ivrƒj.

Following McCaskill [33], the unconstrained partition function

is defined by

Z(i,j)~Z(i,j{1)zZB(i,j)z
Xj{h{1

r~iz1

Z(i,r{1):ZB(r,j): ð1Þ

The constrained partition function closed by base pair (i,j) is

given by

ZB(i,j)~ exp ({EHP(i,j)=RT)zX
iƒ‘ƒrƒj

exp ({EIL(i,‘,r,j)=RT):ZB(‘,r)z

exp({(azb)=RT):
Xj{h{2

r~iz1

ZM(iz1,r{1):ZM1(r,j{1)

 !
:

ð2Þ

The multiloop partition function with a single component and

where position i is required to base-pair in the interval ½i,j� is given

by

ZM1(i,j)~
Xj

r~izhz1

ZB(i,r): exp ({c(j{r)=RT): ð3Þ

Finally, the multiloop partition function with one or more

components, having no requirement that position i base-pair in

the interval ½i,j� is given by

ZM (i,j)~
Xj{h{1

r~i

ZM1(r,j): exp ({(bzc(r{i))=RT)z

ð4Þ

Xj{h{1

r~izhz2

ZM (i,r{1):ZM1(r,j): exp ({b=RT)

See Figure 4 for a pictorial representation of the recursions of

McCaskill’s (original) algorithm [52]; note that the recursions are

equivalent to, but not quite the same as, those given in [53].

Results

Number of locally optimal structures
In this section, we compare the values of the partition function,

ZLO, of all locally optimal structures, and the total number, NLO,

of locally optimal structures, with those for all structures. The

number of locally optimal structures, NLO, is determined by

removing all energy factors in the previous equations for the

Boltzmann partition function. This is equivalent to setting the

temperature to z?, since all energetic factors are of the form

e({E=RT).

In Figure 5, for lengths between 20 and 200 nt, 100 RNA

were randomly generated for each length in the simplest

possible manner, with 1/4 probability of A, C, G, and U at

each location. For each such RNA, the number of locally

optimal structures as well as the number of all secondary

structures is determined. These are averaged over the 100

randomly generated RNA sequences of that length, and plotted

in the graph shown in Figure 5. We find there is exponential

growth in the average, or expected, number of locally optimal

structures, as a function of sequence length. Moreover, the slope

of the curve in Figure 5 for the total number of structures is

approximately twice that of the number of locally optimal

structures, hence implying that the number of structures is

approximately the square of that for locally optimal structures.

Indeed, by fitting the data with a least-squares approximation,

we find that the number NumS(n)&100:254759:n{1:95771 with

Partition Function for RNA Kinetic Traps
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R2~0:999815, while the number NumLO(n) of locally optimal-

structures for length n random RNA satisfies NumLO(n)
&100:130366:n{1:50236 with R2~999407. (The coefficient of

determination, R2, is the square of Pearson correlation

coefficient of the least squares (linear) fit of the logarithm of

the average number of structures.)

In Figure 6, we compare the partition function, ZLO, of all

locally optimal structures, with the partition function, Z, of all

structures, by plotting the ratio, ZLO=Z, by the same method,

averaging over 100 RNA at each length. This ratio, depicted with

error bars, represents the percentage of structures, as weighted by

their Boltzmann factor, that are locally optimal. By numerical

fitting the data from this curve, it appears that the ratio is

approximately 1:0053 exp ({0:0123n) with coefficient of deter-

mination R2~0:9876 (see [54] for explanation of how to compute

the coefficient of determination).

Another interesting computational experiment we performed

was to determine the sum of the Boltzmann factors for a non-

redundant subset of 1000 sampled locally optimal structures,

produced by RNALOCOPT, compared with the sum of the

Boltzmann factors for a non-redundant subset of secondary

structures, sampled by the Ding-Lawrence algorithm [36], as

implemented in RNASUBOPT -p. Table 1 presents these results for

RNA generated in the previously described manner from an

order 0 Markov chain, for lengths from 20 to 200 in steps of 20.

For each length, we averaged statistics over 10 runs, where for

each run, we computed the percent coverage of the partition

function; i.e. sum of the Boltzmann factors of a non-redundant

subset from 1000 samples generated by RNASUBOPT [resp.

RNALOCOPT], divided by the partition function Z [resp. partition

function ZLO of locally optimal structures]. The number of

locally optimal structures is far fewer than that of all structures

(see Figure 5), hence, there is proportionately more redundancy

among sampled locally optimal structures than than that over all

structures. As well, the percentage coverage of the partition

function for sampled locally optimal structures is higher than that

for the Boltzmann ensemble.

Structural diversity of ensemble of locally optimal structures
In our paper on RNA saturated structures [55], we suggested that

(a) there are far fewer locally optimal structures than there are of

saturated structures, and (b) base pairing probabilities over locally

optimal structures are similar to the base pair probabilities over all

structures. In the previous section, we have shown that (a) holds;

indeed, Figure 5 shows that the number of locally optimal structures is

approximately the square root of the number of all structures, while

the papers [7–9,56] show that the number of saturated structures lies

closer to that of all structures. While statement (b) holds in some cases,

such as for purine riboswitch aptamers, in other cases, such as for

precursor microRNAs and 5S-rRNA, it does not hold.

To numerically quantify how closely the ensemble of locally

optimal structures resembles the Boltzmann ensemble of all structures,

we consider four measures: the pseudo-entropy for base pairing

probabilities, the average entropy for the base pairing probabilities, and

two forms of structural diversity, the first due to Morgan and Higgs [57]

and the second described in the Vienna RNA Package [58].

For a fixed RNA sequence a1, . . . ,an with base pairing

probabilities pi,j , the pseudo-entropy is defined by

H0~{
X

i,j

pi,j ln pi,j :

Since the collection of base pairing probabilities pi,j does not form

a probability distribution (although it does for fixed i, as exploited in

the next definition), we cannot speak of its entropy, but rather use

the term pseudo-entropy. The average (Shannon) entropy is defined by

SHT~

Pn
i~1 H(i)

n
~

Pn
i~1

Pn
j~1 {pi,j ln pi,j

n
:

Both pseudo-entropy and the average entropy are measures of

how well-defined are the base pairs. Indeed, if position i base-pairs

Figure 4. Feynman diagram of original recursions from McCaskill’s algorithm [33] to compute the partition function. (Notation in this
figure slightly deviates from that in text; e.g. ZB in text corresponds to ZB in the figure.)
doi:10.1371/journal.pone.0016178.g004
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with very different positions j in the low energy ensemble of

structures, then the entropy H(i)~
Pn

j~1 {pi,j ln pi,j will be large.

In contrast, if i base-pairs with only one other position j, then

H(i)~0.

The Morgan-Higgs structural diversity is defined by

SDmhT~n{
Xn

i~1

Xn

j~0

p2
i,j

where pi,0 is defined by pi,0~1{
Pn

j~1 pi,j . Finally, the Vienna

structural diversity is defined by

SDvT~
X
S,T

P Sð Þ:P Tð Þ:d S,Tð Þ

~
Xn

i~1

Xn

j~1

pi,j
: 1{pi,j

� �

where the first sum is taken over all secondary structures S,T of a

fixed RNA sequence, d(S,T) is the base pair distances between

S,T , and P(S) is the Boltzmann probability P(S)~ exp ({E(S)=RT)
Z

for structure S (and similarly for T ). If there is no structural

diversity whatsoever, so that pi,j~1 for all base pairs (i,j) in the

minimum free energy structure S0, then clearly the Morgan-Higgs

diversity SDmhT will take on the least possible value,

n{jS0j&n=2, while the Vienna diversity will equal 0.

