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Abstract: Deep efforts have been devoted to studying the fundamental mechanisms ruling genome
integrity preservation. A strong focus relies on our comprehension of nucleic acid and protein
interactions. Comparatively, our exploration of whether lipids contribute to genome homeostasis
and, if they do, how, is severely underdeveloped. This disequilibrium may be understood in historical
terms, but also relates to the difficulty of applying classical lipid-related techniques to a territory
such as a nucleus. The limited research in this domain translates into scarce and rarely gathered
information, which with time further discourages new initiatives. In this review, the ways lipids
have been demonstrated to, or very likely do, impact nuclear transactions, in general, and genome
homeostasis, in particular, are explored. Moreover, a succinct yet exhaustive battery of available
techniques is proposed to tackle the study of this topic while keeping in mind the feasibility and
habits of “nucleus-centered” researchers.
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1. Introduction

Along with nucleic acids, proteins, and carbohydrates, lipids are one of the four major
biomolecules in living organisms [1], a nomenclature that includes thousands of different
species of variable structure [2,3]. Cellular processes are mediated by the concerted action of
biomolecules, thus forming complex interaction networks. Yet, while two-thirds of the cell
proteome is in constant interaction with multiple lipid species, few efforts have established
cellular maps other than protein-protein and protein-nucleic acid interactions [4]. This is in
part because profiling lipid-protein interactions fall beyond the working potential of most
standard bioanalytical methods, which in turn relates to the partial hydrophobic nature of
these molecules.

From a classical point of view, lipids are first recognized as the major components
of cellular membranes, which in mammals mostly include the glycerophospholipids
phosphatidyl-choline, -ethanolamine, -serine, and -inositol, the sphingolipid sphingomyelin,
glycosphingolipids, and cholesterol. Secondly, lipids are also high-energy storage units,
whose ATP-producing potential is released during ß-oxidation. Thirdly, lipids are cru-
cial for signaling events, self-organizing in a dynamic fashion to conform rafts. These
nanoplatforms can congregate proteins to trigger signals, as classically illustrated during
the formation of the immunological synapse in T-cell activation [5]. Lipids also become
second messengers after being locally hydrolyzed in response to specific cues, giving rise to
diacylglycerol, arachidonic acid, ceramide, and sphingosine, all bearing a strong bioactive
potential [6] (Figure 1, grey drawings in the cytoplasm). While these three aspects have
been highly studied at the plasma membrane and in the cytoplasm, the potential roles of
lipids inside the nucleus are comparatively poorly assessed.
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Figure 1. Overview of how lipids could impact nuclear transactions. Classical, well-studied functions of lipids in the
cytoplasm, such as membranes constituents, as energy suppliers, or as plasma membrane-based signaling platforms, are
depicted in grey. Less studied and even hypothetical activities in the nucleus have been drawn in blue, with the immediately
concerned nucleic acids in yellow and proteins in red. These activities include structuring and signaling roles at the
inner nuclear membrane, scaffolding of complexes, activating roles as cofactors, dislodgement of proteins by chemical
chaperoning, lipidation of nuclear proteins driving changes in their interactome, subnuclear localization or half-life, as well
as indirect titration of nuclear factors in the cytoplasm by their anchoring to the surface of lipid droplets (LD).

Lipids conform to the nuclear membrane, accounting for genome shielding and
homeostasis. Additionally, incipient literature starts to address, mostly in a descriptive
manner, the importance of lipids for genome integrity, preservation during DNA damage,
sensing, and repair. For example, the specific accumulation of an early intermediate in
the mevalonate pathway, namely mevalonate diphosphate, results in dNTP depletion,
subsequent replicative stress, and hyper-activation of the Ataxia Telangiectasia and Rad3-
related (ATR)-dependent DNA Damage Response (DDR) branch [7]. The synthesis of fatty
acids and sterols is reported to be under the control of the Ataxia Telangiectasia-mutated
(ATM) axis of the DDR in glioblastoma cells [8] and, reciprocally, saturated fatty acids
and cholesterol are described to finetune the DDR activation [9,10]. Yet, the mechanisms
underlying these observations remain to be elucidated.

In the following section, ways through which lipids may theoretically impact or
have been demonstrated to actually affect nuclear homeostasis are described (a simplified
compilation of these roles can be found in blue font in the scheme presented in Figure 1).
When justified, how this may uncover a new research avenue in genome stability is
speculated. At the end of this section, Table 1 recapitulates the main contribution of
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different lipid species to different aspects of nuclear physiology in each reported organism.
Last, a non-expert-friendly overview of the methodological approaches available to study
those aspects is presented, taking care that they remain compatible with the specific needs
of genome-related studies.

2. How Lipids Impact Nuclear Homeostasis
2.1. Directly, via Membrane Composition and Properties

The first and most intuitive contribution of lipids to nuclear homeostasis comes from
their structural role as the main constituents of the nuclear membrane. The different mem-
branes of the cell establish their identity through their differential protein and lipid species
composition, which in turn derive features such as their curvature and their electrostatic
profiles. Lipids whose shape impart a marked curvature to the membrane create a platform
capable of attracting proteins. The reactions hosted this way are different from the ones
occurring at membranes with a very negative charge yet low curvature [11]. In this sense,
the nuclear membrane, for example of liver cells, contains a very rich profile of polyun-
saturated fatty acids [12]. This provides a loose packing environment that is permissive
for the insertion of a specific subset of proteins, which can be exploited to establish the
very characteristic inner nuclear membrane (INM) proteome [13]. The lipid composition
of the nuclear membrane also conditions the assembly and configuration of nuclear pore
complexes [14]. A particularly important contribution goes for the sphingolipid hydrolase
SMPD4 [15], which, by releasing ceramides specifically in proximity to nuclear pores,
could either promote the local concave membrane curvature needed to insert nuclear pore
complexes [16] or act as enzymatic cofactors (see next section). Further, the production of
very-long-chain fatty acids suppresses ruptures in the fission yeast nuclear membrane [17]
and is key in sustaining the extreme curvature of the membrane at the sites of nuclear pore
complexes insertion [18]. Lipids alleviate the stress derived from defects during nuclear
pore complex assembly [19], and the overexpression of Ole1, which increases the presence
of unsaturated acyl chains, solves defects in nuclear envelope sealing in Schizosaccharomyces
japonicus [20].

