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Abstract

Deep learning approaches to medical image analysis tasks have recently become popular; however, 

they suffer from a lack of human interpretability critical for both increasing understanding of the 

methods’ operation and enabling clinical translation. This review summarizes currently available 

methods for performing image model interpretation and critically evaluates published uses of these 

methods for medical imaging applications. We divide model interpretation in two categories: (1) 

understanding model structure and function and (2) understanding model output. Understanding 

model structure and function summarizes ways to inspect the learned features of the model and 

how those features act on an image. We discuss techniques for reducing the dimensionality of 

high-dimensional data and cover autoencoders, both of which can also be leveraged for model 

interpretation. Understanding model output covers attribution-based methods, such as saliency 

maps and class activation maps, which produce heatmaps describing the importance of different 

parts of an image to the model prediction. We describe the mathematics behind these methods, 

give examples of their use in medical imaging, and compare them against one another. We 

summarize several published toolkits for model interpretation specific to medical imaging 

applications, cover limitations of current model interpretation methods, provide recommendations 

for deep learning practitioners looking to incorporate model interpretation into their task, and offer 

general discussion on the importance of model interpretation in medical imaging contexts.
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1. Introduction

Recently, artificial intelligence (AI) and, more specifically, deep learning (DL), approaches 

have achieved state of the art results for many medical imaging tasks including image 

segmentation (Hu et al., 2017; Kamnitsas et al., 2017; Roth et al., 2015b), disease detection 

and diagnosis (Gao and Noble, 2017; Roth et al., 2016; Kim et al., 2018; Huynh et al., 2016; 

Roth et al., 2014), and image classification (Yang et al., 2018; Chen and Shi, 2018; Van 

Molle et al., 2018; Shen and Gao, 2018; Yi et al., 2017). The workhorse of DL applications 

for medical imaging is the convolutional neural network (CNN). CNNs are a type of deep 

learning model that take images as input and consist of a series of convolutional layers and 

non-linear activations, the behavior of which are tuned by weights and biases learned 

throughout the model training process (Krizhevsky et al., 2012).

While the popularity of using CNNs to perform medical image analysis tasks has increased 

rapidly in the past few years, a criticism often raised against them is their “black box” nature 

– meaning the internal structure of a CNN is not conducive to providing a simple 

explanation as to why a given input produces a corresponding output. To address this, 

researchers have developed model interpretation techniques and tools that aim to explain or 

visualize the decision-making process of CNNs. Interpretable models and interpretation 

methods in medical imaging have been the topic of several recent reviews and editorials (Jia 

et al., 2019; Reyes et al., 2020; Gastounioti and Kontos, 2020).

Model interpretation is of particular importance for medical imaging applications due to the 

complexity and high stakes nature of medical decisions. An incorrect diagnosis or failure to 

detect disease can be highly detrimental to patient care, so contributions of a deep learning 

model to medical decision-making processes need to be explainable in order to gain 

clinician trust (Hengstler et al., 2016; Nundy et al., 2019). In fact, both clinicians and 

patients alike have advocated for increased transparency for medical imaging applications of 

deep learning. In a recent review, (Hosny et al., 2018) notes that the, “lack of transparency 

[of deep learning models] makes it difficult to predict failures, isolate the logic for a specific 

conclusion or troubleshoot inabilities to generalize to different imaging hardware, scanning 

protocols and patient populations.” In a patient perspective, (Andrews, 2017) stresses the 

need for model interpretation with an analogy, likening a radiologist’s use of AI to provide a 

medical diagnosis to a car mechanic’s use of a computer diagnostic tool to provide an 

automotive diagnosis. The use of the technology by both the radiologist and mechanic is 

helpful, but only so long as the technology can provide an explanation in terms the patient 

can understand.

As the use of AI tools in medicine become more widespread, additional legal requirements 

for model interpretability could become relevant. Article 22 of the General Data Protection 

Regulation (GDPR) adopted by European Union member states in 2018 contains 

requirements for automated decision-making, and some have argued that this could have 

implications for explanation of AI models in healthcare (Selbst and Powles, 2017).

The overall goal of this review is to describe existing approaches for model interpretation, 

provide examples of their application to medical imaging, provide recommendations for 
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deep learning practitioners looking to incorporate model interpretation into their task, and 

offer some general discussion on the importance of model interpretation in medical imaging 

contexts. Broadly, we divide the approaches to model interpretation into two categories: (1) 

understanding model structure and function (Section 2) and (2) understanding model 

predictions (Section 3), as described in Figure 1. Approaches in (1) primarily concern the 

hidden layers of the model: looking at hidden layer filters and features and visualizing or 

utilizing latent representations of data within the model. In contrast, approaches in (2) 

primarily concern the output of the model; these techniques produce heatmaps which 

describe which parts of an image are important to the model output.

Model interpretation closely follows the model development process as illustrated in Figure 

2. Inspecting the model filters and feature activations can provide insight during the model 

training process (covered in Section 2.1), while techniques for reducing the dimension of 

high-dimensional data can come into play during both data collection and model deployment 

(covered in Section 2.2). Post-hoc attribution-based techniques for model interpretation, 

such as saliency maps or grad-CAM, provide interpretation of model output, and are most 

relevant during model training and at model deployment (covered in Section 3).

It is worth noting that there are several model interpretation toolkits published specifically 

with medical imaging in mind (covered in Section 4), which can facilitate application of 

interpretation methodologies. We conclude our review with specific recommendations for 

model interpretation best practices (Section 5), and discussion on the importance and 

limitations of model interpretation in medical contexts (Section 6).

2. Understanding model structure and function

When opening the “black box” of CNNs, the most direct approach to model interpretation is 

to look at the hidden layers of the network. This can be done in several ways, including 

direct inspection of the learned filters and feature maps, plotting high dimensional latent 

representations in two dimensions, or through employing models which learn useful latent 

representations.

2.1. Model filter and feature map visualization

A core component of modern CNNs is the convolutional layer (Goodfellow et al., 2016). A 

convolutional layer takes the output of the previously layer as input, convolves it with a set 

of filters, sometimes also called features or kernels, and then applies a non-linear activation 

function. The output of the activation function is called a feature map or activation map and 

serves as input for the next layer (Figure 3A). CNNs learn features of varying complexity, 

often edges and corners in the first layers followed by more complex patterns in subsequent 

layers (Olah et al., 2017). Understanding the features that the model learns and how those 

features act on images as they pass through the model can assist not only in ensuring the 

model is learning practical information, but also in connecting this information to patterns 

recognizable by humans.

2.1.1. Visual inspection of convolutional filters—After training a CNN, the learned 

filters can be visualized by loading the trained model and accessing the saved model 
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weights. The weights learned by the first convolutional layer are arguably the most useful 

for interpretation, as they act on the images directly. While subsequent layers may also 

provide useful information, the filters themselves are difficult to interpret as they are acting 

on feature maps from previous layers.

Within medical imaging, filter visualization has been used to compare filters across models 

and tasks. For example, (Roth et al., 2016) compared filters learned for computer aided 

detection (CADe) of sclerotic metastases, lymph nodes, and colonic polyps on 3D computed 

tomography (CT) images. The authors observe that filters learned for lymph node detection 

represented a blobby texture and gradients in different orientations, whereas filters learned 

for colonic polyp detection were visually more diverse.

The ability to visualize the filters themselves depends on many aspects of the model 

architecture, most notably the filter size. This can be seen in comparing filters learned in (Yu 

et al., 2018) with those learned in (Shin et al., 2016), as shown in Figure 3B. The filters 

learned in (Yu et al., 2018) were of size 3×3, for which only minor conclusions can be made 

due to the small amount of information shown in only 9 filter elements. Conversely, 

commonly known CNNs like AlexNet, which utilize 11×11 filters in the first layer, have 

been applied to medical imaging tasks such as lymph node detection and prostate 

segmentation (Shin et al., 2016; Roth et al., 2014). This allows the visualization of much 

more complex patterns and shapes (Figure 3C).

