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ABSTRACT: Virus capsids, i.e., viruses devoid of their genetic
material, are suitable nanocarriers for biomedical applications
such as drug delivery and diagnostic imaging. For this purpose,
the reliable encapsulation of cargo in such a protein nanocage is
crucial, which can be accomplished by the covalent attachment
of the compounds of interest to the protein domains positioned
at the interior of the cage. This approach is particularly valid for
the capsid proteins of the cowpea chlorotic mottle virus
(CCMV), which have their N-termini located at the inside of
the capsid structure. Here, we examined several site-selective
modification methods for covalent attachment and encapsula-
tion of cargo at the N-terminus of the CCMV protein. Initially,
we explored approaches to introduce an N-terminal azide
functionality, which would allow the subsequent bioorthogonal
modification with a strained alkyne to attach the desired cargo. As these methods showed compatibility issues with the CCMV
capsid proteins, a strategy based on 2-pyridinecarboxaldehydes for site-specific N-terminal protein modification was employed.
This method allowed the successful modification of the proteins, and was applied for the introduction of a bioorthogonal
vinylboronic acid moiety. In a subsequent reaction, the proteins could be modified further with a fluorophore using the tetrazine
ligation. The application of capsid assembly conditions on the functionalized proteins led to successful particle formation,
showing the potential of this covalent encapsulation strategy.

■ INTRODUCTION

From a nanotechnological perspective, viruses have been
recognized as interesting carrier tools, due to their unique
ability to protect their nucleic acid cargo and deliver it to cells
in their infected host. In particular, virus-like particles (VLPs),
viruses that are devoid of their viral nucleic acids, are used for
nanocarrier purposes, as they are relatively harmless without
their viral genetic information and have room in their interior
for loading of cargo such as catalysts, drugs, or imaging agents.
A remarkable example of a VLP that has proven very suitable

as a nanocarrier is the cowpea chlorotic mottle virus (CCMV)
capsid. In contrast to most other VLPs, CCMV capsids show
reversible assembly and disassembly behavior, even in the
absence of their genetic material. The capsid proteins exist as
dimers in solution at a physiological pH and spontaneously
form 28-nm-sized capsids with T = 3 symmetry out of 90 capsid
protein dimers when the pH is lowered to pH 5.0.1,2 In order to
make the capsids more stable at neutral pH for in vivo
applications, we previously introduced an elastin-like polypep-
tide (ELP) block at the N-terminus of the CCMV capsid
protein.3 ELPs are stimulus-responsive polypeptides, consisting

of repeating Val-Pro-Gly-Xaa-Gly (VPGXG) pentapeptides
containing any natural amino acid guest residue, Xaa (X),
except proline.4,5 These peptides can reversibly switch from a
water-soluble state to a collapsed, hydrophobic state upon a
change in the environmental conditions. The introduction of
this peptide at the N-terminus of the CCMV capsid protein
resulted in a new ELP-induced assembly pathway that is
triggered by increasing the temperature or salt concentration,
yielding smaller T = 1 capsids with a diameter of 18 nm,
composed of 30 capsid protein dimers.3 The endogenous
assembly pathway leading to T = 3 capsids could still be
triggered by lowering the pH to 5.0. The development of this
ELP-CCMV variant resulted in a wider range of conditions at
which the capsids remained stable, showing promise for in vivo
applications.
Controlled encapsulation of cargo in the ELP-CCMV capsid

interior is crucial for its successful application as a nanocarrier.
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A classical way to encapsulate cargo in CCMV capsids is via
statistical encapsulation, where cargo is added to the capsid
proteins when they are in the dimer state, after which assembly
conditions are applied to induce capsid formation. This,
however, normally yields partial encapsulation, while most of
the cargo material is lost.6 To increase the encapsulation
efficiency, the cargo can be equipped with negatively charged
moieties, mimicking the charge of the endogenous nucleic acid
cargo and allowing interactions with the cationic N-terminal
tails of the CCMV capsid proteins.7−9 The latter method,
however, is not applicable for cargo encapsulation in ELP-
CCMV capsids, as the ELP sequence was inserted at the N-
terminus in such a way that it replaced the cationic RNA-
binding motif. Alternative methods that have been used for
cargo encapsulation in CCMV VLPs are (i) genetic cloning of a
target protein onto the N-terminus of the capsid proteins;10 (ii)
the genetic introduction of an N-terminal domain, which can
form noncovalent interactions with a specific complementary
domain;11,12 and (iii) enzymatic modification of the N-terminus
using the enzyme Sortase A.13,14 The latter methodology is
possibly the most optimal for versatile and reproducible cargo
encapsulation, since it is modular, does not require extensive
genetic engineering, and yields a robust covalent link between
the cargo and the capsid proteins. Even though this technique is
applicable to any cargo that can be equipped with the required
Sortase recognition sequence, it lends itself best to the
encapsulation of peptides and proteins, as these allow easy
introduction of this recognition peptide. In order to further
broaden the modularity and possibilities for cargo loading, we
set out to develop a method for the selective modification of
the ELP-CCMV capsid protein N-termini, which eliminates the
need for incorporation of a peptide into the cargo and is
therefore more easily applied to small molecules such as
(organo)catalysts or imaging agents.
In order to achieve site-specific N-terminal modification, we