The nuclear membrane lipid profile also supports its role in genome shielding. For
example, the accumulation of long-chain sphingoid bases suppresses the aberrant nuclear
membrane defects induced by aneuploidy, both in budding yeast and human cells [21]. In
this sense, we recently reported that lipid stress is elicited at the INM by the widely used
genotoxic agent Methyl methanesulfonate [22]. Its alleviation occurs through membrane
deformation or by the emission of membrane-derived structures into the nucleoplasm [22],
two processes that can affect ploidy control [21] or DNA repair [23], respectively. The
excess of polyunsaturation in the chains of phosphatidylcholine can also be sensed by the
apical kinase of the DDR ATR in a DNA damage-independent manner. Activated by this
stimulus, ATR phosphorylates p53, which in turn halts the cell cycle and can eventually lead
to apoptosis [24]. This sensing by ATR of lipid membrane properties may be at the basis
of its recently reported ability in mechanosensing [25,26]. Last, restricting phospholipid
availability by the use of the fatty acid synthase inhibitor cerulenin provokes an extremely
round nuclear morphology [27]. As a consequence, it stems that the plasticity and other
biophysical properties of the nuclear membrane, as ruled by lipids, will virtually impact
every nuclear transaction requesting the membrane or the nuclear pores. For example,
the anionic glycerophospholipid phosphatidylserine contacts chromatin to promote the
re-nucleation of the nuclear envelope after mitosis [28]. Other nuclear events impacted by
lipids include the coordination of transcription and replication, in which DNA needs to
be dynamically anchored to and dislodged from the nuclear membrane [29]. Telomeres
in Saccharomyces cerevisiae are also anchored to the nuclear membrane, and defects in the
lipid-controlled ESCRT (endosomal-sorting complexes required for transport) machinery
result in telomere shortening [30]. In the same line, the nuclear membrane influences the
establishment of chromosome territories of the epigenome, and its maintenance [31–33],
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the DDR [9,34], and DNA repair [23,35,36]. Therefore, nuclear membrane shaping by lipids
conditions nuclear events.

2.2. Directly, through Protein Lipidation

Lipidation is a powerful post-translational covalent modification with the ability to
alter the sub-cellular localization of proteins, modulating their catalytic activity, provoking
their aggregation, and changing their half-life as well as their interacting partners. For
example, palmitoylation can compete with ubiquitination at specific lysines, thus protect-
ing the modified protein from degradation [37]. Lipidation can be actively mediated by
enzymatic conjugation or occur in a passive way. Its modalities vary depending on the lipid
moiety that is conjugated (a fatty acid, a cholesterol molecule, or an isoprenoid) and on
the type of amino acid to which it becomes esterified, namely lysines, serines, cysteines, or
glycines [38]. The most frequently conjugated fatty acids include the irreversible addition
of myristate at the N-terminus of proteins and the reversible esterification of palmitate
at inner lysines and serines of the targets. We are familiar with nuclear proteins being
controlled by different post-translational modifications, such as phosphorylation, ubiquiti-
nation, or sumoylation. Yet, we are less aware of the potential control that lipidation may
exert, and the concerned nuclear proteome. Notably, nuclear proteins, as the replicative
helicase MCM and the DNA replication factor C, have been found to be palmitoylated in
HeLa cells, although the physiological role of this modification remains unassessed [39].
Several variants of the histone H3 are palmitoylated at cysteine 110 [40], and palmitoy-
lation of histone H4 at serine 47 is important to regulate transcription [41]. Further, the
palmitoylation of Rif1 permits its anchor to the nuclear membrane, which warrants its role
in heterochromatin formation [42] and in mediating accurate DNA double-strand break
repair [43].

A relevant example of the importance of nuclear proteins’ lipidation concerns the
farnesylation of Lamin A. The LMNA gene encodes four lamins (A, C, CD10, and C2)
via alternative splicing, of which lamin A and C are expressed ubiquitously. Lamin A
precursor, prelamin A, is farnesylated, a lipidation permitting its association with the
nuclear membrane. Cleavage by the endoprotease ZMPSTE24 gives rise to a mature form
that lacks the lipidated moiety and is released from the membrane. A pathological de
novo single-base substitution (c.1824C > T) occurring within the LMNA exon 11 gives rise
to an aberrant protein, termed progerin, that can be lipidated yet loses the site for the
proteolytic cleavage, thus remaining permanently modified [44]. This mutation acts in a
dominant fashion, is at the base of misshaped nuclei, heterochromatin loss, delayed DDR,
mislocalization of nuclear proteins, and at the organism level, gives rise to Hutchinson
Gilford Progeria Syndrome [45,46].

Interestingly, passive lipidation of proteins may also be key in the nucleus. In fact,
thousands of these acyl modifications found in vivo occur at a very low stoichiometry,
thus making enzyme-driven, regulated lipidation a rather unlikely event. In contrast, slow,
nonenzymatic reactions are more plausible. Indeed, acyl-CoA thioesters can react with
nucleophilic cysteine and lysine residues. The exposure of such residues in the surface
of proteins suffices to undergo this spontaneous modification. Given that cysteines are
rarely exposed to protein surfaces, nonenzymatic acylation mostly impacts lysines [47].
If not antagonized by active de-acylation, nonenzymatic acylation becomes a bonafide
“carbon stress”, in which its detrimental impact is suggested by its negative selection
throughout evolution at hundreds of sites prone to suffer spontaneous lysine acylation [48].
This way, active de-acylation prevents the deleterious inactivation of the proteome due to
undesired spontaneous acylation while restoring the pool of available acyl-CoAs [49]. The
de-acylation activity, in general, and in front of nonenzymatic acylation, in particular, relies
on sirtuins [50]. In the context of the nucleus, the danger of carbon stress is illustrated by the
essentiality of SIRT6 for nuclear homeostasis. SIRT6 is a predominantly nuclear protein [51],
functioning as an ADP-ribosylase and as a NAD+-dependent de-acylase, both for short acyl
groups (for example, acetyl) and for long-chain fatty-acyl ones [52]. The absence of SIRT6
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alters telomere position effect [53] and DNA damage sensing at an early step preceding
ATM signaling [54]. It also affects DNA double-strand break repair by destabilizing DNA-
PK [55] and hampers the recruitment of the chromatin remodeler SNF2H to DNA break
sites [56]. Further, SIRT6 appears to be instructed by Lamin A in deacetylating histones [57].
Yet, in spite of being implicated in these and many other cellular functions, the precise
manner in which its activity in DNA damage repair is exerted remains largely elusive [52].
Since, upon detection of long-chain fatty acids, SIRT6 catalysis is stimulated [58], it is both
tempting and parsimonious, in order to explain all its aforementioned roles, to invoke its
role as a “nuclear de-lipidation” cleaner whose activity keeps a healthy nuclear proteome.

Last, passive lipidation of proteins may occur with lipid peroxidation products (ox-
oLPP), giving rise to modified proteins of compromised function. Importantly, nuclear
proteins related to nucleopore function, transcription, and splicing, as well as DNA damage
sensing and repair, have been reported as specific targets of such a modification upon
high-fat cell loading [59].

2.3. Directly, through Non-Covalent Lipid Binding

Long-chain fatty acids are poorly soluble in aqueous environments and, to increase
their solubility and facilitate their movement through the cytoplasm, utilize the Fatty Acid-
Binding Proteins (FABPs) [60], abundant members of an ancient and conserved multigene
family [61]. In parallel, long-chain fatty acids regulate the expression of several genes
involved in lipid metabolism thanks to ligand-dependent transcription factors, such as
the nuclear peroxisome proliferator-activated receptor, PPAR [62–65]. It was therefore
suggested that FABPs impact gene expression by transporting bioactive long fatty acids to
the nucleus and delivering them to the transcription factors. FABPs such as CRBP (cellular
retinol-binding protein), cellular thyroxine-binding protein (CTBP), and liver FA binding
protein (L-FABP) have been evidenced through in vitro approaches using isolated nuclei
to implement such a transport ([66–69], to cite a few). Recently, the in vivo localization of
Fabp1b.1 and Fabp2 was reported within the nuclei of enterocytes in zebrafish, in particular
as excluded from condensed chromatin [70]. Thus, in nuclei, FABPs exert a transport and
delivery function whose best-recognized goal is to implement ligand-induced transcription.
Yet, this does not rule out that fatty acids (FA) being transported to and moving within the
nucleus by FABPs may have additional destinies.