Filter visualization can be useful to compare filters learned after training a model with 

random initialization (i.e., from scratch) to those learned using transfer learning (initial 

weights taken from a network trained for another task). For example, filter visualization in 

(Shin et al., 2016) indicated that AlexNet learned more blurry filters when random 

initialization was used, whereas transfer learning allowed more fine-tuning of higher-

contrast and edge-preserving patterns (Figure 3B).

It should be noted that although larger filter sizes can arguably result in more interpretable 

filters, they require more memory. Commonly used 2D network architectures (e.g., AlexNet, 

GoogLeNet) generally utilize a combination of multiple filter sizes, whereas large filters are 

often not feasible in fully 3D models as the memory constraints of large kernels come at the 

cost of having fewer layers or fewer filters per layer (Kamnitsas et al., 2017). However, 

memory limitations are likely to be less significant in the future as GPU memory capacity 

expands with time.

2.1.2. Visual inspection of feature maps—A more intuitive way of visualizing the 

features learned by a CNN is looking at the feature maps, sometimes referred to as activation 

maps. Feature maps are the output of the CNN at each layer. That is, they are the result of 

convolving the input of the layer with the filters of that layer and then applying an activation 

function. Thus, non-zero values in a feature map indicate that a feature was activated. 

Networks that have many feature maps that are all zero may indicate a problem with the 

training process.

Huff et al. Page 4

Phys Med Biol. Author manuscript; available in PMC 2021 June 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Feature map visualization is a commonly used and straightforward model interpretation 

technique. It has been used in a wide variety of applications in medical imaging tasks 

including brain lesion segmentation on MRI images (Kamnitsas et al., 2017), fetal facial 

plan recognition on ultrasound images (Yu et al., 2018), classification of skin lesions on 

dermatology photographs (Van Molle et al., 2018), and diagnosing Alzheimer’s disease with 

PET/MRI (Zhang et al., 2019).

Visualization of feature maps allows users to connect features that a human may learn to 

identify with features that the CNNs learn. For example, (Kamnitsas et al., 2017) observed 

the network learning features to identify ventricles, cerebrospinal fluid (CSF), white, and 

gray matter on MRI images, indicating that differentiating between tissue types is useful for 

lesion segmentation. A similar finding was observed in (Van Molle et al., 2018), where a 

CNN trained to classify skin lesions learned features corresponding to darker colors, skin 

types, lesion borders, and hair.

2.2. Dimensionality reduction

As discussed above, the hidden layer filters and feature maps of a CNN can be visualized. 

However, CNNs often have upwards of thousands of features per layer. To visualize such 

high dimensional data, techniques for reducing the number of dimensions while maintaining 

meaningful relationships between data points can be used. These methods take vectorized 

highly dimensional CNN features as input and produce a 2D summary that is easier to 

interpret. Principal component analysis (PCA) is perhaps the most well-known and widely 

used dimensionality reduction algorithm. PCA transforms the input data into orthogonal 

principal components (PCs) which are linear combinations of the original data. PCs are 

ordered by descending variance, such that the first few PCs often contain most of the useful 

information of the data and the remaining can be discarded without substantial loss of 

information. However, PCA relies on linear transformations, which are often not sufficient 

to preserve relationships of very high-dimensional data (Maaten and Hinton, 2008).

T-distributed Stochastic Neighbor Embedding (tSNE), introduced in (Maaten and Hinton, 

2008), is a nonlinear dimensionality reduction technique consisting of two main stages. 

First, a probability distribution is constructed over the high dimensional data points, for 

which conditional probabilities of two objects are proportional to the similarity of those 

objects. Second, a similar probability distribution is created in a low-dimensional map 

(typically two dimensions). The Kullback-Leibler (KL) divergence is then minimized 

between the two distributions to ensure a good mapping to the low-dimensional space, 

ensuring that datapoints close together in the high dimensional space are similarly close 

together in the low dimensional space. tSNE is typically performed on the components of 

the last fully connected layer before the final classification layer. Depending on the 

dimension of this layer, PCA may be applied prior to tSNE to reduce the computational 

demands of performing tSNE.

tSNE is commonly used in visualizing deep learning models as it preserves pairwise 

Euclidean distances between data points. It can thus be used for several applications, for 

example visualizing patterns and clusters across classes and detecting outliers. This 

technique has been applied to the classification of abdominal ultrasound images (Cheng and 
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Malhi, 2017) as well as classification and anomaly detection in histopathology images 

(Faust et al., 2018). An example of tSNE images generated from (Faust et al., 2018) is 

shown in Figure 4A. In (Yu et al., 2018), tSNE was performed not only on the components 

of the fully connected layers but also on vectorized 2D ultrasound images.

Another approach to visualizing high-dimensional data was proposed in (Plis et al., 2014) to 

assess whether their CNN models were learning useful information. The authors argue that 

due to the complicated nature of tSNE, it is difficult to know whether a two-dimensional 

mapping of CNN features is of poor quality due to the tSNE process or due to the deep 

learning process. Instead, the authors propose a constraint-based embedding technique that 

uses a divide-and-conquer algorithm that recursively breaks a problem into smaller sub-

problems until each sub-problem can be solved directly and explicitly outputs the constraints 

that are being satisfied. The constraint used in (Plis et al., 2014) was that k nearest neighbors 

of the resulting 2D projection were the same as in the original space, where k is a tunable 

parameter. The authors apply their technique to visualize how well a deep belief network 

(DBN) can separate brain MRI images of schizophrenic and healthy patients at each layer of 

the network, showing increased separations at deeper layers of the network. Similarly, they 

also separate brain MRI images of patients with and without Huntington disease, as shown 

in Figure 4B. The authors also note that neither tSNE nor the constraint-based embedding 

was able to separate patients when applied directly to the raw data.

2.3. Autoencoders for learning latent representations

Autoencoders are a class of deep learning model common to unsupervised feature learning 

(Vincent et al., 2008), with applications in anomaly detection (Kiran et al., 2018), image 

compression (Cheng et al., 2018; Theis et al., 2017), and representation learning (Tschannen 

et al., 2018). Autoencoders for imaging applications are similar to CNNs in that they take 

images as input but differ in that their output is not a label, but rather the output is equal to 

the input. Autoencoders consist of two stages: an encoder which converts an input image 

into a latent representation, and a decoder which reconstructs the image from the latent 

representation. Typically, the encoder and decoder are trained jointly, minimizing the 

reconstruction loss between input and output. However, multiple types of autoencoders with 

different structures and loss functions have been developed, including variational 

autoencoders (VAE) (Doersch, 2016) and adversarial autoencoders (AAE) (Makhzani et al., 
2015), among others.

Autoencoder use in medical imaging has focused predominantly on abnormality detection. 

In such application, an autoencoder is first trained with many examples containing no 

abnormality (i.e. scans of healthy patients with no pathology). This way the encoder learns a 

latent representation of normal images. Then, after abnormal test examples are introduced, 

their abnormalities are not captured in the latent representation, and the decoder will 

struggle to accurately reconstruct the parts of the image containing the abnormality. As a 

result, abnormal images can be detected by assessing the difference between the input image 

and model reconstruction. Simultaneously, the autoencoder can also provide a localization of 

abnormality by highlighting parts of the image with high reconstruction loss. In this way, 

autoencoders may be considered an interpretable form of deep learning model for image 

Huff et al. Page 6

Phys Med Biol. Author manuscript; available in PMC 2021 June 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



analysis tasks, because they can provide an assessment of where an image differs from what 

is expected based on a distribution of normal images.