Variants of the above measures are given as well for the

ensemble of locally optimal secondary structures, where we use

base pairing frequencies pi,j over a sampled collection of 1000

locally optimal structures for a given RNA sequence. Table 2

summarizes these four measures for 14 families of seed alignments

from the Rfam 10.0 database [42]. For essentially all of these

measures, we see that the structural diversity of the ensemble of

locally optimal structures appears to be less than that for all

structures. Notable exceptions are the riboswitch aptamers from

Rfam.

By using the new algorithm RNALOCOPT, we have shown that

the collection of locally optimal structures constitutes an ensemble

that is smaller (see Figure 5) and structurally less diverse in general

than that of all structures. This provides additional evidence for

the hypothesis advanced in [24,25,27] that locally optimal

structures form basins of attraction in the folding landscape of

RNA secondary structures. For this reason, RNALOCOPT may

prove valuable in the study of kinetics of RNA folding.

Basepair probabilities lead to better RNA secondary
structure prediction

In ground-breaking work, Knudsen and Hein [59], followed by

Do, Mahabhashyam, Brudno and Batzoglou [60] and by Kiryu,

Kin and Asai [34], introduced the notion of maximum expected

accuracy secondary structure, shown to be closer to the native

structure, compared to the minimum free energy structure, when

benchmarked against known structures. The underlying idea of

this new approach is that there is a strong signal in the Boltzmann

ensemble of low energy structures – a signal that is ignored when

one computes the minimum free energy (MFE) structure, which is

the maximum likelihood structure with respect to Boltzmann probabil-

ity. Independently and at the same time, Ding, Chan and

Lawrence [61] also realized the benefit of considering the

Boltzmann ensemble rather than the MFE structure in their

construction of the Boltzmann centroid of a cluster of sampled

structures.

Following [34,35,59,60], we define the maximum expected accuracy

(MEA) structure for a given RNA sequence to be that which is

obtained by tracebacks, using the matrix M, defined as follows:

Mi,j~

0 if j{iƒ4

max Mi,j{1zb:qj , max
j{4
r~i 2a:pr,jzMi,r{1zMrz1,j{1

� �
else

8<
:
where qi~1{

Pn
j~1 pi,j , and a,b are non-negative constants. In

the previous studies [34,35], optimal values of a,b were found to

be a~1,b~1. In this paper, we have set b~1 and performed

benchmarking for a range of values a in f2{4,2{3,2{2,21,1,

2,22,23,24g. If most structures in the Boltzmann ensemble contain

the base pair (i,j), then pi,j will be large, and it can happen that

(i,j) will belong to the MEA structure even though (i,j) does not

belong to the MFE structure. The values Mi,j can be computed by

a simple modification of the Nussinov-Jacobson algorithm [5], and

the maximum expected accuracy structure with score M1,n can be

subsequently computed by tracebacks. See the references for more

Figure 5. This figure depicts the logarithm (base 10) of the
number of locally optimal [resp. all] secondary structures for
random RNA. Sequence length is given on the x-axis, while the
logarithm of the number of locally optimal structures (lower curve)
[resp. all structures (top curve)] is given on the y-axis. Error bars are
displayed. For various lengths n~10,20,30, . . . ,190, random RNA
sequences of length n were generated by a 0th order Markov process
with probability 1=4 for each nucleotide A,C,G,U. For each value of n,
the average (exact) number of locally optimal [resp. all] secondary
structures was computed. Using least-squares fitting, we find that the
number NumS(n) of secondary structures for length n random RNA
satisfies NumS(n)&100:254759:n{1:95771 with R2~0:999815, while the
number NumLO(n) of locally optimal structures for length n random
RNA satisfies NumLO(n)&100:130366:n{1:50236 with R2~999407. (The
coefficient of determination, R2 , is the square of Pearson correlation
coefficient of the least squares (linear) fit of the logarithm of the
average number of structures.) It follows that the total number of
structures is approximately equal to the number of local optima
squared.
doi:10.1371/journal.pone.0016178.g005
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details, where the previously cited authors list benchmarking

statistics to determine optimal parameters a,b for which the MEA

structure is closer to the native structure than is the MFE structure.

We compare variants of the MEA construction, obtained by

using (i) base pairing probabilities pM
i,j computed by McCaskill’s

algorithm [33] using RNAFOLD, (ii) base pairing probabilities pLO
i,j

for locally optimal structures computed by relative frequency

count from 10,000 sampled locally optimal structures, and (iii)

base pairing probabilities pmin
i,j , and unpaired probabilities qmin

i ,

defined as the minimum of both probabilities; i.e. pmin
i,j ~

min pM
i,j ,p

LO
i,j

� �
, and qmin

i ~ min qM
i ,qLO

i

� �
. Note that in case (iii)

it is no longer the case that
P

i,j pmin
i,j z

P
i qmin

i ~1. Cases (i), (ii),

and (iii) yield the base pairing distributions P (McCaskill), PLO

(locally optimal) and PMIN (minimum of McCaskill and locally

optimal).

We can determine corresponding MEA structures, denoted by

MEA and MEALO, according to the use of P resp. PLO. We see in

Figures 7 and 8 that predictions based on these MEA structures are

better than the MFE structure, as predicted by RNAFOLD. However

the predictions based on local optima are consistently worse.

However, we can create a third matrix, denoted by PMIN ,

where for each base pair (i,j),

PMIN ((i,j))~min(P((i,j)),PLO((i,j))):

This will in essence emphasize those base pairs that occur

prominently in both samples of local optima and samples of all

structures. As shown in Figure 7, this consistently increases the

sensitivity and positive predictive value.

Discussion

In this paper, we describe a novel and efficient algorithm to

compute the partition function over all locally optimal secondary

structures of a given RNA sequence. The software, RNALOCOPT

runs in O(n3) time and O(n2) space, the same time and space

complexity as that of McCaskill’s algorithm to compute the

partition function over all secondary structures. Additionally,

RNALOCOPT samples a user-specified number of structures from

the Boltzmann subensemble of all locally optimal structures. Our

work completely solves a line of investigation begun originally by

M. Zuker [6], who first defined the notion of saturated structure (for

which no base pair can be added without violating the definition of

secondary structure).

The energy model implemented in RNALOCOPT is the Turner

nearest neighbor energy model without dangles; in contrast, the

energy model used in the software RNAFOLD and RNASUBOPT is

the Turner model with dangles. Our computation of sensitivity and

positive predictive value (PPV) is exact; i.e. with no allowed slippage.

In contrast, some authors, such as Lu and Mathews [35],

benchmark sensitivity and positive predictive values by allowing

a slippage of +1; i.e. if base pair (i,j) belongs to the native structure,

then the predicted base pair (x,y) is counted as correctly predicted

if (x,y) is one of the following: (i{1,j),(i,j),(iz1,j),(i,j{1),
(i,j),(i,jz1). In [35], sensitivity and PPV values are reported with

slippage for the maximum expected accuracy (MEA) method using

the software RNASTRUCTURE [62], which includes energy terms

for coaxial stacking.

There may be some discrepancies between reported sensitivity

and PPV values from various groups. Such discrepancies will

occur due to a combination of benchmarking with respect to

 

 

Figure 6. Plot of ratio, with error bars, of the restricted Boltzmann partition function ZLO and the total Boltzmann partition
function, as a function of RNA length, for the same random RNA generated as described in the Figure 5. This ratio represents the
percentage of structures, as weighted by their Boltzmann factor, that are locally optimal. By numerical fitting, we find that this ratio is approximately
1:0053 exp ({0:0123n) with coefficient of determination (see [54]) R2~0:9876.
doi:10.1371/journal.pone.0016178.g006
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different databases, admitting slippage or not, and small

differences in the underlying energy model. Nevertheless, there

is a consistent improvement of MEA MIN, as shown in this paper,

over both minimum free energy (MFE) and maximum expected

accuracy (MEA) methods.