Reciprocally, FABPs ability to bind FA may not be simply restricted to a transport-
delivery role. In fact, FABP1 is key in the detoxification of dangerous fatty acids, either
because of their excess or because of their harmful activities [71]. This may be important
when it comes to electrophilic FA, such as FA nitroalkenes. These endogenously detectable
products arise after nitric oxide reacts with unsaturated fatty acids during nitrite-dependent
metabolic and inflammatory events. Given their electrophilic nature, FA nitroalkenes
mediate post-translational modifications of hyper-reactive nucleophilic cysteine thiols in
proteins (as mentioned in the previous section). These types of molecules harm central
DNA repair players such as RAD51, for example, by abolishing its ability to bind single-
stranded DNA [72]. In agreement with the potential role of FABPs in detoxifying the
nucleus, FABP4 binds electrophilic FA at this precise location [73].

Last, an exciting and underexplored scenario is the possibility that other nuclear pro-
teins apart from FABPs bind FA, thus being regulated, redirected, structured, or activated
this way. For example, the release of stored fatty acids (i.e., lipolysis of triacylglycerols)
triggers a transcriptional response, stimulated by sirtuin 1 (SIRT1), aimed at coupling FA
release with their ß-oxidation [74]. It was recently found that perilipin 5 (PLIN5), a protein
residing on cytoplasmic lipid droplets, the main FA cellular store (see next section), can
bind mono-unsaturated FA released during lipolysis and traffic them to the nucleus, which
stimulates SIRT1 catalysis, therefore enhancing the aforementioned transcriptional pro-
gram [75]. Another example concerns the tumor suppressor and master of nuclear integrity
BRCA1 (BReast CAncer 1), which harbors, at aminoacid residues 1664–1696 within the
first BRCT repeat, a lipid-binding motif. In the 3D structure, these residues are solvent-
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accessible and share strong homology to FABP pockets. This ability has been proposed to
mediate the relative distribution of BRCA1 between the nucleus and the cytoplasm [76]. To
finish, we recently predicted in silico the presence of one FA-binding pocket in Nup157 and
in Nic96, two nucleoporins necessary to anchor and scaffold the nuclear pore complex. Both
pockets are located at strategic sites mastering the 3D conformation of these nucleoporins.
Genetic experiments and fluorescence microscopy suggested that FA binding may help
solubilize these proteins to escort them for assembly at the nuclear membrane [77]. Thus,
FA binding bears a strong potential for ruling very divergent nuclear phenomena.

On a different note, ceramides arise as the major metabolite after sphingomyelin
hydrolysis at the plasma membrane in response to chemical and physical stresses, as well
as agonist binding. Ceramides generated this way diffuse from this site of cleavage to act
as second messengers, tuning trafficking, inflammation, proliferation, differentiation, and
apoptosis [78]. This regulatory activity is exerted through their non-covalent binding to
target proteins, both in a stimulatory and an inhibitory manner. Among such proteins,
Protein Phosphatases 1 and 2A (PP1 and PP2A) were identified as ceramide-activated using
short length, cell-permeable C2-ceramide [79–81]. Later on, their ability to stimulate these
phosphatases was proven using more physiologically relevant long-chain ceramides, such
as D-erytro-C18-ceramide [82]. This stimulatory role of ceramides on phosphatases may be
key upon genotoxic stress, as various phosphatases have been implicated in silencing the
DDR. This includes PP2C (Ptc2/Ptc3) and PP4 (Pph3-Psy2) in the recovery from a double-
strand break [83,84], as well as PP1 (Glc7) and again PP4 (Pph3-Psy2) to permit recovery
after stress during replication [85–88]. PP2A also shows activity in dephosphorylating
important genome integrity surveillance players such as ATM, p53, Chk1, Chk2, and
Rad53 [89–91].

Importantly, to tolerate the replication stressor hydroxyurea, S. cerevisiae cells are
dependent on the genes coding for Isc1 (the yeast homolog of mammalian neutral sph-
ingomyelinases, which catalyzes the hydrolysis of complex sphingolipids, thus releasing
dihydro- and phytoceramides), Sur4 (Fatty Acid elongase), Lag1 and Lac1 (ceramide syn-
thase), and cannot tolerate the overexpression of the phytoceramidase Ydc1 [92]. Overall,
this speaks of an acute dependency on ceramides to tolerate hydroxyurea. Later work
demonstrated that, specifically, C18:1-phytoceramide activates Cdc55, a regulatory subunit
of PP2A, which culminates with cell cycle resumption [92]. A further contribution of ce-
ramides to the tolerance to hydroxyurea comes from stimulated PP2A de-phosphorylating
of the DDR effector Rad53 [89]. Thus, ceramides are necessary to de-activate the checkpoint
elicited by replication stress. Of note, there exist many species of ceramides, distinguished
by the length and the unsaturation degree of their fatty acyl group and the hydroxylation
of the sphingoid base. Recent work has expanded the catalog of ceramides implicated in
response to hydroxyurea stress [93]. As such, ceramides could modulate enzymatic activi-
ties other than phosphatases, processes other than the DDR, and in response to nuclear
stresses other than hydroxyurea.

2.4. Directly, as Nucleating and Scaffolding Platforms inside the Nucleus

Phosphoinositides (PIP) are a subset of phospholipids with inositol as the polar head
that can become phosphorylated in all possible combinations at positions 3, 4, and 5, giving
rise to seven possible variants. These molecules are present in the nucleus, and their levels
are responsive to multiple stimuli, therefore suggesting their potential role in regulating
specific nuclear functions [94]. Both the synthesis of PIP at the INM and their intranuclear
presence are documented [95,96]. It is even possible that their synthesis occurs within
the nucleoplasm provided that, as soon as they emerge from their synthesizing enzyme,
they immediately engage in interactions with surrounding proteins and nucleic acids [97].
This is due to their poor solubility, which does not render it intuitive to imagine how
they manage to be stabilized or to diffuse in the nucleoplasm. One option is that their
FA tails conform micelles or establish interactions with nuclear proteins that effectively
mask their hydrophobic features [94]. For example, their apolar tails can be bound by the
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steroidogenic factor 1 (SF-1) while the inositol head group remains exposed to establish
interactions [98,99]. Excitingly, SF-1 has been implicated in the process through which PIP
affects DNA damage sensing [98].