aimed to introduce a reactive handle onto the N-terminus that
can be used in a bioorthogonal reaction, a reaction that is inert
to any natural occurring biological functionalities, such as the
copper-catalyzed alkyne−azide cycloaddition (CuAAC), strain-
promoted alkyne−azide cycloaddition (SPAAC), or the inverse
electron-demand Diels−Alder (iEDDA) reaction with tetra-
zines.15−17 Fortunately, several methodologies are available to
achieve the site-selective modification of the N-terminal amine
over amines present in lysine side chains, ranging from pH-
controlled reactions to reactions requiring side chain
participation.18 Here, we describe our efforts to site-selectively

modify the N-terminus of the CCMV capsid protein with a
bioorthogonal reagent, and subsequently attach a model cargo
in a modular fashion (Scheme 1).

■ RESULTS AND DISCUSSION

Introduction of an Azide Function at the Capsid
Protein N-Terminus. We started exploring a route toward the
selective N-terminal modification of the ELP-CCMV capsid
proteins by introducing an azide functionality, which is widely
used as a bioorthogonal handle. Azides have been introduced
into proteins cotranslationally using a genetic engineering
approach,19−22 or post-translationally via chemical or enzymatic
modification.23−28 Initially, we attempted the post-translational
chemical modification by applying a selective diazotransfer
reaction to convert the α-amine at the N-terminus into an
azide.24 In proteins, this primary amine often has the lowest pKa
and can therefore be modified selectively using the right
conditions. The reaction of ELP-CCMV with imidazole-1-
sulfonyl azide 1 was performed in a diethanolamine buffer of
pH 8.5 (Figure 1A). Analysis by mass spectrometry of the N-
terminal fragments, obtained by tryptic digestion, revealed a
mass shift of 26 Da, corresponding to a successful diazotransfer
reaction (Figure 1B). The other lysine-containing fragments
were also detected and did not show a mass shift.
Unfortunately, we observed partial precipitation of the
CCMV protein during the reaction and a significant amount
of residual starting material, even after further optimization of
the reaction conditions.
The observed precipitation of CCMV in the diazotransfer

reaction prompted us to explore other options for the
introduction of an N-terminal azide. For this, we investigated
the residue-specific biosynthetic incorporation of an unnatural
amino acid by using azidohomoalanine (Aha) as a methionine
surrogate.19 ELP-CCMV contains one additional methionine
residue, Met137, positioned in the capsid protein part of the
fusion protein. To prevent undesired incorporation of Aha at
this position, we mutated Met137 into an alanine residue. In
addition, we inserted an additional arginine residue following
the N-terminal methionine to prevent processing of the N-
terminal residue by bacterial aminopeptidases (SI - exper-
imental section).29 The new construct was first expressed in E.
coli in the presence of methionine to confirm that the
adjustments did not alter the properties of the capsid proteins
and that the N-terminal methionine would indeed stay intact.
Analysis of the affinity-purified Met-ELP-CCMV by SDS-PAGE
and ESI-TOF mass spectrometry showed an acceptable pure