By applying RNALOCOPT to randomly generated RNA, we have

shown that there are far fewer locally optimal structures than that

of all structures (the number of locally optimal structures

approximately equals the square root of the number of all

structures). We have shown that the structural diversity, as

measured by four different parameters, of samples of locally

optimal structures can either be similar or quite distinct from

samples from the Boltzmann ensemble of all structures – a

situation that depends on the particular RNA family. While most

RNA families we investigated displayed smaller locally optimal

diversity than total structure diversity, notable exceptions were the

riboswitch aptamers from Rfam. One might think that this is due

to the fact that two distinct low energy conformations (gene-on and

gene-off) are present in both the local optimal and Boltzmann

ensemble. However, the Rfam database contains only the

riboswitch aptamers, which do not undergo any significant

conformation change. (Indeed, the riboswitch portion that under-

goes conformation change, called the expression platform, is

essentially missing from the Rfam data, a situation we will address

in a future publication.) Thus it remains unclear exactly why

riboswitch aptamers should display a difference in structural

diversity between locally optimal and all structures.

Since there are relatively few locally optimal structures,

compared to all structures, we are led to the hypothesis that in

certain circumstances, a collection of sampled locally optimal

structures can more succinctly represent the folding landscape of a

given RNA sequence. In forthcoming work, we will describe an

application of this observation, by presenting a new method for de

novo RNA structure design, where kinetic properties are taken into

account.

Theoretical studies of RNA folding kinetics have primarily

focused on unit-step resolution, where a single base pair is added

or removed in each time step. For such studies, RNALOCOPT will

prove to be a valuable new tool. There is some possibility of

extending RNALOCOPT to allow the formation or removal of

entire helices in each time step, a direction we are currently

considering. The idea would be to redefine a locally optimal

structure to be one for which no addition or removal of any stem

region would lower the free energy. An extension of RNALOCOPT

in this direction would allow more rapid exploration of the

folding process.

Locally optimal structures S form kinetic traps, in the sense that

there does not exist a structure T , obtained from S by the removal

or addition of a single base pair, which has lower free energy.

Since thermal noise can overcome the energy barrier between

certain conformations in the low energy ensemble, a better model

of kinetic trap might arguably be a that of a basin of attraction

located about locally optimal structure S. Such a basin would be a

set S of low energy structures, such that: (i) there is a folding path

whose barrier energy is less than a fixed energy threshold e that

cannot be overcome by thermal noise, and (ii) if T is reachable by

a folding pathway from S with barrier energy less than e, then

T [S. Though it is currently unclear what value of e should be

taken, it may be possible to extend RNALOCOPT in this direction.

This is a possible avenue for future research. (A folding pathway

from S to T is a sequence S~S0,S1, . . . ,Sn~T of secondary

structures, such that Siz1 is obtained by adding or removing a

single base pair from Si, for each 0ƒivn. The barrier energy of a

folding pathway is maxfE(Siz1){E(Si) : 0ƒivn. Computing

optimal folding pathways between any two secondary structures is

known to be NP-complete, though there are exponential time exact

algorithms [24,63] and efficient near optimal algorithms [31].)

Finally, we have shown the utility of locally optimal structures

by demonstrating that the variant of maximum expected

accuracy structure, MEA MIN, provides the most accuracy

structure prediction currently available via thermodynamic

methods. The improvement in sensitivity and PPV for this

method depends on the fact that we take into account the base

pairing frequency of pairs (i,j) within the ensemble of locally

optimal structures as well as that of the Boltzmann ensemble of all

structures.

Why is the MEA MIN structure apparently closer to the

native structure, at least in the benchmarking study performed

in this paper? Since there is no clear answer to this question, we

can only formulate a guess. Recall that there are far fewer

locally optimal structures than there are of all secondary

structures, and that the ensemble of locally optimal structures

appears to be more consistent (i.e. less structurally diverse, at

least in most cases) than the ensemble of all structures. For these

two reasons, certain unlikely, pathological candidate base pairs

have diminuished likelihood of contributing to the MEA LO

structure. However, certain important intermediate structures,

which do not appear in the ensemble of locally optimal

structures, could contribute to the accuracy of the MEA

structure. By taking the minimum of base pairing probabilities

over both ensembles, MEA MIN is closer to the native structure.

Though reasonable, we must stress that this explanation can

only be speculative.

Table 1. Using a 0th order Markov chain with probabilities of
0.25 for each nucleotide A,C,G,U, 50 random RNA sequences
were generated for each length n, from 20 to 200 in steps of
20.

SeqLen
SnrT
RNASUBOPT

SnrT
RNALOCOPT %Z RNASUBOPT

%ZLO

RNALOCOPT

20 42:9+2:7 9:3+0:6 0:9696+0:0199 0:9981+0:0202

40 150:9+11:0 37:2+3:3 0:7886+0:0302 0:9852+0:0199

60 352:7+20:9 93:2+8:3 0:5173+0:0319 0:9504+0:0199

80 540:4+28:2 178:7+14:8 0:2607+0:0291 0:8811+0:0211

100 719:3+28:7 250:7+18:4 0:1437+0:0225 0:8034+0:0262

120 813:2+25:9 332:3+25:6 0:0669+0:0144 0:7314+0:0290

140 831:4+27:7 374:0+27:0 0:0442+0:0115 0:6134+0:0336

160 936:7+22:6 536:3+30:3 0:0053+0:0014 0:4585+0:0335

180 954:7+22:6 576:4+30:1 0:0046+0:0032 0:3845+0:0348

200 987:0+20:1 644:9+26:5 0:0030+0:0016 0:3802+0:0322

For each value of n, 1000 structures were sampled, by applying the Ding-
Lawrence sampling algorithm [36], as implemented in RNASUBOPT with flag -p,
and by applying RNALOCOPT. For each run, the number of non-redundant
samples is computed, yielding the expected number SnrT+e for RNASUBOPT and
RNALOCOPT, where e is the error bound (standard deviation s=

ffiffiffiffiffi
50
p

, since 50
sequences generated). For each run the percent coverage of the partition
function was computed; i.e. the sum of the Boltzmann factors of the non-
redundant collection from 1000 samples generated by RNASUBOPT [resp.
RNALOCOPT], divided by the partition function Z [resp. partition function ZLO of
locally optimal structures]. Since the number of locally optimal structures is far
fewer than that of all structures (see Figure 5), it is not surprising that there is
proportionately more redundancy among sampled locally optimal structures
than than over all structures. As well, the percentage coverage of the partition
function for sampled locally optimal structures is higher than that for the
Boltzmann ensemble.
doi:10.1371/journal.pone.0016178.t001
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Methods

We begin by providing an intuitive overview of the construction,

while subsequent sections provide full details and the recurrence

relations for the RNALOCOPT algorithm.

Conditional local optimality
To implement our algorithm, at each step we wish to calculate

the partition function of only the locally optimal structures. Since

the Turner energy model is a loop-based model, it can largely be

construed as a local model. Therefore we can locally check

whether or not adding the base pair (i,j) makes some structures

suddenly no longer locally optimal simply by looking at nucleotides

near (i,j). To do this, we need to keep track of a bit more

information during our recursion than is done in McCaskill’s

algorithm.

In this section we show through a simple example the key idea

behind the recursions. Consider the partial sequence-structure

shown in the left side of Figure 9. The Boltzmann factor (portion

of the Boltzmann partition function) of this structure would be

included in the term ZB(i,j) in McCaskill’s recursion, which

denotes the partition function of all structures ending in a base pair

at (i,j).