The poor definition of PIP nuclear targets has hindered the characterization of the
nuclear pathways they control. Targeted and global proteomic studies have established
lists of potential PIP-interacting proteins, pointing at transcription, chromatin remodeling,
and mRNA maturation [100]. For example, ING2, one member of the conserved inhibition
of growth (ING) family, associated with the modulation of histone acetyl transferase and
deacetylase complexes [101], was described as a bonafide nuclear receptor for PI(5)P. This
interaction regulates the ability of ING2 to activate p53 and p53-dependent apoptotic
pathways [102]. Since then, chromatin regulation has been well-established to be under PIP
influence [103]. Mechanistically, PIP provides negative charges locally at the regions where
they are embedded, thus creating domains for interaction with positively charged proteins.
Of note, protein acetylation can neutralize the charge associated with its target lysine,
thus erasing this positive charge [104]. It was very recently shown that, within proteins
interacting with membranes, acetylation occurs more frequently at the specific protein
surface responsible for the interaction with negative membrane patches, thus abolishing
its interaction with these patches in a reversible manner [105]. Given that acetylation is
a common post-translational modification regulating nuclear proteins, in general, and
histones in particular, it will be worth exploring how PIP may play on the equilibrium of
chromatin attachment to/detachment from the nuclear periphery.

An additional yet less recognized picture emerges when exploring the contribution
of PIP as scaffolding platforms. In particular, the involvement of PI(4,5)P2 in the orga-
nization of membrane-less nuclear compartments. This definition concerns sub-nuclear
domains with a functional identity self-structured through the nucleation of their com-
ponent molecules without being contained by a shielding membrane. These include
splicing speckles, nucleoli, and DNA repair foci. In all cases, PI(4,5)P2 underlies their
organization [98,106], and its absence has negative functional consequences in splicing
implementation [107], RNA polymerase I transcription [108], and sensing of DNA dam-
age [98], respectively. In the same line, a very recent work reports the presence of PI(4)P
in close contact with the nuclear lamina, the nucleoli, and the nuclear speckles, as well
as scattered through the nucleoplasm. Identification of its associated proteome points at
replication, transcription, as well as mRNA and rRNA processing [109].

2.5. Directly, as Chaperones

A yet different contribution of lipids to nuclear homeostasis concerns their ability
to act as chemical chaperones. Lipid species of the sterol family have demonstrated a
palette of dissolving activities towards protein aggregates. For example, an endogenous
sterol refractory to identification was found responsible for the reversible disassembly
of misfolded proteins stored within inclusion bodies, and authors could mimic the same
disaggregation power by externally providing 25-hydroxycholesterol [110]. In the same
line, 25-hydroxycholesterol and its related molecule lanosterol promote the chemical dis-
assembly of aggregated proteins in vitro and in vivo [111–113]. The nucleolus harbors a
complex and dense meshwork of proteins and RNA and a well-demonstrated link with
protein aggregation, both of pathological nature [114] or with protective purposes [115].
In both cases, reversibility of nucleolar aggregates is a sine qua non condition to regain
homeostasis. It would be very exciting to explore the potential of these molecules in this
specific context. On another chaperoning set-up, cholesterol was recently shown in vitro to
promote chromatin compaction through the dehydration of nucleosomes [116]. Further,
cholesterol complexed with single-stranded DNA can instruct DNA bending in order to
hide the exposed end [117], opening a myriad of regulatory roles, in particular during
DNA repair. Excitingly, lipid membranes can also act as an RNA organization platform in
an RNA sequence-, length- and structure-dependent manner [118]. This introduces a novel
layer for ribo-regulation, but also opens unexplored avenues in how lipids, near both the



Int. J. Mol. Sci. 2021, 22, 12930 8 of 25

nuclear membrane or the nucleoplasm, could impact RNA transcription rates, splicing,
packing for export, or selective storage within nuclear speckles.

2.6. Indirectly, through the Titration and Supply Activity of Lipid Droplets

Lipid droplets (LD) are cytoplasmic organelles born from the endoplasmic reticulum
conformed by a neutral lipid core surrounded by a phospholipid monolayer in which pro-
teins intercalate directly, attach by lipidation moieties or interact through stably anchored
partners. They constitute a central store of lipids with either reserve functions to protect
them from harm or, reciprocally, to protect the cell from lipid excess (lipotoxicity) [119].
By virtue of the dynamic and variable proteome that can decorate them, LD are now also
recognized as a selective protein reservoir that can render such proteins available, or not,
at other cellular compartments. The protein composition of LD is exquisitely dynamic
and highly responsive to different cues, including the type of lipids they store [120]. In
agreement with LD location and main role, the bulk of reported LD-sitting proteins is
mostly cytoplasmic. Nevertheless, the published LD proteome datasets are numerous
(a comprehensive list is compiled in [121]), and examples of nuclear or nucleus-related
factors exist. For example, histones are LD-harboured in different species [122–124]. In
the Drosophila developing embryo, their timely release allows an accurate division pat-
tern [125,126], while in other species, the significance of this storage remains unassessed.
Since, conceptually, “division pattern” is intimately related to “replication”, and replication
is extremely sensitive to histone levels [127], it is very tempting to speculate that LD may
serve as a depot to fine-tune the number of histones supplied to the nucleus at a given
time. This may be of special significance during sudden halts in replication, such as during
replication stress, when LD could buffer, in a fast manner, a histone excess that otherwise
would be deleterious. Recent reports also declare LD as particularly well suited for interact-
ing with transcription factors, such as MLX in human cells [128], MLDSR in bacteria [129],
or Opi1 in budding yeast [130]. This is even more stimulating when considering that LD
has been reported to bind nucleic acids, in particular RNA [131], thus making emerge the
theoretical possibility of a whole transcriptional regulatory network.

To add to this, we recently exploited published LD proteomes from S. cerevisiae
cells [120] to validate thus enlarge the catalog of nuclear proteins whose presence onto
LD is physiologically relevant. While reported hits such as condensin or cohesin complex
subunits could not be validated [132], we discovered the ability of cytoplasmic LD to
harbor nucleoporins in a manner concerted with cell metabolism [77]. Thus, active cycling
is coupled to nucleoporin release from LD to conform active pores and, reciprocally, storage
of nucleoporins onto LD permits nuclear pores to modify their stoichiometry under low-
cycling conditions [77]. Importantly, we also demonstrated that the inability to use LD
as a buffer depot when nucleoporins are in excess overloads the nuclear membrane with
nuclear pores and expands it. Further, we revealed the notion that aberrantly formed LD
sequester karyopherins and their cargos, thus depleting them from the nucleus [77]. The
cytoplasmic accumulation of nucleoporins in bodies positive for the PML protein, named
CyPNs, had been proposed to represent a nucleating center for the partial pre-assembly
of nuclear pore complexes [133–135]. This analogy raises the exciting possibility that at
least a subset of LD works as a “montage” factory to create nuclear pore rudiments, which
could facilitate their subsequent insertion into the nuclear membrane. This would agree
with the recently discovered role of LD in preventing nuclear pore complex assembly
stress [19]. Furthermore, mRNAs coding for nucleoporins were recently reported to be
targeted to the proximity of the nuclear pore to couple nucleoporin translation with pore
assembly [136]. Given the connection of LD with both nuclear pore rudiments [77] and RNA
binding [131], it would be interesting to assess whether LD contributes to this nucleoporin
mRNA targeting.