Scheme 1. Schematic Representation of the Two-Step Modular Protocol for N-Terminal Modification of ELP-CCMV Capsid
Proteinsa

aFirst, a bioorthogonal handle is site-specifically introduced at the N-terminus. Subsequently, addition of a complementary handle modified with the
desired cargo, results in covalent attachment of the cargo to the capsid proteins. Upon capsid assembly, the cargo is then encapsulated in the interior
of the resulting ELP-CCMV capsids.
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protein sample (Figure 2A) with the expected molecular weight
(Figure S1). Investigation of the endogenous assembly pathway
(lowering the pH to 5 for T = 3 particles) of this new protein
by size exclusion chromatography coupled to multiangle laser
light scattering (SEC-MALLS) showed that the VLPs had a
molecular weight of 4.0 ± 0.1 MDa (Figure 2B), which is in
good agreement with the T = 3 particles containing 180 capsid
proteins of 22 570.7 Da. Further analysis with transmission
electron microscopy (TEM) showed monodisperse spherical
particles with a diameter of 28 nm (T = 3 particles), confirming
that the introduced modifications did not affect the assembling
properties of the ELP-CCMV (Figure 2C).
Next, we expressed the modified ELP-CCMV construct in

the presence of Aha in a methionine auxotrophic E. coli strain.
Following similar purification and analysis procedures as above

we confirmed the efficient incorporation of N-terminal Aha,
indicated by the 5 Da observed mass difference upon
replacement of methionine with Aha (Figure S1). Unfortu-
nately, the protein was expressed with a 10× lower yield and
SDS-PAGE analysis revealed many impurities in the obtained
Aha-ELP-CCMV (Figure 2A). TEM analysis after pH-induced
assembly clearly demonstrated the presence of 28-nm-diameter
particles for Aha-ELP-CCMV (Figure 2C), whereas SEC
analysis showed that CCMV proteins were only partially
assembled, with the majority of the proteins being present in
their dimer form (Figure 2B).3 Unfortunately, attempts to
improve the expression yield and the purity of the azide-
modified capsid proteins were unsuccessful.
Despite the fact that both the diazotransfer reaction and the

genetic modification of CCMV did not yield flawless formation
of azide-functionalized ELP-CCMV, we subsequently attemp-
ted to react the modified proteins further in a cycloaddition
reaction. As we observed partial aggregation of the protein
upon the addition of copper, which is needed for the CuAAC
reaction, we decided to use the copper-free SPAAC reaction for
the subsequent modification step.30 To this end, both azide-
modified proteins were reacted with a commercially available
fluorescently labeled cyclooctyne (BCN-lissamine-rhodamine
B), after which fluorescently imaged SDS-PAGE analysis
showed successful modification of the N-terminus of ELP-
CCMV (Figure S2). Unfortunately, we observed reoccurring
precipitation of the protein during the SPAAC reaction, which
led us to investigate yet an alternative approach for the site-
selective modification of the capsid proteins.

Site-Specific N-Terminal Modification Using 2-Pyridi-
necarboxaldehydes. Recently, a bioconjugation method for
specific N-terminal protein modification was described based
on 2-pyridinecarboxaldehyde (2PCA) forming an N-terminal
cyclic imidazolidinone condensation product with peptides and
proteins (Figure 3A).31 This modification proceeds in aqueous
environments under mild temperature and pH and as no
specific amino acid residue at the N-terminus is required, it is
generally applicable to many proteins. Furthermore, many new
functionalities have been introduced using this method, such as
affinity tags, MRI-contrasting chelators, targeting agents, and
fluorophores. As this benign method might circumvent

Figure 1. (A) Schematic representation of N-terminal modification of
ELP-CCMV with imidazole-1-sulfonyl azide 1 to obtain N3-ELP-
CCMV. (B) MALDI-TOF mass spectra of the N-terminal tryptic
fragment before (top) and after (bottom) diazotransfer. A mass shift of
+26 Da is observed, corresponding to the diazotransfer of the N-
terminal amine.

Figure 2. Characterization of Met-ELP-CCMV and Aha-ELP-CCMV. (A) SDS-PAGE analysis of Met-ELP-CCMV and Aha-ELP-CCMV after
expression and Ni2+ affinity purification. Protein bands were visualized with Coomassie blue staining. (B) SEC-MALLS chromatograms of pH-
induced assemblies of Met-ELP-CCMV (black) and Aha-ELP-CCMV (purple) measured at 215 nm. Dotted line (black) shows molecular mass data
of the Met-ELP-CCMV particles. (C) Uranyl acetate-stained TEM micrographs of Met-ELP-CCMV and Aha-ELP-CCMV after pH-induced
assembly. Scale bars correspond to 200 nm.
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unfavorable precipitation, we aimed to evaluate this 2PCA-
based modification strategy on our ELP-CCMV capsid
proteins.
Initial experiments focused on the optimization of the