It would be natural to define an analogous term Zmin
B (i,j) as the

partition function of all locally optimal structures ending in a base

pair at (i,j). Local optimality would mean that adding or removing

Table 2. Structural diversity comparison between ensemble of locally optimal structures and Boltzmann ensemble of all
structures.

Structural diversity

Rfam family L/M H0 mH sH SDmhT SDvT num corrCoeff(H0,mH )

RF00001 L 14.403 0.247 0.231 23.276 15.160 710 0.6934

M 19.122 0.327 0.283 28.543 18.918

RF00003 L 29.167 0.357 0.285 42.046 29.487 100 0.70183

M 36.703 0.450 0.33182 51.372 36.147

RF00004 L 23.770 0.248 0.251 38.010 24.478 212 0.68387

M 28.0856 0.294 0.295 42.623 27.779

RF00005 L 11.637 0.315 0.259 18.013 11.811 1052 0.62225

M 12.058 0.325 0.272 18.322 11.979

RF00008 L 3.088 0.108 0.127 5.014 3.318 84 0.53836

M 3.435 0.116 0.161 6.051 3.594

RF00017 L 30.883 0.205 0.247 48.606 33.072 104 0.63080

M 45.936 0.307 0.296 66.852 46.554

RF00031 L 6.600 0.201 0.215 10.697 6.903 61 0.80180

M 9.259 0.278 0.250 14.199 9.137

RF00050 L 29.743 0.441 0.327 43.230 29.449 147 0.61214

M 26.096 0.382 0.348 36.694 25.447

RF00059 L 17.626 0.318 0.278 26.416 18.008 118 0.64729

M 17.979 0.320 0.287 26.645 18.123

RF00162 L 12.448 0.228 0.226 20.356 13.343 228 0.62482

M 12.219 0.222 0.255 19.610 12.756

RF00167 L 13.227 0.261 0.219 20.411 12.771 133 0.71049

M 13.344 0.262 0.237 20.299 12.537

RF00168 L 29.169 0.316 0.282 43.205 29.396 47 0.66707

M 37.286 0.405 0.341 52.967 36.244

RF00174 L 34.448 0.338 0.297 52.693 35.340 439 0.59984

M 42.376 0.417 0.361 58.045 40.617

RF00380 L 18.675 0.219 0.234 30.579 20.039 96 0.72220

M 19.438 0.228 0.25112 30.801 20.266

Given the collection of base pairing probabilities pi,j over all locally optimal structures [resp. over all structures] of a given RNA sequence a1, . . . ,an , we define four measures

of structural diversity. (1) The pseudo-entropy H0 is defined by H0~{
X

i,j
pi,j ln pi,j . (2) The average entropy SHT is defined by SHT~

Pn
i~1

P
j=i {pi,j ln pi,j

n
. (3) The

Morgan-Higgs structural diversity SDmhT is defined by SDmhT~n{
Xn

i~1

Xn

j~0
p2

i,j , where we define pi,0~1{
Xn

j~1
pi,j . (4) The Vienna structural diversity SDvT is

defined by SDvT~
X

i,j
pi,j
:(1{pi,j ). In the table above, we consider these measures with respect to locally optimal structures (L) and with respect to all (M) structures. (‘L’

stands for locally optimal, and ‘M’ for McCaskill.) The table depicts the number of structures for each Rfam family considered, as well as the correlation coefficient between
pseudo-entropy and average entropy. The families in the table are: RF00001 (5S-rRNA), RF00003 (U1), RF00004 (U2), RF00005 (tRNA), RF00008 (hammerhead type III
ribozyme), RF00017 (eukaryotic type signal recognition particle), RF00031 (selenocysteine insertion sequence), RF00050 (FMN riboswitch aptamer), RF00059 (TPP riboswitch
aptamer), RF00162 (SAM riboswitch aptamer), RF00167 (purine riboswitch aptamer), RF00168 (lysine riboswitch aptamer), RF00174 (cobalamin riboswitch aptamer), and
RF00380 (ykoK leader). Although we demonstrated a markedly lower structural diversity for locally optimal structures for precursor microRNAs, the data is not shown.
doi:10.1371/journal.pone.0016178.t002
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any base pair would raise the energy, or keep it the same. But in

our example structure, there is one base pair for which we do not

have sufficient information to know the change in energy caused

by removing it – namely, the outer base pair (i,j). In the next

recursive steps, this structure could be extended in several different

possible ways, perhaps with a base pair (x,y) shown in the right-

hand side of Figure 9. At that point, we will know the energy of the

two loops in which the base pair (i,j) is contained. But until then,

this energy is unknown.

Since we do not yet know how removing the base pair (i,j) will

affect the energy, the best we can do is to inductively assume that

the structure is conditionally locally optimal, conditioned on the

fact that (i,j) must base pair. It will not be until we add the next

base pair (x,y) that we will know whether the base pair (i,j) causes

the structure to not be locally optimal, that is if removing the base

pair (i,j) decreases the energy.

Consider then the structure including the base pair (x,y) on the

left side of Figure 10. Remember that we could not determine the

change in energy caused by removing base pair (i,j) before. That

change in energy is now given by the energy of the new loop,

E(L6) minus the energy of the old loops, E(L4)zE(L5), as

indexed in Figure 10. However, to determine the energies E(L4)
and E(L6), we need to know the location of the base pair (a,b).

Our approach for this internal loop example is to induct on the

last two base pairs, not just the last base pair. So in our example,

our example structure on the left-hand side of Figure 9 will

contribute to the term ZB((i,j),(a,b)), which denotes the partition

function of all locally optimal structures with the outermost two

base pairs (i,j) and (a,b). Then, if removing the base pair (i,j)
doesn’t lower the energy, that is if E(L6){(E(L4)zE(L5))§0,

the structure on the right-hand side of Figure 9 will contribute to

the term ZB((x,y),(i,j)).

We must also check if any base pairs can be added. In our

example, when adding the base pair (x,y), we check if any base

pairs can be added within the internal loop L5 defined by (i,j) and

(x,y) (see Figures 9 and 10). Any other base pair additions would

already have been considered earlier in the recursion, and the

energy change of adding different base pairs is independent due to

the loop energy model.

The previous discussion deals with internal loops. For external

loops and multiloops, the motivation is similar, but the approach is

more difficult, and the solution, which is more time-consuming

and depends at least theoretically on the parameters of the Turner

energy model, is less satisfying. As the recursion progresses, the

conditionality of the optimality will be pushed outward, and in

checking the final external loop, the conditionality will be

Figure 7. Graph showing sensitivity and positive predictive value for variants of the MEA method, when benchmarked with consensus
structures from all seed alignments of Rfam 10.0 database [42]. For various values of a[f2{4,2{3,2{2,2{1,20,21,22,23,24g with b~1, the
sensitivity and PPV were computed for methods MEA, MEA LO and MEA MIN. Sensitivity of a secondary structure prediction for a given RNA sequence
is defined as the number of correctly predicted base pairs divided by the number of base pairs in the native consensus structure, while PPV is defined
as the number of correctly predicted base pairs divided by the number of base pairs in the predicted secondary structure. Sensitivity and PPV are
computed by Rfam family, then averaged over all families of seed alignment in Rfam 10.0. (We performed a similar analysis where averages were
taken over all sequences in Rfam, without first computing a family average. Results are similar; data not shown.) In [34,35], the maximum expected
accuracy (MEA) structure is computed by applying a variant of the Nussinov-Jacobson [5] algorithm using the base pairing probabilities pi,j as
computed by McCaskill’s algorithm [33]. The parameter a is a weight for base pairing probability; in other words, the score, following [34,35], of a