A specific mention goes for nuclear LD (nLD), which, in analogy to their cytoplasmic
counterparts, are also born from the endoplasmic reticulum, although in this case from
the INM subdomain and towards the nucleoplasm [137]. Being less frequent and recently
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discovered, their function(s) remains a mystery as of today. They are more protein- and
sterol-rich than their cytoplasmic counterparts [138], and their birth sites are specified
by specific protein and lipid combinations to overcome the negative curvature of the
inner side of the nuclear membrane [139–142]. Of note, we recently reported their birth
in response to the genotoxic agent Methyl methanesulfonate [22]. The very first report
on the identity of their proteome, just published, also reveals the presence of multiple
histones [143]. This could point at a hub controlling the stock of histones to be supplied for
replication or again as an assembly platform. Given that LD can interact with RNA [131]
and that transcription factors have been reported as assembled onto nLD [130], again, a
role in organizing transcription can be invoked. Last, and again in analogy with the role
of cytoplasmic LD [110], a non-exclusive function could support the slow release of their
lipid contents at given sub-nuclear domains with chemical chaperoning purposes.

2.7. Indirectly as a By-Product of Metabolic Transactions

Indirect impact on nuclear transactions is also achieved because of the metabolism
of lipids outside the nucleus. For example, acetyl-CoA provides a well-established link
between energy metabolism and chromatin regulation [144,145]. In this context, de novo
FA synthesis uses acetyl-CoA as a substrate, which directly competes with the need of
this substrate for histone acetylation. This is why diminishing the rate of FA synthesis
through reduced Acetyl-CoA-carboxylase (ACC1) expression increases global histone
acetylation and gene expression [146]. Reciprocally, the same effect can be achieved if FA
oxidation, which releases acetyl-CoA, is stimulated [147]. From this, it stems that both
physiological and pathological alterations in mitochondrial activity have an immediate
effect on the epigenome [148]. This concerns tricarboxylic acid intermediates such as not
only acetyl-CoA, but also α-ketoglutarate, for they are substrates of histone acetyltrans-
ferases and demethylases, respectively. For the same reason, the lack of consumption of
S-adenosylmethionine during the defective synthesis of phosphatidylcholine renders his-
tones the preferred sink for this excess of methyl groups, thus fully altering the epigenetic
landscape [149].

2.8. Indirectly, When DNA-Related Proteins Possess an Additional Role in Lipid Metabolism

That a protein can accomplish two different tasks within the cell is no big surprise.
Prp19 was first identified as Pso4, a gene required in S. cerevisiae to support error-prone
recombinational DNA repair [150]. This role was later extended to human cells [151,152].
Prp19, under this name, was discovered as part of a complex, the NineTeen Complex, that
functions during the catalytic activation of the spliceosome [153–155]. Likely linked to the
defects in splicing caused by Prp19 lack, Prp19 has also been reported as a transcription
elongation factor [156]. Mechanistically, the Prp19 complex harbors an E3 ubiquitin-ligase
activity that it exerts onto the spliceosome [157]. Its precise function on DNA damage
remained elusive for a long time until PRP19 was found to impart the ubiquitylation of
the single-stranded DNA coater RPA in response to DNA damage, therefore optimizing
the signaling by ATR [158]. Put together, these data pointed at PRP19 as a protein with an
RNA-processing role in undamaged cells that switched to a DNA damage sensor upon
DNA damage. However, PRP19 was also found in the cytoplasm as part of the proteome
of LD isolated from cultured 3T3-L1 adipocytes, its absence leading to a loss of stored
triacylglycerols. A pool of relevant proteins, important for the maintenance of LD size
and contents, dropped from LD in the absence of PRP19, including perilipin, stearoyl-
CoA desaturase-1, acyl-CoA diacylglycerol acyltransferase-1, and glycerol-3-phosphate
acyltransferase. These data suggested that PRP19 participates in the maturation of LD
and associated fat storage, thus warranting the process of adipocyte differentiation [159].
Amino acids 167–250 ensure PRP19 recruitment to LD, while the 1–166 domain ensures
its recruitment to the nucleus [160]. While awaiting a unifying explanation, one could
envision that PRP19 may be, also by means of its ubiquitin conjugation activity, important
to shape the LD proteome. Indeed, ubiquitination-driven modulation of the LD proteome



Int. J. Mol. Sci. 2021, 22, 12930 10 of 25

has been described [161,162]. Importantly, if PRP19 levels in the cell are limiting, it stems
that situations leading to the unscheduled growth of LD, such as during obesity, could
entail a risk of PRP19 titration from its nuclear duties.

Another example of a nuclear factor with a dual role in the nucleus and the cytoplasm
is the already mentioned tumor suppressor BRCA1. BRCA1 works in DNA repair and
replication fork stability, but it is also present in the cytoplasm by means of a nuclear
export sequence [163]. The natural equilibrium of this distribution is altered in cancer, with
a predominant cytoplasmic pattern in 36% of the cases [164]. In particular, cytoplasmic
mislocalization of BRCA1 is associated with a subgroup of clinically relevant cancer mu-
tations [165]. One important role of BRCA1 in the cytoplasm concerns the stabilization
of the phosphorylated form of ACC1. ACC1 is the rate-limiting enzyme for long-chain
FA synthesis, and its phosphorylation on serine 79 by the AMP-activated protein kinase,
AMPK, inactivates it [166]. Thus, the stabilization of ACC1 phosphorylation by BRCA1
sustains its inactivity, thus limiting lipid synthesis [167,168]. It is therefore postulated that
the BRCA1 mutations that allow ACC1 de-phosphorylation underlie the high FA synthesis
that characterizes pathological states, such as in cancer [169]. Nonexclusively, BRCA1
has been reported to bear a lipid-binding pocket capable of driving its interaction with
calcium channels at the endoplasmic reticulum. This way, BRCA1 can regulate calcium
release from the endoplasmic reticulum to the cytoplasm both in a basal way, and abruptly
in response to apoptotic cues [76]. Together, BRCA1 potential to bind and control lipids
suggests a provocative regulatory loop by which, in the event of sensing an excess of FA,
this may promote its exit from the nucleus, stabilization of the phosphorylated form of
ACC1, its inactivation, thus finally, the decrease in the FA pool. Further, an increase in cues
invoking BRCA1 in the cytoplasm will deprive the nucleus of its functions in DNA repair
and replication fork protection [170], creating a BRCAness phenotype [171].

Table 1. Compendium of demonstrated roles of lipid species on nuclear biology.