This approach to abnormality detection has been applied to multiple medical imaging tasks. 

In (Uzunova et al., 2019), a VAE was trained to reconstruct OCT retinal images of healthy 

patients. The autoencoder was then used to classify three retinal pathologies in a separate 

dataset. The authors also assessed the ability of the VAE to localize the pathology in the 

OCT image, and compare the VAE to other visualization methods. They concluded that their 

proposed VAE-perturbation method was well-suited for explaining the output of their 

classifier. The authors also applied the same methodology to brain MRI, with similar results. 

An AAE is employed in (Chen et al., 2020) to learn the distribution of healthy subject brain 

MRI images, and is then applied to test images of brain MRI containing lesions. The 

difference images between input and AAE reconstruction successfully localize lesions in the 

test images. A convolutional autoencoder was also used to detect nuclei in histopathology 

images by (Hou et al., 2019). These authors developed an interesting approach to nuclei 

detection by combining learned latent representations with thresholding to separate images 

into a foreground containing nuclei and background containing cytoplasm.

3. Understanding model predictions

In contrast to model interpretation methods that involve visualizing intermediate network 

features or learned representations of data, other approaches to model interpretation try to 

attribute the model output to different parts of the input image. In general, they produce 

heatmaps that describe the importance of different parts of an image to the model decision 

on a pixel-by-pixel basis. Most attribution-based interpretation models function as post-hoc 
explanations – they are only meaningful when applied to a fully trained model, thus, they 

should be implemented after training has been completed. The available approaches 

generally fall into three groups: perturbation-based approaches (Section 3.1), 

backpropagation- or gradient-based approaches (Section 3.2), and decomposition-based 

approaches (Section 3.3). In addition to post-hoc attribution, so-called attention maps can be 

produced by trainable attention modules, which can be added to typical CNN architectures 

(Jetley et al., 2018). This approach to model interpretation is covered in Section 3.4.

3.1. Perturbation-based methods

Perturbation-based approaches to model interpretation involve altering different parts of an 

image and seeing how those perturbations change the output of the model. The commonality 

of the approaches in this section is the underlying idea that when important parts of an 

image are perturbed, the output of the model is strongly affected, and when unimportant 

parts of an image are perturbed, the output of the model is unaffected. These approaches can 

be thought of as a type of sensitivity analysis to test the effect of small changes in model 

input on model output.

3.1.1. Occlusion—Occlusion as a means of performing model interpretation was first 

introduced in (Zeiler and Fergus, 2014). This technique consists of systematically occluding 

parts of an image and monitoring how strongly the perturbation influences model output. 

Image parts that, when occluded, strongly affect the output of the model are assigned high 
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importance, while image parts that have little effect on model output when occluded are of 

low importance. Kermany et al. employed occlusion as a way to perform model 

interpretation for the diagnosis of retinal pathologies in optical coherence tomography 

images (Kermany et al., 2018). Several occlusion-produced heatmaps from this application 

are shown in Figure 5A.

One drawback of occlusion is that it amounts to performing inference on many slightly 

perturbed versions of the image, which requires computation. This drawback is especially 

pertinent if a high resolution heatmap is desired, as inference must be performed on as many 

perturbed images as there are occluded patches in the desired heatmap.

3.1.2. Local interpretable model-agnostic explanations (LIME)—LIME is an 

approach to model interpretation introduced by Ribeiro et al. (Ribeiro et al., 2016). While 

LIME can be used to explain the prediction of any classifier, for this review we only 

consider LIME in the context of image models. LIME for images works by first identifying 

groups of contiguous pixels with similar intensities called superpixels. The image is then 

perturbed by turning subsets of superpixels “off” by replacing the value of all pixels in the 

superpixel with the mean intensity value of that superpixel. Like occlusion, changes in the 

model output due to the perturbation are used to identify how important each superpixel is to 

model output, and a heatmap highlighting the important superpixels is produced.

Seah et al. used LIME to visualize the salient portions of chest radiographs for identifying 

congestive heart failure (Seah et al., 2018)). For their application, they find that LIME 

produces heatmaps that are less intelligible than their proposed Generative Visual Rationale 

method, as demonstrated in Figure 5B. An advantage of LIME over occlusion is that LIME 

uses superpixels that are more likely to correspond to semantically different parts of an 

image, while occlusion perturbs image patches in a systematic, uniform way, ignoring 

possible semantic similarity between adjacent pixels. LIME also uses less extreme 

perturbations than occlusion, as the intensities in the perturbed image region are replaced by 

the mean intensity instead of zeroes, however, there is nothing to prevent modification of 

either method to remove this difference.

3.1.3. Integrated gradients—Integrated gradients was first introduced in (Sundararajan 

et al., 2017). The integrated gradients method considers the input image and a baseline 

image of all zeroes. Starting from the baseline image, a set of intermediate images are 

produced along the path from the baseline to the input image. At each step along the path, 

the gradient of the model output with respect to each pixel in the intermediate image is 

computed. Then, these gradients are summed over the path from baseline to input image. 

This produces the heatmap of pixelwise importance desired. Formally, the integrated 

gradients heatmap IG(x) produced for a given input image x and baseline image x’ is given 

by:

IG(x) = x − x′ × ∫0
1 ∂F x′ + α × x − x′

∂x dα

where the function F: Rn → [0,1] represents the CNN model.
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In its introductory paper, the authors demonstrate the use of integrated gradients for 

providing model explanations for detecting diabetic retinopathy on retinal fundus images. 

This use is expanded upon in (Sayres et al., 2019), where ophthalmologists were tasked with 

grading the severity of diabetic retinopathy both with and without the explanatory heatmap 

produced by integrated gradients. Figure 5C shows an example of images provided to 

clinicians with and without interpretation. The authors report that readers provided with 

model-predicted grades and heatmaps graded patients with diabetic retinopathy more 

accurately than readers without any model assistance.

3.2. Backpropagation- or gradient-based methods

Backpropagation is the method by which weights in a neural network are updated during the 

model training process. Model interpretation methods in this section do not actually update 

model weights as occurs during training; rather, they rely on backpropagation to compute 

gradients, and these gradients are combined in different ways to visualize salient parts of an 

image.

3.2.1. Saliency maps—Saliency maps, introduced in 2013 by (Simonyan et al., 2013), 

use gradients to visualize the classification of an image evaluated by a deep convolutional 

network. In the introductory paper, the authors offer two uses for saliency maps: class 

maximization visualization and image-specific class saliency maps.

Class maximization uses gradient ascent to produce an image that maximizes the activation 

of that class, and therefore can be interpreted as being most representative of that class. 

Formally, class maximization finds an image I of class c for which a class score Sc is 

maximized:

argmaxSc(I) − λ I 2
2

where λ is a regularization parameter.

In (Yi et al., 2017), class maximization is used to produce visualizations of maximally 

malignant and maximally benign breast masses to help interpret the performance of a 

network trained for mammogram classification. Figure 6A contains examples of the class 

maximization visualizations for benign and malignant breast masses. The authors note that 

the maximally malignant visualization appears to contain a highly spiculated mass, a visual 

feature used by radiologists to identify malignant breast masses.

Image-specific class saliency maps are image- and class-specific heatmaps that represent the 

importance of individual pixels to the assignment of the image to a class, providing an 

assessment of which parts of an image are most important to the model. Saliency mapping is 

sometimes also referred to as “sensitivity analysis”, but it should be noted that it is a 

separate technique from the perturbation-based methods outlined previously in Section 3.1. 