structure S is given by
X

(i,j)[S 2:api,jz
X

i unpaired in S bqi . (Value b~1 in the graph.) In the MEA LO variant of the MEA procedure, we consider base

pairing frequencies pi,j , obtained by sampling locally optimal structures, while in the MEA MIN variant, we take pi,j to be the minimum of the
McCaskill base-pairing probability and the base pairing frequency sampled from locally optimal structures, and we take qi to be the minimum of the
corresponding probabilities that i is unpaired in the low energy ensemble (using RNAFOLD -p) and in the locally optimal ensemble (using RNALOCOPT).
Sensitivity and PPV values are respectively 0:654 and 0:483 for the minimum free energy (MFE) structure, as computed by RNAFOLD from the Vienna
RNA package [58], similar to the values for MEA, which latter has sensitivity 0:654 and PPV of 0:491 when a~1:0. The single point below each of the
three curves corresponds to MFE sensitivity and PPV. The method MEA MIN gives a consistent performance improvement over the other methods.
doi:10.1371/journal.pone.0016178.g007

Partition Function for RNA Kinetic Traps

PLoS ONE | www.plosone.org 11 January 2011 | Volume 6 | Issue 1 | e16178



removed, giving the full partition function and completing the

recursion.

Details of recursion for locally optimal structures
To do our recursion, we need to know the energies of various

internal loops, hairpins, and the energies associated with a multiloop

in the Turner energy model. These are available as temperature-

dependent parameters. For simplicity, all calculations will be at 37uC.

We let EIL(i,j,i’,j’) denote the free energy of an internal loop

enclosed by two base pairs, (i,j) and (i’,j’), where ivi’vj’vj. The

energy of a hairpin enclosed by a base pair (i,j) will be denoted by

EHP(i,j). For a multiloop, such notation is not possible. The

accepted energy of a multiloop is given by a multiloop penalty, a, a

penalty for unpaired bases in a multiloops, b, and a penalty or bonus

for a base pair within a multiloop, c, which can depend on the type

of base pair being considered. The energy of the multiloop is then

EML~azk:bzl:c

where k is the number of unpaired bases in the multiloop, and l is

the number of bases in the multiloop. This is standard, as used in

McCaskill’s algorithm, and is done in part for computational

reasons. There is no affine energy term associated with external

loops, but their treatment is somewhat analogous to that of

multiloops (indeed, a multiloop can be formed by adding a closing

base pair to an external loop).

Explanation of deltas
The method of calculating local optima is straightforward. We

will calculate the partition function of locally optimal structures

with the same basic McCaskill algorithm used to calculate the

partition function over all secondary structures. However, some

modifications must be made, for at each step in our recursion, we

must make sure that no base pair can be added or removed that

would lower the energy. Anything that does not satisfy this

property is dropped from the partition function.

The way this is done is to realize all of the different ways a single

base pair can be added and removed that can lower the total

energy, and to build in a check for all of these cases as we build the

partition function. Figure 11 shows all of the possibilities. A base

pair can be added to or removed from a hairpin, (Types 3 and 4),

an internal loop, which includes bulges and stacked base pairs

(Types 1 and 2), or a multiloop (types 5 and 6).

In our recursion, we will have six different delta functions

corresponding to these six different cases, where each delta

function is 1 if adding, or removing, the relevant base pair does not

lower the energy. Such deltas will act as checks whether the

structures built so far are locally optimal.

For example, to check whether we can remove a base pair from

between two internal loops, we have, from type 1 in Figure 11,

d1(i,j,i’,j’,i’’,j’’)~
0, if removing bp (i’,j’) lowers the energy

1, otherwise

�

This delta is calculated using the energies of a given segment.

The energy of the internal loops before removing the base pair are

Figure 9. Example structure in recursion. In the left structure, we do not yet know the two loops bordered by the base pair (i,j).
Therefore we do not yet know whether by removing this base pair, the free energy will be lowered. In the right structure, one step further in the
recursion, we now know which loops border the base pair (i,j) – namely, loops L4 and L5 . Images created using the software VARNA [50].
doi:10.1371/journal.pone.0016178.g009

Figure 8. Graph showing sensitivity (black, increasing curves)
and positive predictive value (PPV, red, decreasing curves) as a
function of a (explained in text and in Figure 7) for methods
MEA, MEA LO, and MEA MIN. as benchmarked with consensus
structures from all seed alignments of Rfam 10.0 database [42].
Values of a~2{4,2{3,2{2,2{1,20,21,22,23,24 given on x-axis, while
values of sensitivity and ppv are given on the y-axis. Sensitivity and PPV
are computed by Rfam family, then averaged over all families of seed
alignment in Rfam 10.0. (We performed a similar analysis where averages
were taken over all sequences in Rfam, without first computing a family
average. Results are similar; data not shown.) The MEA MIN method yields
a consistent improvement other MEA methods, as well as over minimum
free energy (MFE) structure predictions, benchmarked by using RNAFOLD

from the Vienna RNA package [58]. The best sensitivity and the best PPV
are given by method MEA MIN; the next best by MEA LO, and the last by
method MEA. Two horizontal lines indicate the sensitivity (top line) and
PPV (bottom line) for the minimum free energy structure, as computed
by RNAFOLD from the Vienna RNA Package.
doi:10.1371/journal.pone.0016178.g008
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EIL(i,j,i’,j’)zEIL(i’,j’,i’’,j’’)

and after removing the base pair, the energy of the resultant single

internal loop is

EIL(i,j,i’’,j’’)

Thus we calculate delta by the formula

d1(i,j,i’,j’,i’’,j’’)~
0, if EIL(i,j,i’’,j’’)vEIL(i,j,i’,j’)zEIL(i’,j’,i’’,j’’)

1, otherwise

�

Other deltas are computed in a similar fashion. For types 2 and

4 (in Figure 11), these are precomputed, in order to speed up the

algorithm. This precomputation gives us a list (each of order n2 for

a sequence of length n) of possible IL’s and HP’s respectively, to

which an internal base pair cannot be added which would lower

the energy.

One note is that some base pairs are never favorable, and thus

do not need to be calculated. The important case is adding a base

pair to a multiloop, which would split the multiloop into two

multiloops when the multiloop is closed. This type of base pair is

shown in Figure 12. Provided that there are no energy terms for

either dangles within a multiloop, or coaxial stacking, this base

pair will never lower the energy. This is fortunate, since it is

computationally more difficult to inductively include such base

pairs.

Tails, conditional optimality
Just as there are hairpins, internal loops, multiloops, and

external loops in the Turner energy model, there are recursion

terms for hairpins, internal loops, multiloops, and external loops.

However, as we need to keep a little more context to keep track of

whether we still have a set of local optima, there will be some extra

information.

Note that all these structures will be conditionally locally

optimal. We commonly can’t know if the most exterior base pair

will be locally optimal, as that will depend on future base pairs,

thus we need this conditional optimality in order to perform the

recursion.

Figure 10. Example structure in recursion. The energy change effected by removing the base pair (i,j) is E(L6){(E(L5)zE(L4)). To calculate
this, we need to keep track of base pair (a,b). Images created using the software VARNA [50].
doi:10.1371/journal.pone.0016178.g010

Figure 11. The six ways that a single base pair can be added to or removed from a structure and possibly reduce the overall energy.
Images created using the software VARNA [50].
doi:10.1371/journal.pone.0016178.g011
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For example, for internal loops, we will denote

ZIL(i,j,i’,j’)

for the partition function of all locally optimal structures on the

subinterval (i,j) with an internal loop with base pairs (i,j) and

(i’,j’), where ivi’vj’vj. This local optimality is conditional on

(i,j) being a base pair, that is, we assume (i,j) is a base pair, and

will check later if this is a problem. We cannot tell whether, in the

future, removing the base pair (i,j) will lower the energy or not, as

we don’t know the structure outside of (i,j).