Action Lipid Species Organism Impact References

Structural:
nuclear membrane

composition

polyunsaturated fatty acids rat liver cells INM proteome shaping [12]
sphingolipids, ceramides human cells insertion of nuclear pores [15,16]

long-chain fatty acids S. japonicus, S. cerevisiae prevents ruptures [17,18]
unsaturated fatty acids S. pombe, S. cerevisiae supports sealing [20]

long-chain sphingoid bases S. japonicus
alleviates

aneuploidy-related
deformation

[21]

phosphatidylserine human cells membrane reformation
after mitosis [28]

low phospholipid availability S. cerevisiae extremely round nucleus [27]

Structural:
scaffolds within the

nucleus

phosphoinositides
(PI(4,5)P) human cells

scaffolding of
membrane-less bodies

(splicing speckles, nucleoli,
DNA repair foci)

[98,106–109]

Signaling

sphingolipids, ceramides human cells ATR activation [24]
mevalonate diphosphate human cells ATR hyperactivation [7]

saturated fatty acids human and murine cells attenuation of the DDR [9]

cholesterol human cells supports Chk1 activation
upon DNA damage [10]

(de)Lipidation

palmitoylation of
histone H4Ser47 murine and human cells transcription regulation [41]

palmitoylation of Rif1 S. cerevisiae heterochromatin
formation, DNA repair [42,43]

farnesylation of Lamin A human cells if constant, pleiotropic
genome instability [45,46]

acyl groups human cells

pleiotropic genome
instability

(i.e., in the absence of the
SIRT6 deacylase)

[53–57]



Int. J. Mol. Sci. 2021, 22, 12930 11 of 25

Table 1. Cont.

Action Lipid Species Organism Impact References

Titration lipid droplets

S. cerevisiae nucleoporin availability [77]
human cells, S. cerevisiae,

Rhodococcus jostii
transcription factors

availability [128–130]

Drosophila, S. cerevisiae,
Plasmodiophora brassicae,

and
histone buffering [122–125]

human mast cells RNA distribution [131]

Metabolic
by-products

acetyl-CoA
α-ketoglutarate

S. cerevisiae and human
cells

gene expression patterns
alteration [146–149]

Co-factors
fatty acids murine,

human and zebrafish cells

bind, activate and
translocate transcription
and DNA repair factors

and nucleoporins

[66–70,75–77]

ceramides S. cerevisiae, murine, and
human cells

activators of DDR
phosphatases (tolerance to
genotoxic stress and cell

cycle progression)

[79–93]

phosphoinositides (PI(5)P) human cells drives ING2 for histone
modification [102]

3. How to Tackle Their Study
3.1. Studying Lipidation

While internal palmitoylation sites can be predicted by bioinformatics approaches,
software-based prediction of N-terminal myristoylation has not proven of high accuracy
or sensitivity (reviewed in [38]). Further, the standard proteomics approaches aimed at
detecting post-translational modifications do not work for lipidation because the relatively
large and very hydrophobic nature of lipidation modifications restricts ionization of pep-
tides during mass spectrometric analysis, as well as are insensitively labeled by radioactive
isotopes [172]. One relatively recent and efficient option to assess lipidated proteins takes
advantage of “click” chemistry, which allows the selective coupling of two functional
groups (alkyne and azide) in biological samples. In more detail, a commercially available
“clickable” lipid (that is, conjugated to an alkyne) can be fed to the cells. The click reaction
permits the in vivo coupling of this lipid to a subsequently added reacting azide, itself
coupled to biotin. Streptavidin-driven biotin purification allows proteome analyses by
Western blotting or classical mass spectrometry (Figure 2, upper left panel) [39].

Furthermore, it is possible to use a cleavable azide molecule which, upon digestion,
will leave a hydrophilic and charged tag on fatty-acylated peptides. This method increases
both the hydrophilicity and ionization of the peptides, optimizing their detection by mass
spectrometry, thus enabling the identification of the lipidation sites on the protein [173].
However, despite its versatility and power, one should keep in mind that this procedure
operates via metabolic labeling, which interferes with basal metabolism and may alter
normal cell processes.
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Figure 2. The use of commercially available clickable lipids allows the isolation of proteins covalently modified by lipids
(left), interacting with lipids in a transient fashion (right), and also to follow the subcellular distribution of those lipids
visually by fluorescence microscopy (bottom left).

Apart from proteomic studies, the alternative coupling of the reacting azide to a
fluorophore permits to image, at the desired time-points, the kinetics and subcellular
localization of the lipidation reactions (Figure 2, bottom left panel) and [174,175]. Yet,
this technique is limited in that it monitors the whole proteome subjected to that specific
lipidation at that given timepoint. A more specific approach combines Proximity Ligation
Assay and the click reaction. This way, a specific primary antibody recognizes the pro-
tein whose lipidation is under study, while the lipidation moiety is detected by another
primary antibody against the biotin tag. Appropriate secondary antibodies coupled to
matching oligonucleotides permit rolling circle-based DNA amplification using fluorescent
nucleotides, thus providing signals that emanate from the lipidated protein (Figure 2,
bottom left panel) [176,177].

3.2. Assessing Non-Covalent Lipid Binding to Proteins
3.2.1. Use of Strips, Beads, and Liposomes

The ability of proteins to bind lipids can be evaluated through the simple presentation
of the lipid to the purified protein. The choice, and the challenge, is how the lipid will
be presented. A very simple method consists of spotting the lipid species of interest on a
hydrophobic membrane (lipid strips), onto which a solution containing the purified protein
is incubated. Upon washing, the presence (or absence) of the protein is revealed through
a procedure reminiscent of a Western blot [178]. A similar possibility is the crosslinking
of the lipid of interest to agarose beads, which are also incubated with the protein. These
methods are fast and allow for scoring of multiple types of lipids on a single experiment,
yet their major drawback is that the spotted lipids are not presented in their native state
nor embedded in a membrane context.
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To overcome this limitation, the alternative is to evaluate the binding of the purified
protein to liposomes, engineered spheres conformed by a lipid bilayer harboring inside a
small aqueous lumen. The bilayer can be designed to possess the proportion of carrier and
problem lipids at will and comparisons made between those liposomes and the control ones,
in which the problem lipid is omitted [179]. Furthermore, liposomes can also be created to
possess a given size, thus a given diameter, which yields different surface curvatures. This
way, smaller liposomes will present higher positive curvature, a master feature conditioning
lipid-protein interactions [11]. Thus, depending on whether we suspect the lipid of interest
as being either part of the core of condensate structures, or inserted in the INM, for example,
the former or the latter technique may be more appropriate, respectively.

In both cases, though, the approaches allow assessing the binding of proteins capable
of interacting with the polar head of the target lipids. A different situation is that of proteins
with a deep hydrophobic pocket capable of hosting the apolar lipid tails [180], which the
liposome assay may therefore render inaccessible. This binding in a pocket is reminiscent
of and may be tackled as, the study of FABPs, which mostly requests heavy structural
studies.

3.2.2. Bioinformatic Prediction

Lipid-binding motifs define the parts of a protein with a specific affinity for a given
lipid species. These include, among others, C1 (binds Diacylglycerols), PH (binds different
types of Phosphoinositides), FYVE and PX (bind PI(3)P), C2 (binds different lipids and
Phosphatidylserine in a Ca2+-dependent manner), Q2 (binds Phosphatidic acid), and
PHD (binds PI(5)P) [181]. A comprehensive search for lipid-binding motifs in the whole
subset of nuclear proteins is lacking. A bioinformatics search and experimental validation
have already been done in S. cerevisiae for PX domains, where the analysis yielded no
nuclear proteins [182]. For PH domains, 33 proteins were predicted, of which five have
nuclear functions, and four are responsive to problems during DNA replication [183].
Initial predictions for many of these domains can be undertaken using SMART [184] or
HMMER [185] tools.