Here, the heatmap Salc(x) for a class c is computed directly as the derivative of the model 

output score Fc(x) with respect to each pixel in the input image x through backpropagation:
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Salc(x) =
∂Fc(x)

dx

Because of its simplicity, saliency mapping is one of the most widely implemented methods 

for model interpretation in medical imaging to date. As shown in Figure 6B, Dubost et al. 

employed image-specific class saliency maps as part of a weakly supervised approach to 

segmentation of structures on brain MRI (Dubost et al., 2017; Dubost et al., 2019). Other 

areas of application for saliency maps include heart disease classification on chest x-rays 

(Chen and Shi, 2018), detection of abnormalities in the spine on MRI (Jamaludin et al., 
2016), detection of artifacts on magnetoencephalography (Garg et al., 2017), classification 

of breast masses in mammography (Lévy and Jain, 2016), and classification of pediatric 

elbow fractures on x-ray (Rayan et al., 2019).

Gonzalez-Gonzalo et al. presented an expansion of class saliency maps in 2018 with the 

introduction of iterative saliency maps (González-Gonzalo et al., 2018). The objective of 

iterative saliency mapping is to identify less discriminative image regions that may have 

been ignored in the initial saliency map. Briefly, the method works by iteratively computing 

a saliency map, inpainting the most salient image regions identified, and computing the 

saliency map again. This process repeats until the perturbed image is no longer classified as 

containing an abnormality, or a maximum number of iterations is reached. The final iterative 

saliency map is computed as a weighted sum of the saliency maps computed at each step. 

The authors apply their technique to the task of identifying retinal fundus image segments 

relevant to grading diabetic retinopathy and demonstrate higher sensitivity with iterative 

saliency maps compared to saliency maps without iterative refinement.

Despite their popularity, saliency mapping has the notable drawback that it provides no 

indication as to whether a pixel provides evidence for or against a class, only that the 

classification is sensitive to that pixel. Several authors have also noted that in binary 

classification settings, saliency maps lose their class specificity, because if a feature is 

important for distinguishing between two classes, it may be highlighted by a saliency map 

for both classes (Garg et al., 2017).

3.2.2. Guided backpropagation—Guided backpropagation, introduced in 

(Springenberg et al., 2014), is an extension to saliency maps introduced by (Simonyan et al., 
2013) and the ‘deconvnet’ concept introduced in (Zeiler and Fergus, 2014). The difference 

between these approaches lie in how backpropagation through Rectified Linear Unit (ReLU) 

activation layers of the network is handled. ReLU is an activation function commonly used 

in CNNs (Glorot et al., 2011). During the forward pass, neurons with negative output are 

clamped to zero by ReLU by definition (ReLU(x) = max(0,x)). (Zeiler and Fergus, 2014) 

extended this idea to computing gradients in the backward pass by clamping to zero negative 

gradients. Guided backpropagation combines these two ideas, zeroing out signal through 

neurons that have either negative output during the forward pass or negative gradient during 

the backward pass. This produces a heatmap that highlights only pixels that provide positive 

evidence for a classification. Further discussion of the relationship between saliency maps, 

deconvnet, and guided backpropagation can be found in (Mahendran and Vedaldi, 2016).
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Guided backpropagation has been used to visualize salient image pixels for the task of fetal 

heartbeat localization in ultrasound images by Gao et al. (Gao and Noble, 2017). They find 

that the heatmaps produced by guided backpropagation are robust to variations in heart 

appearance, scale, position, and contrast. Bohle et al. evaluated guided backpropagation as a 

method for visualizing Alzheimer’s disease (AD) diagnosis on brain MRI, but found the 

visualizations produced by guided backpropagation to be less discriminative than those 

produced by other methods (Böhle et al., 2019a).

3.2.3. Class activation mapping—Class activation mapping (CAM) was first 

introduced in 2016 by (Zhou et al., 2016). Class activation mapping works by computing a 

weighted sum of feature maps following the final convolutional layer where the weights are 

provided by the fully connected layer following global average pooling, a type of pooling 

described in (Lin et al., 2013). The class activation map CAMc(x) for a class c and image x 
is defined as:

CAMc(x) = ∑
k

wk
cfk(x)

where wk
c are the weights for class c in the final network layer, and fk(x) is the corresponding 

feature map prior to global average pooling. Thus, CAMc(x) is a class-specific heatmap that 

indicates discriminative image segments.

Class activation mapping has seen use in both classification and localization applications in 

medical imaging. (Feng et al., 2017) used class activation maps as part of a weakly-

supervised approach to lung nodule segmentation on thoracic CT scans. First, a CNN was 

trained to perform binary classification of CT images as containing a nodule or not. Then, 

the authors show that class activation maps generated from the trained classification model 

successfully highlights nodule candidates. Similar weakly-supervised approaches using 

CAMs for chest x-ray abnormality and breast mass localization is described in (Hwang and 

Kim, 2016), and for ACL tear localization on knee MRI in (Liu et al., 2019). Kim et al. 

computed class activation maps for the classification of benign vs malignant breast masses 

on mammograms, but found them difficult to interpret for their task, as shown in Figure 6C 

(Kim et al., 2018). Other applications of class activation maps to medical imaging tasks 

include localization of diabetic retinopathy lesions in retinal fundus images (Gondal et al., 
2017), and weakly supervised diagnosis of tuberculosis on chest x-rays (Hwang and Kim, 

2016).

A drawback of class activation mapping is that it places some restrictions on network 

architecture. It requires a global pooling layer, followed by a fully connected layer as the last 

layers before the output layer. While Zhou et al. used global average pooling when they 

introduced class activation mapping, related work by Oquab et al. produces similar 

localization score maps using global max pooling (Oquab et al., 2015).

To address this limitation of class activation maps, (Selvaraju et al., 2017) introduced 

gradient-weighted class activation maps (grad-CAM). In grad-CAM, the weights are the 
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gradients of the class score with respect to each feature map, instead of requiring that the 

weights be taken from a fully connected layer. That is:

gradCAMc(x) = ReLU ∑
k

αk
cfk(x)

where the weights αk
c are the gradients of the score for class c yc with respect to the kth 

feature maps fk(x) of the preceding convolutional layer:

αk
c =

∂yc
∂fk(x)

Selvaraju et al. define grad-CAM to include a ReLU activation, because they are interested 

only in features with a positive association with the class c. They also offer a further 

refinement with guided grad-CAM, which is the pixelwise product of grad-CAM and 

Guided Backpropagation (Springenberg et al., 2014). More recently, (Zhao et al., 2018) have 

added a further variant of class activation mapping with respond-weighted class activation 

mapping (Respond-CAM).

Garg et al. employed grad-CAM visualizations to identify discriminative regions of 

magnetoencephalography images in the task of detecting eye-blink artifacts (Garg et al., 
2017). The authors found that the regions of the eye highlighted by grad-CAM are the same 

regions that human experts rely on. Furthermore, (Shen and Gao, 2018) used grad-CAM to 

visualize areas of chest x-ray indicative of fourteen suspected diseases. In this multi-class 

setting, the class-specific nature of grad-CAM proved to be valuable.

3.3. Decomposition-based methods

Decomposition-based methods for model interpretation seek to decompose the prediction of 

the model to a heatmap that describes how much each pixel contributes to the prediction. 

Whereas perturbation- and gradient-based methods for interpretation highlight parts of the 

image that, if altered, affect the prediction of the model, decomposition-based methods 

identify parts of the image that directly provide evidence for the model decision.

3.3.1. Layer-wise relevance propagation—Layer-wise relevance propagation (LRP) 

was introduced by Bach et al. in 2015 (Bach et al., 2015). Unlike saliency mapping, guided 

backpropagation, and grad-CAM, LRP does not rely on gradients to generate a heatmap. 