reaction conditions for the modification of the ELP-CCMV
protein with 2PCA. Following the reaction conditions as used
by Francis et al. resulted in precipitation of the ELP-CCMV
protein, due to the high reaction temperatures (Figure S3).
This corresponded well with previous observations in our lab
regarding the increased instability of the capsid proteins at
elevated temperatures of 30 °C or higher. Performing the
modification at room temperature, however, with 10 equiv of
commercially available 2PCA 2 for 24 h in PBS buffer did result
in the formation of the desired product 2PCA-ELP-CCMV, as
shown by ESI-TOF analysis (Figure 3B and C). Furthermore,
the modification did not result in visual precipitation of the
protein, when the samples were centrifuged after the
modification. SDS-PAGE analysis of the samples, of which
supernatant was transferred to a clean tube before sample
preparation, gave comparable intensities for both proteins,
demonstrating the applicability of this modification strategy to
CCMV capsid proteins (Figure 3D). To determine the highest

achievable modification yield, a series of 0, 1, 5, 10, 50, and 100
equiv of 2PCA 2 was added to the capsid proteins and the
conversions were estimated using ESI-TOF analysis. Improved
conversion was observed upon increasing addition of 2PCA 2
reaching a plateau of approximately 65% (Figure 3E, Figures
S4, S5). Our results compare well with the research conducted
by Francis and co-workers on the 2PCA modification, where
conversions of 43% to >95% were achieved at 37 °C depending
on the type of protein.
After having established that the modification strategy using

2PCA 2 was applicable to the ELP-CCMV capsid protein, we
introduced a functional handle onto the N-terminus using this
strategy. The inverse electron-demand Diels−Alder reaction of
tetrazines with alkenes and alkynes is one of the most popular
bioorthogonal reactions due to its selectivity and high reaction
rate.32,33 We decided to use the reaction between vinylboronic
acids (VBAs) and dipyridyl-s-tetrazines, as the VBA moiety is
hydrophilic, readily accessible, and stable under physiological
conditions.34 Additionally, it was shown previously that this
bioorthogonal reaction was suitable for protein modification.
To this end, 2PCA-VBA 3 was designed, containing a 2PCA-

piperazine group31 coupled to the pinacol protected vinyl-

Figure 3. (A) Schematic representation of the N-terminal modification of ELP-CCMV with 2PCA 2. (B) Deconvoluted ESI-TOF mass spectrum of
the modification of ELP-CCMV with 2PCA 2 (10 equiv). The expected molecular weights are 22 253.4 Da (ELP-CCMV, black) and 22 342.5 Da
(2PCA-ELP-CCMV, purple). (C) Multiply charged ion series of the deconvoluted ESI-TOF mass spectrum shown in B. (D) SDS-PAGE analysis of
the modification of ELP-CCMV with 2PCA 2 (10 equiv). Protein bands were stained with Coomassie blue staining. (E) Estimated conversion of
ELP-CCMV to 2PCA-ELP-CCMV in reactions with 0, 1, 5, 10, 50, or 100 equiv of 2PCA 2, based on ESI-TOF analysis of the reaction mixtures.
The average of duplicate measurements is plotted.
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boronic acid via a short linker (Figure 4A, SI - experimental
section). The protected boronic ester was used instead of the

free boronic acid, since the ester is synthetically more accessible
and hydrolyzes rapidly to the boronic acid in aqueous media
within 15 min.34 The water solubility of 2PCA-VBA 3 was
found to be slightly lower than that of 2PCA 2, and thus the
concentration of ELP-CCMV capsid protein was lowered so
that optimized conditions used for the coupling of 2PCA 2
could be used (100 equiv of the small molecule). The
modification of ELP-CCMV using 100 equiv of 2PCA-VBA 3
was analyzed by ESI-TOF and indicated successful formation of
VBA-ELP-CCMV with a yield of approximately 92% (Figure
S6). Next, we performed the two-step protein modification of
ELP-CCMV with 2PCA-VBA 3, and subsequently with
dipyridyl-s-tetrazine 4 containing a Cy5 fluorophore as the
model cargo (Figure 4A and B). The formation of Cy5-ELP-
CCMV was analyzed by SDS-PAGE and showed a significant
fluorescent signal for the two-step labeling using 2PCA-VBA 3
and tetrazine 4, indicating that the coupled boronic acid is
available for a subsequent reaction with a dipyridyl-s-tetrazine
(Figure 4C). Control reactions in which either 2PCA 2 or no
2PCA derivative (only DMSO) was used instead of 2PCA-VBA