Another prediction tool concerns Fatty Acid-binding pockets, for which the size and
shape of the entity render the enterprise less straightforward. An in-house built algorithm
predicted the tumor suppressor BRCA1 as a candidate [76,186]. Unfortunately, this tool
is no longer available. We, therefore, devised a trained detection algorithm using the
sequence of a set of known FA-binding proteins (lipocalin family, up to now approximately
80 members of known 3D structure) and creating a PSSM (Position-specific score matrix).
We next expanded it by aligning the initial 80 members with their counterparts from other
species. This tool, called PyFuncover, was able to predict known FA-binding motifs that
had not been used for the training [187]. A limitation was still the 3D aspect, given that
FA-binding pockets can represent complex cavities. We have therefore created PickPocket,
which uses neural networks to train a ligand-binding prediction model. Using FA-like
ligands, we can define pocket descriptors and secondary structures with an accuracy above
90% by using a dataset of 1740 manually curated ligand-binding pockets. Pickpocket
successfully predicts ligand-binding pockets using unseen structural data [188]. Using
this tool, we have defined two central channel nucleoporins, Nup157 and Nic96, known
to root the nuclear pore complex, as binders of FA, a feature that could regulate their
dynamics [77].

Amphipathic helices (AHs) are a feature of the secondary structure of proteins in
which the aminoacids fold in a helical manner that segregates hydrophobic and polar
residues between the two faces of the helix. This spatial splitting permits inserting the
concerned protein segment between the hydrophobic acyl chains and the polar heads of
the phospholipids in a layer [189]. This apparently simplistic mechanism permits protein
anchor to different organelles in a tuneable, reversible manner. For example, the interaction
may be stabilized under conditions that permit the AH folding, while protein solubilization
will occur if the surrounding medium is not favorable to the AH conformation. The
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properties of AHs vary depending on the size of hydrophobic residues as well as their
density per helical turn, the type and distribution of the polar ones, and the overall length
of the AH [190]. Reciprocally, the lipid composition of the surface to which the AH is likely
to bind, or of the underlying lipid core in case of phospholipid monolayers, will dictate
at a given moment the type and number of interacting AHs, as well as the tightness of
their binding [191]. Bioinformatic prediction of AH can be tackled through tools such
as MPEX (https://blanco.biomol.uci.edu/mpex/, accessed on 29 November 2021) or
Amphipaseek [192], which are powerful to localize the relevant segments within candidate
proteins suspected by the user. A complementary approach is provided by HELIQUEST,
which allows the user to define the features of known helices and exploit them as a starting
point to extract putative equivalent helices in unexpected proteins. Further, HELIQUEST
helps devise inactivating mutations expected to disrupt the AH, allowing to assess whether
this abolishes the protein interaction with the membrane [193].

Another relevant way of changing protein sub-compartmentalization is through trans-
membrane domains. This, for example, keeps transcription factors away from the promot-
ers they could activate. Upon proteolytic processing of the protein, the transmembrane
segment stays anchored into the membrane while the released peptide diffuses within the
nucleus to accomplish its task [194,195]. Initial predictions of potential transmembrane
helices in nuclear proteins can be tackled using Phobius and TMpred software. More
reliable predictions will be achieved if a given fragment is highlighted by both tools.

Validation of bioinformatic predictions of putative lipid-related protein domains can
be undertaken by cloning the motifs fused to a fluorophore of choice (see below). In the
case of lipid-binding motifs, further confirmation can be obtained by cloning one-half of
the Venus reporter protein fused to the candidate motif, while a nucleus-targeted lipid
biosensor known to recognize the same lipid (see later) can be cloned fused to the other
half of Venus. By virtue of BiFC (Bimolecular Fluorescence Complementation) [196], the
Venus signal will be reconstituted only if the two elements of the system indeed stand
close by within the nucleus, which will further inform of the sub-nuclear localization of
the interaction. In this context, even if the biosensor competes with the protein fragment
under test for lipid binding, the proximity of both within functional rafts, where many
molecules gather, will make possible the detection of positive interactions. The feasibility
of this strategy has been illustrated at the INM [130,197].

3.2.3. Photoactivatable Lipids

A powerful and unbiased strategy to unveil non-covalent lipid/protein interactions
relies on photoactivatable lipid analogs. These are synthesized lipids bearing a group
that, upon short UV irradiation, will make a fast and irreversible reaction with adjacent
proteins. The photoactivatable chromophore may be positioned either at the polar head or
within the hydrophobic part of the molecule. The ideal photoactivatable group should be
small as not to interfere with the physicochemical properties of the native biomolecule in
which it is introduced, thus safeguarding the behavior of the intended lipid. It should also
be stable under non-activating conditions, yet it should undergo rapid photolysis upon
exposure to UV light, which limits long exposure times that may damage the biological
sample. Further, these activated species should react in a fast and non-selective manner
with molecules in their direct vicinity, limiting this way the false detections due to diffusion
processes [198]. Apart from being photoactivatable, these lipids can simultaneously be
“clickable”, named bifunctional lipids. Azide-biotin or azide-fluorophore click chemistry
thus allows to subsequently study the UV-stabilized lipid-protein interactions in a manner
as that explained for bonafide lipidation (Figure 2, right panel). In this context, an important
control relies on comparing the results with those of equally processed samples in which
UV irradiation is omitted [39].

https://blanco.biomol.uci.edu/mpex/
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3.3. Immunoprecipitation of Membranes

Two main issues interfere with the goal of robustly defining the lipid composition
of the nuclear membrane: first, the pure isolation of the nuclear membrane is virtually
impossible, for it is generally accompanied by traces of the appended (continuous) cytosolic
endoplasmic reticulum; second, no technique reliably permits discerning the outer from
the INM. While not getting fully rid of these problems, an immune-enrichment approach
can attempt to minimize them. The first step exploits a protocol for preparing high-purity
nuclear envelopes [199]. In this protocol, rough ER components are virtually absent except
for some residual ribosomes. Stretches of the nuclear membrane as long as 3 µm can
be recovered, and electron microscopy has unequivocally validated the identity of outer
and inner membranes in S. cerevisiae based on the positioning of the spindle pole body,
anchored at the INM [199]. Moreover, the natural curvature of the nuclear membrane
is respected (concave on the inner side, convex on the outer one), which speaks of the
integrity of the composing lipids. The second step takes benefit from a given protein
anchored to the membranes in order to enrich them by immunoprecipitation. The strategy
for immuno-isolating membranes requests that the immunoprecipitated protein displays a
strong link with the membrane, such as a lipidation moiety. In this case, an appropriate
control relies on using cells deficient for that lipidation [200]. An INM transmembrane
protein could also be exploited to isolate nuclear membranes, in general, and isolated
(and refolded) INM segments, in particular. The protein Asi1 localizes to the INM with
its C-terminus falling within the nucleus, and the GFP (green fluorescent protein)-tagging
of this C-terminus does not alter the biology of the protein [197]. Thus, the use of the
GFP-TrapR technology (Chromotek), which exploits small recombinant alpaca antibody
fragments covalently coupled to beads, would permit Asi1-GFP to be purified with high
efficiency. The membranes obtained this way are suitable to be subjected to lipidomic
analyses.