Instead, LRP works by computing relevance scores that distribute the output of the final 

layer amongst nodes in the previous layer. This process continues recursively until the input 

layer of the network is reached, producing a relevancy score heatmap that can be overlaid 

over the input image. Formally, the relevance score contribution to a neuron i in the lth layer 

from a neuron k in the (l+1)th layer is:

Ri k
l, l + 1 = Rk

l + 1 aiwik
∑ℎaℎwℎk
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The total relevance score for a neuron i in the lth layer is the sum of contributions over all 

neurons k in layer l+1 to which neuron i is connected:

Ril = ∑
k

Ri k
l, l + 1

Further properties of LRP and details of its theoretical basis are given in (Montavon et al., 
2017), and comparison of LRP to other interpretation methods can be found in (Samek et al., 
2016; Kohlbrenner et al., 2019).

Layer-wise relevance propagation has seen some use in medical imaging applications. Eitel 

et al. applied LRP for providing interpretation to CNN-based diagnosis of multiple sclerosis 

(MS) on brain T2-weighted MRI (Eitel et al., 2019). Interestingly, they show that LRP 

heatmaps focus on both hyperintense lesions in regions in the brain clinically associated 

with MS diagnosis as well as the thalamus, which is known to be affected by MS at an early 

disease stage (Figure 7A). The same researchers also used LRP to interpret CNN-based 

Alzheimer’s disease (AD) diagnosis on MRI in (Böhle et al., 2019a). The authors find that 

LRP heatmaps from their trained model highlight the hippocampal volume, which has been 

used to diagnose AD and predict disease progression (Figure 7B). They also compared LRP 

to guided backpropagation and concluded that LRP may be more valuable than guided 

backpropagation for their task because the difference in heatmap scores between 

Alzheimer’s disease and healthy controls was more evident for LRP. Finally, Thomas et al. 

use LRP as part of their DeepLight framework for associating brain regions with different 

cognitive states on functional MRI (Thomas et al., 2018).

3.4. Trainable attention models

In addition to techniques for interpretation that produce attribution heatmaps from a fully 

trained model, as covered in Sections 3.1–3.3, some research has also been done toward 

developing trainable mechanisms for attribution. In particular, the concept of soft attention 

as introduced for CNNs by (Jetley et al., 2018) has seen application to medical image 

analysis tasks. This type of attention module can be added to any layer of a CNN to produce 

a fine-grain attention map which highlights salient parts of an image. Attention modules take 

as input the activation map output from the previous network layer (local features, ls) and a 

global feature vector (g) obtained from the final network layer. The attention module 

computes a compatibility score cs between the local features and the global features. In 

(Jetley et al., 2018), two functions for computing compatibility are proposed: the dot product 

between local and global features (〈ls, g〉), and the dot product between the sum of local and 

global features and a learned vector u (〈u, ls + g〉). Intuitively, the compatibility score is high 

for local features which are similar to the global features from deeper in the network. 

Finally, the attention map as is produced by applying softmax normalization to the 

compatibility scores cs:

as =
exp cs

∑i = 1
n exp cs, i
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The output of the attention module ga is the local features weighted by the attention map:

ga = ∑asls

Thus, the attention module increases signal from features with high compatibility with the 

global feature description of the image and suppresses signal from features with low 

compatibility.

Attention for 3D medical images was implemented by (Schlemper et al., 2019), who 

introduced an Attention U-Net for organ segmentation in abdominal CT scans, and Attention 

Gate (AG)-Sononet for fetal ultrasound image plane classification. In both tasks, the authors 

demonstrated that the attention maps produced by their attention gates correctly highlighted 

the structures of interest. In (Li et al., 2019), soft attention mechanisms were added to a 

traditional U-Net for segmenting breast masses on digital mammograms. For this task, the 

addition of attention provided a modest improvement in segmentation performance over the 

authors’ base model. In melanoma lesion classification, the use of a regularized attention 

mechanism for the classification of skin lesion photographs demonstrated that attention 

maps generated from deeper network layers may focus more strongly on valid image regions 

than those from shallower layers (Yan et al., 2019). Attention modules were added to a 

VGG-16 architecture for grading osteoarthritis severity on x-ray images of the knee (Górriz 

et al., 2019). In contrast with the previous study, these authors obtained higher classification 

accuracy and more reasonable attention maps from earlier layers in the network. Other 

applications of attention mechanisms to medical imaging include classification of breast 

cancer histopathology images (Yang et al., 2019), and segmentation of cardiac substructures 

on MRI (Sun et al., 2020).

Trainable attention is particularly interesting as an interpretation strategy because not only 

does it provide an attribution heatmap, but it can also improve model performance 

(Schlemper et al., 2019; Li et al., 2019). However, the optimal architecture and 

implementation hyperparameters have yet to be determined and are likely to vary by 

application.

4. Toolkits for model interpretation specific to medical imaging

In Sections 2 and 3, we described methods for model interpretation that are application-

agnostic. However, we highlighted examples of their use for medical imaging-specific 

applications. In this section, we summarize several publications that introduce tools for 

model interpretation designed specifically for medical imaging tasks. Some of the toolkits in 

this section incorporate approaches to model interpretation described in Sections 2 and 3. 

For example, Mimer, described in Section 4.3, makes use of grad-CAM, previously 

described in Section 3.2.3.

4.1. CLEAR-DR

Kumar et al. introduced CLass-Enhanced Attentive Response Discovery Radiomics 

(CLEAR-DR) as a framework for model interpretation in 2019 (Kumar et al., 2019). 

CLEAR-DR is built on CLEAR, published previously by the same authors (Kumar et al., 
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2017). CLEAR produces two types of explanatory heatmap: a dominant class attentive map, 

which assigns each image pixel to the class most influential at that location, and a dominant 

response map, which shows the dominant attentive level based on the identified dominant 

class. The authors apply the method to grading diabetic retinopathy (DR) in a set of more 

than 50,000 retinal fundus images. They produce heatmaps corresponding to evidence for 

each of five classes: mild, moderate, severe, and proliferative DR, as well as DR-negative. 

For their classification task, the authors find that in correctly classified images the CLEAR-

DR maps correspond to relevant portions of the eye anatomy, and in cases that are 

misclassified, CLEAR-DR fails to focus on the relevant abnormality.

4.2. DeepMiner

DeepMiner, introduced in (Wu et al., 2018b), is a framework for discovering interpretable 

representations for explaining medical imaging predictions. This framework builds on their 

previous work in which they demonstrate that visual patterns learned by their network 

correspond to relevant medical phenomena (Wu et al., 2018a). DeepMiner uses a technique 

called network dissection (Bau et al., 2017) to identify influential network features, and an 

expert then manually annotates these features with an application-specific semantic concept. 

The authors apply their framework to the task of mammogram classification. In this 

application, a radiologist specializing in mammography manually assigns a concept from the 

BI-RADS lexicon to influential features, such as “benign vascular calcification” or 

“spiculation”. DeepMiner then generates a report consisting of a test image overlaid with 

influential feature activation maps and the corresponding medical phenomena as an 

explanatory aid. The proposed framework is application-agnostic and could be extended to 

other image classification tasks where semantic concepts of image sections are of interest. 

However, a drawback of DeepMiner is its reliance on expert annotation of network feature 

activation maps. In their application, the authors find that 75% of influential features 

correspond to an identifiable medical phenomena, but this percentage may be task-

dependent.

4.3. Mimer

Hicks et al. describes the development of an automated multimedia reporting system called 

Mimer in their 2018 paper (Hicks et al., 2018b). The goal of Mimer is to produce an 

understandable and reproducible report containing text and images from a medical 

procedure appropriate for non-technical users. Users select an image, a network layer, and a 

target class, and Mimer produces a report describing the likelihood of the selected image 

containing the target class (model output), and a guided grad-CAM visualization of evidence 

for the target class (model interpretation). The authors provide example reports for 

performing polyp detection following a colonoscopy. They also provide clear, step-by-step 

instructions for installing the necessary dependencies for running Mimer either from a 

provided git repository, or a pre-configured Docker image.