3 showed no or only very low fluorescent signal, eliminating
aspecific reactions of tetrazine-Cy5 4 with the protein. The
modification of both 2PCA-VBA 3 and tetrazine 4 caused a
small mass shift of CCMV on SDS-PAGE-gel, which was too
small for calculation of the modification yields. SDS-PAGE
analysis of the reaction of ELP-CCMV with a concentration
range of 2PCA-VBA 3 and subsequent ligation with tetrazine 4
showed that the highest achievable modification was achieved
using ∼50 equiv of 2PCA-VBA 3 (Figures 4D).
Finally, we investigated the assembly behavior of the

modified capsid proteins. To this end, ELP-CCMV was reacted
with 2PCA-VBA 3 and tetrazine-Cy5 4, after which the protein
was washed against PBS buffer and subsequently transferred to
pH 5.0 capsid buffer by centrifugal filtration, prompting pH-
induced assembly of the capsid proteins. SEC analysis of the
resulting solutions clearly showed a capsid peak around an
elution volume of 11 mL, indicating the formation of T = 3
particles; no residual capsid protein dimers were observed
(Figure 5). The capsid peak absorbed light of 646 nm,

demonstrating coelution with the fluorescent Cy5 dye. A
control, in which 2PCA-VBA 3 had been left out of the initial
modification reaction, only showed minor absorbance at 646
nm, which might result from statistical encapsulation of a small
residual amount of tetrazine-Cy5 4.

■ CONCLUSIONS
N-terminal modification of the ELP-CCMV capsid proteins has
proven to be challenging due to reoccurring precipitation in
various reaction conditions. The diazotransfer reaction for
selective modification of the N-terminal amine to an azide24

Figure 4. (A) Structures of 2PCA-VBA 3 and tetrazine-Cy5 4. (B)
Schematic representation of N-terminal modification of ELP-CCMV
with 2PCA-VBA 3, and subsequent click reaction of tetrazine-Cy5 4 to
obtain Cy5-ELP-CCMV. (C) SDS-PAGE analysis of the modification
of ELP-CCMV (10 μM) with 2PCA 2 or 2PCA-VBA 3 (100 equiv) or
DMSO as a control, and subsequent reaction with tetrazine-Cy5 4 (10
equiv) or DMSO as a control. (D) SDS-PAGE analysis of the
modification of ELP-CCMV with a concentration range of 2PCA-VBA
3 (0 to 250 equiv) and the subsequent reaction with tetrazine-Cy5 4
(10 equiv). Protein bands were visualized by in-gel fluorescence (top)
and stained with colloidal staining (bottom).

Figure 5. Size exclusion chromatogram of ELP-CCMV after
modification with 2PCA-VBA 3 (purple) or DMSO as control
(black). Next, both samples were treated with tetrazine-Cy5 4,
followed by pH-induced capsid assembly. Capsids are observed around
an elution volume of 11 mL. Solid lines show the absorbance of the
proteins at 280 nm. Dashed lines show the absorbance of the Cy5
fluorophore at 646 nm.

Bioconjugate Chemistry Article

DOI: 10.1021/acs.bioconjchem.7b00815
Bioconjugate Chem. 2018, 29, 1186−1193

1190

http://pubs.acs.org/doi/suppl/10.1021/acs.bioconjchem.7b00815/suppl_file/bc7b00815_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.bioconjchem.7b00815/suppl_file/bc7b00815_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.bioconjchem.7b00815/suppl_file/bc7b00815_si_001.pdf
http://dx.doi.org/10.1021/acs.bioconjchem.7b00815


resulted in significant protein precipitation, and subsequent
attempts to introduce an azide-containing unnatural amino
acids were not successful. Fortunately, the modification method
using 2-pyridinecarboxaldehydes31 was found to be suitable for
ELP-CCMV capsid proteins. No significant protein instability
was observed during the reactions, while up to 92% of the
proteins could be modified using this strategy. We applied this
method to attach a bioorthogonal vinylboronic acid handle,
which could be further modified with a dipyridyl-s-tetrazine
moiety linked to a fluorescent dye as a model cargo. Proof-of-
principle reactions showed that this modular two-step
modification strategy was successful, demonstrating that this
method is suitable for encapsulating cargo into ELP-CCMV
nanocages.