3.4. Seeing Lipids

Detecting lipids at their natural locations is challenging. On what concerns fixed
samples, the use of antibodies is a poor option because of the difficulty in raising them in a
specific manner, because the fixation that is needed prior to the use of antibodies may affect
the lipid to be detected and because antibodies are significantly larger than most lipids,
thus recognizing several lipid molecules at a time [201]. In this sense, only antibodies
against PI(4,5)2P and PI(4)P have demonstrated reliability [98,109]. An alternative relies
on biosensors. Biosensors are domains from proteins whose ability for binding a given
lipid is well-characterized. These fragments are usually cloned adjacent to a fluorophore,
thus permitting the visualization of the bound lipid [202–204]. It is possible to purify
them for their exploitation antibody-wise through hybridization of fixed samples [205,206].
Alternatively, cloning them in appropriate vectors will permit the cell to express them. In
this case, the signals can be visualized either upon fixation or during live microscopy. A
drawback of this approach is the heterogeneity in the levels of expression among different
cells. Moreover, their mid- and long-term expression are usually toxic, as the lipids that the
biosensor binds become unavailable for their natural targets in the cell. As such, making
stable cell lines, when not impossible, is not advised [97], and inducible systems should
be envisioned. Nevertheless, transfection with biosensors permits short-term studies in
which occlusion of the target lipid can be exploited for competition assays in comparison
with an empty vector [207]. In all cases, the relevance of encouraging results obtained
using a biosensor should ideally be compared with a similar construct in which specific
aminoacids, known as responsible for the interaction, have been mutated [97]. Another
note of caution relates to the fact that domains coming from different proteins and capable
of recognizing one very same lipid can differ in the conditions under which the lipid is
detected [208]. It is thus wise to use different known domains to probe for the same lipid.
The yielded results, if common, will provide a robust readout of the actual lipid presence;
if different, will orient the research towards other adjacent lipids presumably influencing
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the result. For example, phosphatidic acid detection is influenced by the actual presence of
sterols in the membrane, thus being better detected by an Opi1-derived biosensor than by
a Spo20-derived one when surrounding sterol levels are low [208].

While the use of biosensors is a well-established methodology, it rarely provides
signals coming from the nucleus. Recent work has demonstrated that this is because the
frequently higher pools of these lipids in other cellular membranes sequester the biosen-
sor. Importantly, as a proof-of-concept for two particular biosensors, the same authors
overcame this limitation by fusing the biosensor to a nuclear localization signal (NLS)
(Figure 3A) [130]. The fusion of an NLS to the biosensors in a systematic manner should
permit the creation of a collection of vectors, each allowing the expression of a fluores-
cent, nucleus-driven lipid biosensor for each relevant lipid species (sterols, Diacylglycerol,
Phosphatidylinositol, PIP, Phosphatidic Acid and Phosphatidylserine). The different pro-
tein domains necessary to recognize and bind specifically these diverse lipids have been
characterized before [202–205,209] (for a compilation, see [203]). This could yield a com-
prehensive collection of plasmids allowing us to ask ambitious questions: is a given lipid
species enriched in the nucleus? Where exactly: floating in the nucleoplasm? (Figure 3B)
At the INM? (Figure 3C). Does it localize to nucleoli or at bulk DNA? does it coincide with
heterochromatin? Does its distribution change when cells are exposed to DNA-damaging
agents? Or transcription inhibitors? Or how does it evolve throughout the cell cycle? Is the
distribution the same in a mutant context of interest? Is it perturbed with the diet?

Figure 3. The use of nucleus targeted-fluorescent lipid biosensors permits the monitoring of how
specific lipid species evolve under a myriad of experimental situations. (A) Basic structure of a
nucleus-targeted biosensor. (B) Hypothetical example in which the mCherry signal associated with
the biosensor emanates from the nucleoplasm of S. cerevisiae cells, which can be ascribed either to
a floating lipid or to the absence of any binding target. (C) Hypothetical example in which the
mCherry signal associated to the biosensor emanates from the nuclear membrane, indicative of either
an enrichment of the lipid of interest at this location or, at least, of its exposure.

Last, another means of seeing lipids at their natural locations relies on the use of vital
dyes or fluorescent analogs [201,210]. While in some cases, these may be water-soluble,
simplifying the procedure, sometimes the delivery of these molecules to the cell may
require some optimization [211]. In most cases, vital dyes can be used both with alive
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and fixed cells. A wide palette may be available for a similar purpose with respect to the
excitation/emission choices, thus permitting a flexible combination with other visualization
needs. For example, to visualize LD, AUTODOTTM emits in blue, BODIPYTM emits in
green, and LipidTOXTM emits in far red. It is important to remember, anyhow, that their
long-term presence in the cell can alter the cell’s normal physiology. For fluorescent analogs,
it is worth ensuring that the modification does not alter the lipid’s natural function and
bio-physicochemical properties. It should also be remembered that the labeling represents
a supplementation (thus a change) with respect to the basal amount of that lipid species
available for the cell.

3.5. Purification of LD

Purification of LD is a well-established method that takes advantage of the floatability
of LD. In this way, upon depositing the extract at the bottom of a discontinuous sucrose gra-
dient followed by centrifugation, LD will be found in the upper, most accessible phase [212].
The quality of the preparation can be assessed by direct inspection of the sample upon
addition of a vital dye, such as Nile Red, thus providing an instantaneous picture of the
integrity and (expected) size of the purified LD [122,138]. Additionally, a Western blot
of the gradient fractions can be performed, where markers of LD versus those of other
potentially contaminating fractions (especially the endoplasmic reticulum and plasma
membranes) permit the assessment of the isolation quality [140,213]. By subsequently
employing Mass Spectrometry and Lipidomics analyses, one can assess the unexplored
proteome and lipidome, respectively, in the situation of interest. A vast repertoire of
works has already assessed this in multiple situations and organisms, with a strong focus
on metabolic conditions and on cytoplasmic pathways (for a compilation, see [121]). In
comparison, only one work has explored the proteome of nuclear LD. Yet, in their attempt
for stringency and given the difficulty in obtaining enough starting material, the presented
list of currently found proteins is short [143]. Overall, little is known about the regulatory
activity of cytoplasmic and nuclear LD as sinks for factors relevant in nuclear homeostasis
and, even less, under different nucleus-challenging conditions.

4. Concluding Remarks

The intertwining of genome integrity and metabolism (to which lipids are central)
when it comes to pathology arousal, treatment and relapse is nowadays recognized. Thus,
developing our understanding of the links between the metabolism of lipids and genome
integrity bears a strong potential to gain insights into the pathophysiology of genetic,
rare, and degenerative diseases, including envelopathies, lipodystrophies, atherosclerosis,
hepatic steatosis, and neurodegenerative conditions, as well as cancer, viral infections, or
even healthy versus pathological aging. Given that the research about the impact of lipids
in genome stability maintenance is at its infancy, a collective effort will be essential to push
our knowledge further.
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