4.4. DX-Caps

In (LaLonde et al., 2019), the authors introduce a capsule network-based model for 

producing explainable diagnoses. Capsule networks differ from traditional CNNs in that the 

scalar feature maps produced at each layer in a traditional CNN are replaced with vectorized 
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representations (Sabour et al., 2017). The authors use the capsule architecture to assign 

specific semantic concepts to each component of the network output. They apply DX-Caps 

to lung nodule classification and use a six-dimensional output to capture six attributes 

important to lung nodule malignancy prediction (subtlety, sphericity, margin, lobulation, 

spiculation, and texture). While DX-Caps does not produce a heatmap of interpretation, their 

approach of using a vectorized network output to provide a clinician with an explanation for 

the model output in terms of familiar semantic concepts is interesting and widely applicable 

to diagnosis tasks. However, a drawback of their approach that should be noted is its reliance 

on expert annotation of individual semantic concepts in training images, which may be time-

consuming to produce and may differ from clinician to clinician.

4.5. MDNet

MDNet, introduced in (Zhang et al., 2017), uses joint image and language models to provide 

diagnosis interpretation for images paired with text reports. For their image model, the 

authors use ResNet (He et al., 2016), which they use to generate an image feature vector that 

is passed to the long short term memory (LSTM) language model. The LSTM also takes as 

input the text report. MDNet uses the attention mechanism from (Xu et al., 2015) to produce 

heatmaps which show the image support for each word in the accompanying text. The 

authors apply MDNet to a bladder cancer pathology dataset of 32 whole-slide hematoxylin 

and eosin (H&E) stained samples from patients at risk for papillary urothelial neoplasm with 

paired diagnostic report text. The authors report that collaborating pathologists found the 

MDNet-produced attention maps to be “fairly encouraging” for highlighting informative 

regions of the images. While the authors only investigate applying MDNet to pathological 

images, radiological images would be another promising area of application, as large-scale 

repositories of paired images and radiologist-produced report text exist at any large 

academic hospital.

5. Recommendations

In this review, we have summarized current approaches to interpreting deep learning models 

used in medical image analysis. Here, we provide a succinct summary of recommended 

steps for conducting model interpretation in medical imaging. When thinking of deep 

learning data and model workflow, it helps to think of three distinctive steps (Figure 2): data 

collection, model training and model deployment.

Model interpretation can be performed during both model training and deployment. 

However, different approaches for interpretation are appropriate at different steps. For 

example, dimensionality reduction may be useful prior to model training to better 

understand underlying structure in a high dimensional dataset, whereas attribution-based 

methods for interpretation are only meaningful once a trained model is obtained, and so 

should be used after model training or once a model is deployed.

Before performing model interpretation, it is important to ensure that the model has been 

trained properly. Attempting to perform any of the interpretation techniques with a model 

trained with incorrect data, or a model overfit to training data, can be misleading. To help 

avoid common training pitfalls, we include Appendix 1 which summarizes some of the most 
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common issues likely to be encountered in training CNNs for medical image analysis tasks. 

However, as training of CNNs is a vast and complex topic, the summary is not meant to be 

exhaustive, but rather typical in analysis of medical images. For a full discussion on training 

CNNs, there are several other resources available, for example (Goodfellow et al., 2016).

Filter and feature map visualization, as described in Section 2.1, is a simple way to perform 

model interpretation, but the value of doing so can be unclear. Some authors have been able 

to connect individual feature maps with human identifiable features (Van Molle et al., 2018), 

but others find that layers contain many similar feature maps with little intuitive meaning 

(Zhang et al., 2019). It is also important to keep in mind that feature maps are likely to 

become more complicated and less intuitive at deeper layers of the model (Olah et al., 2017). 

Techniques like network dissection (Bau et al., 2017), which identify important features, 

should be considered when pursuing feature map visualization for model interpretation.

Attribution-based methods for model interpretation is perhaps the largest research direction 

in model interpretation, and the existence of multiple attribution-based methods for model 

interpretation can make the process of choosing a method overwhelming. To better 

understand the relationship between attribution-based methods, we provide their “family 

tree” (Figure 8). Some qualities to consider when making this choice are method maturity 

and popularity, weaknesses described in literature, and publicly available implementations. 

More mature methods, such as saliency mapping (Simonyan et al., 2013), have the 

advantages of simple intuition, and abundant examples of use in literature (Table 1), but 

drawbacks of the method have also been identified (Adebayo et al., 2018; Rudin, 2018). 

Newer methods, such as grad-CAM (Selvaraju et al., 2017) or layer wise relevance 

propagation (Bach et al., 2015) have fewer examples of use in literature, but there are also 

fewer publications identifying their weaknesses. However, it is unclear if this is due to their 

being inherently more useful than previous methods, or just a product of their more recent 

development. Given the rapid pace of development in deep learning, there will likely be new 

methods for model interpretation developed in the future, which may address shortcoming of 

current methods.

Another point to consider when choosing a method for model interpretation is ease of 

implementation. Some public implementations are available. For example, the Keras 

Visualization Toolkit (Keras-vis) has implementations of class maximization, saliency maps, 

and grad-CAM. (https://raghakot.github.io/keras-vis/). Keras-explain (https://pypi.org/

project/keras-explain/) is another project with implementations of multiple interpretation 

methods including grad-CAM, guided back-propagation, and integrated gradients. When 

choosing a publicly available implementation to pursue, it can be useful to check whether 

the developer is still actively supporting the project. Github (https://github.com/), a popular 

website for sharing code, shows when a project was last updated, and the Issues tab of a 

Github repository can be a useful indicator of whether the developer is likely to respond to 

questions.
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6. Discussion

This review is the first to summarize both the technical and practical implementation details 

of model interpretability approaches for deep learning practitioners focusing on medical 

imaging applications. We have grouped interpretation approaches by their technical 

similarities, and by their relevance to different stages of the model development process. We 

have also provided practical advice for choosing between interpretation techniques and for 

implementing them. Deep learning-based approaches to medical image analysis is a rapidly 

expanding and exciting area of research, however the medical nature of the problems 

addressed in this field warrants extra emphasis on model interpretation.

When performing model interpretation, it is important to keep in mind that one of the end 

goals is to improve clinician trust in the model. To assess whether model interpretation has 

an impact on clinician behavior, comparison of clinician-alone vs clinician with model 

interpretation can be a valuable tool. For example, (Sayres et al., 2019) compared reader 

performance in assigning diabetic retinopathy grade to retinal fundus images in three 

assistance settings: unassisted, reader provided with algorithm-predicted grade only, and 

reader provided with algorithm-predicted grade and integrated gradient heatmap. The 

authors compare the grading accuracy, reader confidence, and read time across these three 

assistance conditions and find that while algorithm-predicted grades improved grading 

accuracy and reader confidence, they also resulted in increased read time. There was also not 

a significant difference in grading accuracy when the integrated gradients heatmap was 

provided with the predicted grade as compared to the predicted grade alone. Regardless, this 

type of comparison is a strong example for assessing the impact of model interpretation on 

clinician-algorithm interaction.

It is important to recognize that the importance of model interpretation is task dependent, 

and different levels of model interpretation are necessary for different tasks. Table 1 

organizes the reviewed literature by interpretation technique and image analysis task. The 

implementation of model interpretation techniques is common in detection and classification 

tasks, but not in segmentation tasks, despite segmentation being a large application of deep 

learning in medical imaging (Litjens et al., 2017). This disparity may be attributed to the 

difference in perceived importance of interpretation by task. For detection and classification, 

it is natural to want to compare the parts of an image the model uses to make a prediction to 

the parts of an image a physician would use. In segmentation, the equivalent rationale for the 

importance of interpretation is less clear. For segmentation, perhaps interpretation heatmaps 

would highlight anatomical landmarks nearby a structure of interest, or would simply 

highlight the target structure itself, but this has not been fully investigated. Despite 

differences, all classes of application stand to gain the same benefits from model 

interpretation, including the investigation of model limitations, assessment of 

generalizability, and increased user trust.