A few of the recursive elements will contain tails. For example,

for multiloops, we will let

ZML(i,j,p,q)

denote the partition function, on the interval (i,j), for all unclosed

locally optimal multiloops (with more than one base pair) that have

‘tails’, regions of unpaired nucleotides, of lengths p and q on the

left and right side respectively. See Figure 13.

These tails are needed. In McCaskill’s algorithm, for a

multiloop closed by base pair (i,j), there is a recursion of the form

ZML(i,j)~eb:ZML(i,j{1)zremaining terms:

We cannot use such a recursion, as adding an unpaired base

may result in a structure that is no longer a local optimum. While

there may be better approaches, we avoid this problem by

indexing locally optimal multiloops by their tail length. We can

then glue such multiloops together with tails. See Figure 14.

We have seen that p and q can be always less than 10, this is

sufficient to avoid all possible base pairs in multiloops that lower

energy. Almost all such base pairs can be avoided by setting p and

q to be always less than 4; this allows for considerable speed-up

with little loss of accuracy.

Note that we need the assumption that a single base pair cannot

split a multiloop into two multiloops and thereby lower the energy.

(This is true under the present Turner energy model. See

Figure 12.) Otherwise, such a gluing method could result in a

base pair being possible that lowers the energy – that is, the

structure would not be locally optimal.

Recursion Relations
Let Z�(i,j) denote the partition function of all structures ending

in the base pair (i,j) which will enter a multiloop. Note that we

know from the Turner energy parameters that only an internal

loop can enter a multiloop. It follows that Z�(i,j) will be the sum of

all possible internal loops ending in (i,j).

Z�(i,j)~e{ dwobble
:
pwobblezbð Þ=kT

X
i’,j’s:t:(i’{i)z(j{j’)v30

ZIL(i,j,i’,j’)denterML
(i,j,i’,j’)

where dwobble is 1 if we have an AU or GU base pair, pwobble is the

corresponding energy penalty, b is the penalty of adding a base

pair in a multiloop, and denterML
is 0 if removing the base pair (i,j)

(and exposing the base pair (i’,j’) to the multiloop) lowers the

energy. Thus (by induction) Z�(i,j) is the partition function for all

structures that are locally optimal with respect to all of their base

pairs, including (i,j).

ZM1(i,j) is the partition function for locally optimal multiloops

closed by base pair (i,j) and having with exactly one component,

while ZM1(i,j,p,q) is the partition function for locally optimal

multiloops with exactly one component, and which contains tails

of length p and q. We let p, q range from 0 to 10, with one extra

position, called ‘‘.10’’, which is reserved for long tails. Thus p and

q each have 12 possible values. (However, in practice, most values

of ZM1 are not stored, but calculated as needed. Only those with 1

or 2 long tails need to be stored.)

The partition function ZM1(i,j,p,q) corresponds to having a

base pair at (izp,j{q) entering a multiloop, with tails out to (i,j),
i and j not base-paired. ZM1(i,j,m,.10) means an M1 element

with large right tail, greater than 10. This is used because if either

tail is of length w10, there are no longer any base pairs that can be

Figure 13. Example of the formation of a multiloop with tails of
length p and q. Images created using the software VARNA [50].
doi:10.1371/journal.pone.0016178.g013

Figure 12. Image of base pair that could not possibly lower the
energy by creating a multiloop, since it creates two bordering
multiloops. Images created using the software VARNA [50].
doi:10.1371/journal.pone.0016178.g012

Figure 14. Example of gluing together two pieces of a
multiloop. Note that if each piece is locally optimal, then the
composite, obtained by gluing the pieces together, is as well. Images
created using the software VARNA [50].
doi:10.1371/journal.pone.0016178.g014
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added that can reduce the energy. This was shown by exhaustive

search. This allows for traditional induction, since we don’t have

to worry about adding a base pair causing a formally locally

optimal structure to become not locally optimal.

For p,q [ 0,1,2,:::,10,

ZM1(i,j,p,q)~Z�(izp,j{q)e{c(pzq)=kT dM1(i,j,izp,j{q)

ZM1(i,j,p,w10)~ZM1(i,j{1,p,w10)zZM1(i,j{1,p,10)

ZM1(i,j,w10,q)~ZM1(iz1,j,w10,q)zZM1(iz1,j,10,q)

ZM1(i,j,w10,w10)~ZM1(i,j{1,w10,w10)zZM1(i,j{1,w10,10)

where c is the energy penalty of an unpaired base in a multiloop,

and dM1(i,j,izp,j{q)~1 iff the base pair (izp,j{q) is such that

no base pair (x,y) can be added iƒxvizp, j{qvyƒj, that

lowers the energy. That is, the base pair (izm,j{n) is locally

optimal with tails in the multiloop of length m and n on the left

and right respectively.

Note, we need another variable, ZM1e, for the partition function

of external loops with exactly one element. The recursion relations

are almost identical. The only change is there is no base pair

penalty.

ZML is the partition function of multiloops with at least 2 exiting

base pairs. Tails are glued together as in Figure 14. Notation is

similar to ZM1, for the same reasons. Here, the recursion is quite

nice.

Define the set S~f1,2,3,:::,10,.10g. For p,q [S

ZML(i,j,p,q)~
Xj{4

k~iz4

½
X

kz1{a§1
a[S

ZML(i,k,p,a)zZM1(i,k,p,a)ð ÞZM1(kz1{a,j,a,q)

where in the expression (kz1{a), we replace w10 with 10. (This

corresponds to unambiguously gluing the largest possible fixed tail.

Otherwise there are several ambiguous ways to glue two long tails

together.)

Thus we add a single exiting base pair with tails during the

recursion. Note, with 12 possible tail lengths, the memory usage

here is 144N2=2. As cases of isolated base pairs far into a

multiloop lowering the energy are rare, we can reduce the number

of tail lengths recorded.

A similar equation for the external loop can be determined.

Here we can always assume that the left end of the external loop

(usually denoted with the variable i) is 1, since we never need to

close an external loop. Also, we need only worry about the right

tail, for the same reason. Remember, an external loop can contain

0, 1, or more entering base pairs, corresponding respectively to the

empty structure, structure with one component, and structures

with more than one component. In this way it is slightly different

than a multiloop.

ZEL(1,j,q)~
Xj{4

k~0

X
kz1{a§1

a[S

½ZEL(1,k,a)ZM1e(kz1{a,j,a,q)�zd(q~j or jw10,qw10)

where d(q~j or jw10,qw10) is 1 if q~j or (qw10 and jw10), and

where again in the expression (kz1{a), w10 is replaced by 10.

The term d(q~j or j§10,q§10) actually represents the empty

structure. Note that ZEL(1,0,0) will be set to 1 by the above

equation, as will ZEL(1,j,j). These can be thought of as

representing the empty structure, or equivalently as initial

conditions.

The variable ZMLC(i,j) represents the partition function of all

locally optimal closed multiloops ending in base pair (i,j). It is

given by all of the ways to end a multiloop.

ZMLC (i,j)~e{ dwobble
:
pwobblezað Þ=kT

X
p,q[S

dMLC (i,j,izp,j{q)ML(iz1,j{1,p,q)

where dwobble, pwobble are as before, a is the closing penalty of a

multiloop, and dMLC(i,j,izp,j{q) is 1 if there is no base pair

(x,y), ivxƒizp,j{qƒxvj, that would lower the energy of the

multiloop. That is, within the available tails that close the ML,

there is no way to add a base pair connecting these tails and

lowering the energy.