■ EXPERIMENTAL PROCEDURES
Synthesis of (E)-(4-(2-(4-((6-Formylpyridin-2-yl)-

methyl)piperazin-1-yl)-2-oxoethoxy)styryl)boronic acid
pinacol ester (3). tert-Butyl 4-((6-formylpyridin-2-yl)methyl)-
piperazine-1-carboxylate S7 (25 mg, 82 μmol, 1.0 equiv) was
dissolved in dry CH2Cl2 (1 mL) under N2 and 4 M HCl in
dioxane (205 μL, 820 μmol, 10.0 equiv) was added. The
mixture was stirred for 2 h, whereupon the volatiles were
evaporated. The solid was dissolved in DMF and (E)-(4-(2-
((2,5-dioxopyrrolidin-1-yl)oxy)-2-oxoethoxy)styryl)boronic
acid pinacol ester S4 (39 mg, 98 μmol, 1.2 equiv) was added.
Then, Et3N (34 μL, 250 μmol, 3.0 equiv) was added and the
solution was stirred for 2 h. The volatiles were evaporated and
the product was purified using column chromatography (0 to
5% MeOH in EtOAc) yielding 2PCA-VBA 3 (32 mg, 80%) as a
white solid. Rf = 0.19 (5% MeOH in EtOAc). 1H NMR (500
MHz, DMSO-d6) δ 9.97 (s, 1H), 8.04 (t, J = 7.7 Hz, 1H), 7.84
(dd, J = 7.7, 1.1 Hz, 1H), 7.78 (dd, J = 7.7, 1.1 Hz, 1H), 7.54−
7.46 (m, 2H), 7.24 (d, J = 18.4 Hz, 1H), 6.93−6.85 (m, 2H),
5.96 (d, J = 18.4 Hz, 1H), 4.85 (s, 2H), 3.75 (s, 2H), 3.51−3.44
(m, 4H), 2.53−2.49 (m, 2H), 2.45−2.40 (m, 2H), 1.23 (s,
12H). 13C NMR (125 MHz, DMSO-d6) δ 193.7, 165.6, 159.2,
158.9, 151.8, 148.8, 138.2, 130.0, 128.4, 127.5, 120.4, 114.8,
82.9, 65.8, 63.0, 52.8, 52.4, 44.2, 41.3, 24.7. No signal was
observed for the carbon attached to boron. HRMS (ESI+) m/z
calcd. for C27H34BN3O5 [M + H]+ 492.26698, found:
492.26703.
Synthesis of 2-((Sulfo-Cy5)amino)-N-(6-(6-(pyridin-2-

yl)-1,2,4,5-tetrazin-3-yl)pyridin-3-yl)acetamide (4). 2-
(Boc-amino)-N-(6-(6-(pyridin-2-yl)-1,2,4,5-tetrazin-3-yl)-
pyridin-3-yl)acetamide34 (10.3 mg, 25 μmol, 1.1 equiv) was
dissolved in dry CH2Cl2 (1 mL) and 4 M HCl in dioxane (188
μL, 0.75 mmol, 33 equiv) was added. After the reaction had
been stirring for 1 h, the volatiles were removed. The crude
mixture was dissolved in dry DMF (1 mL) and sulfo-Cyanine5
carboxylic acid35 (15 mg, 23 μmol, 1.0 equiv), EDC (4.6 mg, 30
μmol, 1.3 equiv), HOBt (4.5 mg, 30 μmol, 1.3 equiv), DIPEA
(8.2 μL, 46 μmol, 2.0 equiv), and molecular sieves (4 Å) were
added. The reaction was stirred for 16 h, whereupon it was
filtered and the volatiles were removed. The crude product was
purified using semipreparative HPLC with a H2O/MeCN
gradient containing 1% trifluoroacetic acid (10% MeCN to 60%
in 20 min, to 100% in 1 min. Rt = 14.98 min), yielding
tetrazine-Cy5 4 (4.4 mg, 21%) as a blue solid. 1H NMR (500
MHz, CD3OD) δ 9.08 (d, J = 2.4 Hz, 1H), 8.89−8.83 (m, 1H),
8.75 (d, J = 8.6 Hz, 1H), 8.70 (dt, J = 7.9, 1.1 Hz, 1H), 8.49
(dd, J = 8.7, 2.6 Hz, 1H), 8.33−8.28 (m, 2H), 8.16 (td, J = 7.8,
1.7 Hz, 1H), 7.93−7.86 (m, 4H), 7.72 (ddd, J = 7.7, 4.8, 1.2 Hz,