The uses for model interpretation methods can extend beyond providing model interpretation 

alone. For example, (Dubost et al., 2019; Dubost et al., 2017) used saliency maps as part of a 

weakly-supervised method for detecting enlarged perivascular spaces on brain MRI. This 

use of saliency mapping is especially interesting because it was able to circumvent the need 
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for dense, pixel-by-pixel labels that would be required by a traditional, fully supervised 

detection approach. Dimensionality reduction techniques are commonly used to visualize 

network representations of data and gain intuition into how the network separates classes, 

but they can also be used to identify outlier data. In (Faust et al., 2018), the authors apply a k 

nearest neighbors approach to tSNE-produced representations of patches drawn from whole 

slide histology images of CNS tissue samples. They find that tSNE representations of new 

glioma patches fall close to glioma patches in their training data. Another possible 

application of model interpretation techniques is to inform the design of mathematical 

models. For example, understanding feature maps, as described in Section 2.1, can 

potentially provide insight into the key dependencies describing a particular system, and 

could be useful inputs for modeling of the investigated system behavior. As these examples 

indicate, there is great potential for creative and valuable use of interpretation techniques as 

part of other medical image analysis approaches.

Current challenges and future directions

While current approaches to model interpretation can provide valuable insight into how a 

deep learning model is performing, there are important limitations that should be discussed. 

First, some researchers have argued that explanations provided by commonly employed 

attribution-based interpretation methods such as saliency mapping or class activation 

mapping are not reliable and can be misleading (Rudin, 2018; Adebayo et al., 2018). These 

concerns have been voiced within medical imaging as well. For example, (Seah et al., 2018) 

report that in detecting abnormalities in chest x-rays, several attribution-based interpretation 

methods (occlusion, integrated gradients, LIME) produced nonspecific heatmaps for the 

expected abnormality. In (Böhle et al., 2019a), the authors compared guided 

backpropagation and layer-wise relevance propagation for producing heatmaps of 

explanation for separating Alzheimer’s Disease from healthy controls on brain MRI. They 

observed that guided backpropagation failed to produce heatmaps that were visually 

dissimilar for Alzheimer’s Disease versus healthy controls.

To avoid these weaknesses of post-hoc explanation methods, (Rudin, 2018) suggested that 

new types of models designed to be inherently interpretable should be used instead. One 

possible approach for this was described in (Hase et al., 2019), where test images were 

classified by comparing them to a predefined hierarchical taxonomy of images that act as 

primitives of each classification category. As an example, the authors describe the 

classification of an image of a capuchin monkey: first, the image is determined to contain an 

animal based on similarity between the test image and an animal prototype image, then it is 

determined to contain a primate, and finally a capuchin. This interesting approach to 

interpretation could be potentially valuable in medical imaging applications where 

abnormalities or pathologies have a hierarchical relationship. However, this approach would 

likely be restricted to classification problems.

Adversarial attacks represent another limitation of current model interpretation techniques. 

Adversarial attacks refer to image perturbations designed to strongly affect the prediction of 

a deep learning model without affecting the appearance of the image to a human observer 

(Szegedy et al., 2013; Kurakin et al., 2016). Multiple researchers have demonstrated that 
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medical images are susceptible to adversarial attack (Finlayson et al., 2018; Mirsky et al., 
2019). In addition to adversarial attacks designed to maximally perturb model predictions, 

adversarial attacks against model interpretation heatmaps have also been investigated. These 

perturbations are designed to maximally change the interpretation heatmap, while leaving 

the model prediction unaffected. (Ghorbani et al., 2017) showed that small perturbations to 

natural images could be designed to maximally change the heatmaps produced by several 

commonly used interpretation methods. The adversarial perturbations could also be designed 

to cause the interpretation method to selectively highlight a part of the targeted image that is 

semantically different from the predicted label. This kind of attack would be especially 

damaging to physician model trust in medical settings. Given the susceptibility of medical 

images to adversarial attack against their predictions, it is reasonable to expect medical 

image interpretation to be similarly vulnerable. However, despite these limitations, many 

other publications summarized in this review have demonstrated useful benefit from 

performing model interpretation with various methods.

Finally, several growing areas of medical imaging research are ripe for application of model 

interpretation techniques. First, image to image synthesis tasks are an interesting area of 

application. For example, MRI to CT synthesis for PET/MR attenuation correction and 

MRI-only radiotherapy planning (Wolterink et al., 2017), or low dose to high dose image 

synthesis for radiotracer dose reduction (Wang et al., 2018; Yi and Babyn, 2018). No 

established interpretation methods have been consistently applied to this class of application. 

Additionally, several cancer imaging studies investigating the relationship between non-

invasive imaging modalities and pathology or genetic information have recently been 

published. For example, pre-treatment PET textural features were correlated with vascular 

endothelial growth factor (VEGF) expression in head and neck cancer patients (Chen et al., 
2017). Similarly, several groups have correlated PET findings to programmed death ligand-1 

(PD-L1) expression, a possible marker for patient response to cancer immunotherapies 

(Chen et al., 2019; Takada et al., 2017; Jreige et al., 2019). Applying model interpretation 

techniques to this class of problem could potentially increase understanding of the 

connections between image features and the underlying biology. Early work in this direction 

has been done in (Wang et al., 2019), where a deep learning approach to predicting 

epidermal growth factor receptor (EGFR) status from chest CT in lung adenocarcinoma 

patients made use of grad-CAM to provide visual evidence of the model decision in the 

image. The authors of this work provide example visualizations of both EGFR+ and EGFR- 

cases to demonstrate the differences in grad-CAM maps by EGFR status.

7. Summary

We have reviewed approaches to interpreting CNN-produced predictions and their use in 

medical imaging applications. Model interpretation can be performed by looking inside the 

model at the features it learns, or by looking at the output of the model and understanding 

which parts of an image were important to producing that output. Medical images have 

unique characteristics which should be considered when performing model interpretation, 

and several tools designed to accommodate these unique characteristics have been 

developed. It is now well established that deep learning models can achieve state of the art 

performance for a wide variety of medical image analysis tasks, but in order to better 
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understand the models and gain clinician trust, developing methods for providing clear and 

interpretable rationale for model decisions is critical. For this reason, it is imperative that 

developments in model interpretation progress in step with developments in model 

performance. It is equally important that investigators applying deep learning to medical 

imaging tasks rigorously implement and consistently report on model interpretation steps 

undertaken for their task.
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Appendix 1:: Ensuring proper model training

While this appendix does not strictly pertain to model interpretation, we choose to include it 

because attempting to perform any of the interpretation techniques with an improperly 

trained model can be misleading. The steps described in this section can identify common 

issues and save time that would later be spent debugging. This appendix is not meant to 

serve as an exhaustive tutorial on training CNNs; it is only designed to cover some common 

tips with added emphasis on aspects especially relevant for medical imaging. For a full 

discussion on these topics, there are several other resources available, for example 

(Goodfellow et al., 2016).

Ensuring data correctness

Before beginning to train a CNN, the dataset should be carefully checked for potential 

inconsistencies or artifacts. For example, any desired unit conversion should be applied 

consistently to the whole dataset, and in multi-modality images, spatial agreement between 

image channels should be checked. Image data used for training and testing CNNs might go 

through transformation steps that can include resampling, cropping, or normalizing image 

intensity. These might be part of image preprocessing, post-processing, or as part of a data 

augmentation strategy to increase dataset size. It is important to ensure that these steps do 

not introduce any inconsistencies that degrade model performance and confound model 

interpretation. Thus, data should be visually checked both before and after these steps are 

taken. For example, in training a segmentation model, it is important to ensure that any 

transformations applied to the input images as augmentation are also applied to the 

corresponding ground truth segmentation masks so that their spatial correspondence is 

maintained. This process is often time consuming but minimizes performance issues that 

would cause frustration and misinterpretation of results down the road.