All that is left is the partition function ZIL(i,j,i’,j’). This is the

partition function of all structures that are locally optimal,

conditional on i,j base-pairing, that exit in an internal loop with

outermost base pairs (i’,j’) and (i,j), ivi’vj’vj. Following

standard convention, we consider only internal loops of size at

most 30; i.e. we can restrict to the case i’{izj{j’ƒ30.

There are 3 cases: (i) the internal loop borders a hairpin at

(i’,j’), (ii) the internal loop borders a multiloop at (i’,j’), (iii) the

internal loop borders another internal loop with base pairs (i’,j’),
(i’’,j’’). In all 3 cases, we need to do our inductive checks on

optimality. For the last case, we must sum over all possible internal

loops. (In practice, there is a prerecorded set of possible internal

loops, increasing speed considerably.) The recursion is a sum over

these three cases and is given by

ZIL(i,j,i’,j’)~e{EIL(i,j,i’,j’)=kT dILmin(i,j,i’,j’):

½
X

i’’,j’’ s:t: i’’{i’zj’{j’’ƒ30

ZIL(i’,j’,i’’,j’’)dILcheck(i,j,i’,j’,i’’,j’’)�z

ZHP(i’,j’)dHPcheck(i,j,i’,j’)zZMLC(i’,j’)dMLcheck(i,j,i’,j’)

where dILcheck(i,j,i’,j’,i’’,j’’)~0 if removing the base pair (i’,j’)
lowers the energy, and dILmin(i,j,i’,j’)~1 if no base pair (x,y),
ivxvi’,j’vyvj can be added that will (split the multiloop in two

and) lower the energy. dHP(i,j,i’,j’) and dMLcheck(i,j,i’,j’) both

check if removing (i’,j’) lowers the energy.

ZHP(i,j) is the partition function of a locally optimal hairpin

with outer base pair (i,j), conditional on i, j being base paired. We

have

ZHP(i,j)~dHP(i,j)e{EHP(i,j)=kT

where EHP(i,j) is the Turner energy for the hairpin with external

base pair (i,j), and dHP(i,j)~1 if the hairpin is locally optimal, that

is if no base pair (i’,j’), ivi’vj’vj, can be added that would lower

the energy.

This gives consistent recursions. To calculate the total partition

function, simply sum up all of the external loops with different tail

lengths to yield

Partition Function for RNA Kinetic Traps

PLoS ONE | www.plosone.org 15 January 2011 | Volume 6 | Issue 1 | e16178



Z~
X

q

ZEL(n,q):

Acknowledgments

Research for this paper was carried out while W.A. Lorenz was at Boston

College. A preliminary report of this method was described in the poster

paper Q34, ‘‘Calculating Local Optima in the Turner Energy Model for

RNA Secondary Structure’’, presented by W.A. Lorenz and P. Clote at the

Sixteenth Annual International Conference on Intelligent Systems for

Molecular Biology (ISMB 2008). We would like to thank Hosna Jabbari for

an improvement to Figure 4, and to anonymous referees for some helpful

suggestions.

Author Contributions

Main algorithm was developed and implemented by WAL. Conceived and

designed the experiments: WAL PGC. Performed the experiments: WAL

PGC. Analyzed the data: WAL PGC. Contributed reagents/materials/

analysis tools: WAL PGC. Wrote the paper: WAL PGC.

References

1. Al-Hashimi HM, Walter NG (2008) RNA dynamics: it is about time. Curr Opin

Struct Biol 18: 321–329.

2. Franch T, Gultyaev AP, Gerdes K (1997) Programmed cell death by hok/sok of

plasmid r1: Processing at the hok mRNA 3H-end triggers structural
rearrangements that allow translation and antisense RNA binding. J Mol Biol

273: 38–51.

3. Lecuyer K, Crothers D (1993) The Leptomonas collosoma spliced leader RNA

can switch between two alternate structural forms. Biochemistry 32(20):
5301–5311.

4. Heilman-Miller SL, Woodson SA (2003) Effect of transcription on folding of the
Tetrahymena ribozyme. RNA 9: 722–733.

5. Nussinov R, Jacobson AB (1980) Fast algorithm for predicting the secondary
structure of single stranded RNA. Proceedings of the National Academy of

Sciences, USA 77: 6309–6313.

6. Zuker M (1986) RNA folding prediction: The continued need for interaction

between biologists and mathematicians. In: Lectures on Mathematics in the Life
Sciences. Springer-Verlage, volume 17: 87–124.

7. Clote P (2005) An efficient algorithm to compute the landscape of locally optimal
RNA secondary structures with respect to the Nussinov-Jacobson energy model.

J Comput Biol 12: 83–101.

8. Clote P (2006) Combinatorics of saturated secondary structures of RNA.

J Comput Biol 13: 1640–1657.

9. Clote P, Kranakis E, Krizanc D, Salvy B (2009) Asymptotics of canonical and

saturated RNA secondary structures. J Bioinform Comput Biol 7: 869–893.

10. Stein PR, Waterman MS (1978) On some new sequences generalizing the

Catalan and Motzkin numbers. Discrete Mathematics 26: 261–272.

11. Waldispuhl J, Clote P (2007) Computing the partition function and sampling for
saturated secondary structures of RNA, with respect to the Turner energy

model. J Comput Biol 14: 190–215.

12. Xia T, J SantaLucia J, Burkard M, Kierzek R, Schroeder S, et al. (1999)

Thermodynamic parameters for an expanded nearest-neighbor model for

formation of RNA duplexes with Watson-Crick base pairs. Biochemistry 37:
14719–35.

13. Zuker M, Sankoff D (1984) RNA secondary structures and their prediction.

Bulletin of Mathemetical Biology 46: 591–621.

14. Mathews D, Sabina J, Zuker M, Turner D (1999) Expanded sequence

dependence of thermodynamic parameters provides robust prediction of RNA

secondary structure. J Mol Biol 288: 911–940.

15. Mathews DH, Turner DH (2002) Experimentally derived nearest-neighbor
parameters for the stability of RNA three- and four-way multibranch loops.

Biochemistry 41: 869–880.

16. Flamm C, Fontana W, Hofacker I, Schuster P (2000) RNA folding at elementary

step resolution. RNA 6: 325–338.

17. Xayaphoummine A, Bucher T, Isambert H (2005) Kinefold web server for

RNA/DNA folding path and structure prediction including pseudoknots and
knots. Nucleic Acids Res 33: W605–W610.

18. Danilova LV, Pervouchine DD, Favorov AV, Mironov AA (2006) RNAKinetics:
a web server that models secondary structure kinetics of an elongating RNA.

J Bioinform Comput Biol 4: 589–596.

19. Tang X, Kirkpatrick B, Thomas S, Song G, Amato NM (2005) Using motion

planning to study RNA folding kinetics. J Comput Biol 12: 862–881.

20. Tang X, Thomas S, Tapia L, Giedroc DP, Amato NM (2008) Simulating RNA

folding kinetics on approximated energy landscapes. J Mol Biol 381: 1055–1067.

21. Gillespie D (1976) A general method for numerically simulating the stochastic

time evolution of coupled chemical reactions. J Comp Phys 22: 403–434.

22. Gillespie D (1977) Exact stochastic simulation of coupled chemical reactions.

J Comp Phys 22: 2340–2361.

23. Wuchty S, Fontana W, Hofacker I, Schuster P (1999) Complete suboptimal
folding of RNA and the stability of secondary structures. Biopolymers 49:

145–164.