Another common aspect of deep learning applications to medical imaging is the use of 

expert ground truth labels. For a classification task, this might take the form of images being 

labeled as “benign” or “malignant” by a physician, or for a segmentation task, this might be 

the manual contouring of an anatomical structure. To ensure ground truth consistency, it is 

important to communicate clearly with the physician or radiologist reviewing the images 
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what form the ground truth should take. Meeting with a clinical collaborator and labelling 

several cases together can avoid misunderstandings and minimize wasted effort. Following 

manual ground truth assignment, the labels should be checked for completeness and 

consistency.

Dataset size is often limited in medical imaging contexts, which can present a challenge for 

training deep learning models. Particularly, overfitting on a small dataset is a concern. 

Overfitting occurs when a deep learning model has the capacity to effectively memorize the 

training set, which leads to excellent training set performance, but poor validation or test set 

performance. Data augmentation strategies, such as image cropping, rotation, flipping, and 

intensity shifting/scaling can be employed to help increase the effective size of the training 

set (Shorten and Khoshgoftaar, 2019).

Model training

During the CNN training process, it is important to monitor the performance of both a 

training and validation set. The training set is the data used to update the weights of the 

model, while the validation set is used to monitor model performance and avoid overfitting. 

Most popular deep learning frameworks provide a way to produce learning curves, which 

plot training and validation set performance as a function of training iterations (Perlich, 

2010). Inspecting these learning curves can reveal a large amount of information about the 

model training process (Google). For example, a steep increase in training set loss could 

indicate exploding gradients. This can be remedied by stopping and restarting network 

training with a decreased learning rate or implementing gradient clipping. Conversely, if the 

loss is not decreasing or decreasing slowly, the learning rate may be increased for faster 

model convergence. If the validation loss starts increasing but training loss continues to 

decrease, this is an indication that the model is starting to overfit the training set, and 

training should be stopped.

Checking model performance often during training can save a large amount of training time, 

allowing for faster model iteration and experimentation. Many other training parameters can 

also affect the training process such as choice of optimizer, choice of weight initialization 

scheme (Glorot and Bengio, 2010; He et al., 2015), batch size, and regularization, among 

others (Goodfellow et al., 2016). Setting these parameters appropriately is important and 

application-dependent, but outside the scope of this review.

Assessing model output

The appropriate method for assessing model output is dependent on the task being 

performed, and it is important to avoid using misleading performance metrics to evaluate 

model performance. For example, in a binary classification task, accuracy can be a 

misleading metric if the prevalence of one class is much higher than that of the other, as is 

often the case in medical applications. More appropriate metrics for imbalanced classes such 

as sensitivity, specificity, and positive and negative predictive value can be used. In 

evaluating segmentation performance, overlap based metrics such as Dice coefficient can be 
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misleadingly high for large structures, or misleadingly low for small structures. Other 

metrics based on surface-to-surface distances can be used in this case.

Additionally, it is important to distinguish between the metric that the network is working to 

minimize and the final performance metric appropriate for your application. For some 

applications, these two metrics may be the same, but they need not be. For example, in 

classification tasks, cross-entropy is a commonly used cost function used to optimize the 

model but calculating the cross-entropy on the test set may not be as intuitive as other 

performance metrics. For example, it may be more meaningful to generate a confusion 

matrix to see where misclassifications have occurred. Identifying instances in which the 

CNN performs poorly can provide direction as to how to improve the model. For example, if 

a classification model is consistently misclassifying a specific class, more examples for that 

class may be needed or class-balancing methods may need to be implemented.

Acronyms

CADe computer aided detection

CADx computer aided diagnosis

CAM class activation map

CNN convolutional neural network

CNS central nervous system

CT computed tomography

DBN deep belief network

LIME local interpretable model-agnostic explanations

LRP layer-wise relevance propagation

LSTM long short-term memory

MEG magnetoencephalography

MRI magnetic resonance imaging

PET positron emission tomography
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Deep Learning Concepts

Activation:

a nonlinear function typically applied at each layer of a deep neural network

Backpropagation:

the process of recursively computing gradients of the model loss with respect to each 

weight backwards through a network to update model weights during training.

KL Divergence:

Kullback-Liebler divergence. A measure of difference between two probability 

distributions. DKL(P, Q) = sum(P(x)*log(P(x)/Q(x))).

Natural images:

images of objects in the natural world, as opposed to man-made images or computer 

generated images (Ruderman, 1994). For example, the ImageNet database is comprised 

of natural images (Deng et al., 2009).

ReLU:

Rectified Linear Unit – a commonly used activation function. ReLU(x) = max(0, x). See 

(Glorot et al., 2011).

Superpixel:

a group of contiguous image pixels with similar intensities

Transfer learning:

a network training strategy in which initial weights are taken from a network previously 

trained for another task.
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Figure 1: 
Model interpretation techniques can focus either (1) on increasing understanding of internal 

model structure and function, or (2) on increasing understanding of model output. These two 

approaches to model interpretation are covered in review Section 2 and Section 3, 

respectively.
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Figure 2: 
Overview of the model development process (bottom), overlaid with aspects of model 

interpretation best suited to each phase (top), and the sections of the review in which they 

are covered. Different approaches to model interpretation are applicable to all steps of the 

model development process, from initial data collection, model training, and through to 

model deployment.
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Figure 3: 
The parts of a convolutional layer are shown to make clear the distinction between a 

convolutional filter and a feature map (A). The input layer is convolved with a set of filters 

and an activation function is applied to generate a feature map. Comparison of learned 

model filters from (Yu et al., 2018) (B) and (Shin et al., 2016) (C). Both examples show 

filters learned via random initialization (RI) of filters and after transfer learning (TL). Filters 

in (B) are of size 3×3, and filters in (C) range from size 5×5 to 11×11.
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Figure 4: 
Examples of visualizing high-dimensional deep learning features in a 2D projection. (A) 

tSNE used to classify regions of histopathology images in (Faust et al., 2018). (B) 

Constraint-based embedding used to visualize brain MRI images from healthy controls and 

patients with a varying severity of Huntington disease (Plis et al., 2014).
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Figure 5: 
Example uses of perturbation-based attribution methods for model interpretability. In (A), 

(Kermany et al., 2018) employed occlusion in order to visualize CNN-based diagnosis of 

retinal pathologies in optical coherence tomography images. (B) compares several 

approaches to interpretation for identifying congestive heart failure on chest x-ray (Seah et 

al., 2018). In (C), (Sayres et al., 2019) uses integrated gradients to visualize evidence of 

diabetic retinopathy on retinal fundus images.
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Figure 6: 
Backpropagation-based approaches to model interpretation include: (A) class maximization 

visualization of malignant and benign breast masses on mammogram (Yi et al., 2017), (B) 

weakly supervised detection of extra perivascular spaces on brain MR via saliency mapping 

(Dubost et al., 2019), and (C) class activation map visualization for classifying breast masses 

on mammograms (Kim et al., 2018).
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Figure 7: 
Layerwise relevance propagation for model interpretation in (A) diagnosing multiple 

sclerosis on brain MRI (Eitel et al., 2019), and (B) visualizing evidence for Alzheimer’s 

disease on brain MRI (Böhle et al., 2019b).
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Figure 8: 
Family tree of attribution-based methods for model interpretation. Dates correspond to when 

the method was first published. Arrows indicate methods that are developmends or 

refinements of previous methods.
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