24. Flamm C, Hofacker I, Stadler P, Wolfinger M (2002) Barrier trees of degenerate

landscapes. Z Phys Chem 216: 155–173.

25. Wolfinger M, Svrcek-Seiler1 W, Flamm C, Stadler P (2004) Efficient

computation of RNA folding dynamics. J Phys A: Math Gen 37: 4731–4741.

26. Stadler P, Flamm C (2003) Barrier trees on poset-valued landscapes. In: Genetic

Programming and Evolvable Machines archive, Kluwer Academic Publishers,
volume 4(1): 7–20.

27. Flamm C, Hofacker I, Stadler B, Stadler P (2007) Saddles and barrier in

landscapes of generalized search operators. In: Foundations of Genetic

Algorithms, Springer, volume 4436 of Lecture Notes in Computer Science. pp
194–212.

28. Hofacker IL, Flamm C, Heine C, Wolfinger MT, Scheuermann G, et al. (2010)

Barmap: RNA folding on dynamic energy landscapes. RNA 0: O.
29. Shapiro BA, Bengali D, Kasprzak W, Wu JC (2001) RNA folding pathway

functional intermediates: their prediction and analysis. J Mol Biol 312: 27–44.

30. Isambert H (2009) The jerky and knotty dynamics of RNA. Methods 49:
189–196.

31. Dotu I, Lorenz WA, VAN Hentenryck P, Clote P (2010) Computing folding

pathways between RNA secondary structures. Nucleic Acids Res 38:
1711–1722.

32. Chen SJ (2008) RNA folding: conformational statistics, folding kinetics, and ion

electrostatics. Annu Rev Biophys 37: 197–214.

33. McCaskill J (1990) The equilibrium partition function and base pair binding
probabilities for RNA secondary structure. Biopolymers 29: 1105–1119.

34. Kiryu H, Kin T, Asai K (2007) Robust prediction of consensus secondary
structures using averaged base pairing probability matrices. Bioinformatics 23:

434–441.

35. Lu ZJ, Gloor JW, Mathews DH (2009) Improved RNA secondary structure
prediction by maximizing expected pair accuracy. RNA 15: 1805–1813.

36. Ding Y, Lawrence C (2003) A statistical sampling algorithm for RNA secondary

structure prediction. Nucleic Acids Res 31(24): 7280–7301.

37. Ding Y, Chan CY, Lawrence CE (2004) Sfold web server for statistical folding
and rational design of nucleic acids. Nucleic Acids Res 32: 0.

38. Pollard KS, Salama SR, Lambert N, Lambot MA, Coppens S, et al. (2006) An

RNA gene expressed during cortical development evolved rapidly in humans.
Nature 443: 167–172.

39. Leontis N, Westhof E (2003) Tools for the automatic identification and

classification of RNA base pairs. Nucl Acids Res 31(13): 3450–3460.
40. Banerjee AR, JAEGER J, Turner D (1993) Thermal unfolding of a group I

ribozyme: The low-temperature transition is primarily disruption of tertiary

structure. Biochemistry 32: 153–163.
41. Lyngso RB, Pedersen CN (2000) RNA pseudoknot prediction in energy-based

models. J Comput Biol 7: 409–427.

42. Gardner PP, Daub J, Tate JG, Nawrocki EP, Kolbe DL, et al. (2009) Rfam:
updates to the RNA families database. Nucleic Acids Res 37: D136–D140.

43. Wiese KC, Glen E, Vasudevan A (2005) JViz.Rna–a Java tool for RNA

secondary structure visualization. IEEE Trans Nanobioscience 4: 212–218.
44. Taufer M, Licon A, Araiza R, Mireles D, Van Batenburg FH, et al. (2009)

Pseudobase++: an extension of PseudoBase for easy searching, formatting and

visualization of pseudoknots. Nucleic Acids Res 37: D127–D135.
45. Turner DH, Sugimoto N, Freier SM (1988) RNA structure prediction. Annu

Rev Biophys Biophys Chem 17: 167–192.

46. Jaeger JA, Turner DH, Zuker M (1989) Improved predictions of secondary
structures for RNA. Proc Natl Acad Sci USA 86: 7706–7710.

47. He L, Kierzek R, SantaLucia J, Jr., Walter AE, Turner DH (1991) Nearest-

neighbor parameters for G.U mismatches: [formula; see text] is destabilizing in
the contexts [formula; see text] and [formula; see text] but stabilizing in

[formula; see text]. Biochemistry 30: 11124–11132.

48. Peritz AE, Kierzek R, Sugimoto N, Turner DH (1991) Thermodynamic study of
internal loops in oligoribonucleotides: symmetric loops are more stable than

asymmetric loops. Biochemistry 30: 6428–6436.

49. Walter AE, Turner DH, Kim J, Lyttle MH, Muller P, et al. (1994) Coaxial
stacking of helixes enhances binding of oligoribonucleotides and improves

predictions of RNA folding. Proc Natl Acad Sci USA 91: 9218–9222.

50. Darty K, Denise A, Ponty Y (2009) VARNA: Interactive drawing and editing of
the RNA secondary structure. Bioinformatics 25: 1974–1975.

51. Matthews D, Sabina J, Zuker M, Turner D (1999) Expanded sequence

dependence of thermodynamic parameters improves prediction of RNA
secondary structure. J Mol Biol 288: 911–940.

52. McCaskill JS (1990) The equilibrium partition function and base pair binding

probabilities for RNA secondary structure. Biopolymers 29: 1105–1119.
53. Hofacker I, Fontana W, Stadler P, Bonhoeffer L, Tacker M, et al. (1994) Fast

folding and comparison of RNA secondary structures. Monatsch Chem 125:

167–188.
54. Zar J (1999) Biostatistical Analysis. Prentice-Hall, Inc.

Partition Function for RNA Kinetic Traps

PLoS ONE | www.plosone.org 16 January 2011 | Volume 6 | Issue 1 | e16178



55. Waldispuhl J, Clote P (2007) Computing the partition function and sampling for

saturated secondary structures of RNA, with respect to the Turner energy

model. J Comput Biol 14: 190–215.

56. Clote P (2005) RNALOSS: a web server for RNA locally optimal secondary

structures. Nucleic Acids Res 33: W600–W604.

57. Morgan S, Higgs P (1998) Barrier heights between ground states in a model of

RNA secondary structure. J Phys A: Math Gen 31: 3153–3170.

58. Hofacker I (2003) Vienna RNA secondary structure server. Nucleic Acids Res

31: 3429–3431.

59. Knudsen B, Hein J (2003) Pfold: RNA secondary structure prediction using

stochastic context-free grammars. Nucleic Acids Res 31: 3423–3428.

60. Do CB, Mahabhashyam MS, Brudno M, Batzoglou S (2005) Probcons:

Probabilistic consistency-based multiple sequence alignment. Genome Res 15:
330–340.

61. Ding Y, Chan CY, Lawrence CE (2005) RNA secondary structure prediction by

centroids in a Boltzmann weighted ensemble. RNA 11: 1157–1166.
62. Mathews D, Disney M, Childs J, Schroeder S, Zuker M, et al. (2004)

Incorporating chemical modification constraints into a dynamic programming
algorithm for prediction of RNA secondary structure. Proc Natl Acad Sci USA

101: 7287–7292.

63. Thachuk C, Manuch J, Rafiey A, Mathieson LA, Stacho L, et al. (2010) An
algorithm for the energy barrier problem without pseudoknots and temporary

arcs. Pac Symp Biocomput.

Partition Function for RNA Kinetic Traps

PLoS ONE | www.plosone.org 17 January 2011 | Volume 6 | Issue 1 | e16178