1H), 7.37 (d, J = 8.2 Hz, 1H), 7.30 (d, J = 8.3 Hz, 1H), 6.65 (t,
J = 12.3 Hz, 1H), 6.39−6.35 (m, 1H), 6.29 (d, J = 13.7 Hz,
1H), 4.20−4.13 (m, 4H), 4.05 (s, 2H), 2.39−2.31 (m, 2H),
1.92−1.84 (m, 2H), 1.79−1.73 (m, 14H), 1.58−1.49 (m, 2H),
1.42−1.37 (m, 2H). 13C NMR (125 MHz, CD3OD) δ 175.1,
174.0, 173.6, 169.1, 163.3, 163.1, 154.9, 154.8, 150.1, 149.8,
144.1, 143.6, 143.1, 142.04, 141.96, 141.34, 141.32, 141.2,
138.7, 138.2, 127.1, 126.8, 126.7, 126.2, 124.8, 124.2, 120.0,
119.9, 110.4, 110.0, 103.9, 103.5, 49.21, 49.20, 43.7, 42.6, 38.8,
34.8, 26.6, 26.4, 26.30, 26.29, 25.6, 24.8, 11.1. HRMS (ESI+)
m/z calcd. for C47H50N10O8S2 [M + H]+ 947.33327, found:
947.33451.

Expression of ELP-CCMV. The pET-15b-G-H6-[V4L4G1-9]-
CCMV(ΔN26) vector encoding for the hexahistidine-tagged
ELP-CCMV protein was previously constructed as described by
van Eldijk et al.3 The expression was performed according to a
literature procedure.15 For a typical expression, LB medium (50
mL), containing ampicillin (100 mg/L) and chloramphenicol
(50 mg/L), was inoculated with a single colony of E. coli
BLR(DE3)pLysS containing the pET-15b vector encoding for
the ELP-CCMV capsid protein, and was incubated overnight at
37 °C. This overnight culture was used to inoculate 2× TY
medium (1 L), supplemented with ampicillin (100 mg/L). The
culture was grown at 37 °C and protein expression was induced
during logarithmic growth (OD600 = 0.4−0.6) by addition of
IPTG (1 mM). After 6 h of expression at 30 °C, the cells were
harvested by centrifugation (2700 g, 15 min, 4 °C) and the
pellets were stored overnight at −20 °C.
After thawing, the cell pellet was resuspended in lysis buffer

(50 mM NaH2PO4, 1.3 M NaCl, 10 mM imidazole, pH 8.0; 25
mL). The cells were lysed by ultrasonic disruption (3 times 30
s, 100% duty cycle, output control 3, Branson Sonifier 250,
Marius Instruments). Then, the lysate was centrifuged (16 400
g, 15 min, 4 °C) to remove the cellular debris. The supernatant
was incubated with Ni-NTA agarose beads (3 mL) for 1 h at 4
°C. The suspension was loaded onto a column, the flow-
through was collected and the beads were washed twice with
wash buffer (50 mM NaH2PO4, 1.3 M NaCl, 20 mM imidazole,
pH 8.0; 20 mL). Then, the protein of interest was eluted from
the column with elution buffer (50 mM NaH2PO4, 1.3 M NaCl,
250 mM imidazole, pH 8.0; 1 time 0.5 mL, 7 times 1.5 mL).
The purification was analyzed by SDS-PAGE. The fractions
containing the desired protein were combined and dialyzed
against pH 7.5 dimer buffer to obtain the capsid protein dimers.
For storage, the proteins were assembled by dialysis against pH
5.0 capsid buffer. The pure protein was obtained with a yield of
100 mg/L of bacterial culture. The purity of the proteins was
verified by SDS-PAGE. The assembly properties of the capsid
proteins and the geometry of the resulting capsids were
analyzed by SEC using a Superose 6 GL 10/300 column with
pH 5.0 capsid buffer as the eluent and by TEM. ESI-TOF:
calculated 22 253.4 Da, found 22 253.5 Da.

Stability Studies of ELP-CCMV. ELP-CCMV was dialyzed to
PBS buffer by spin filtration (10 kDa MWCO, 3 × 10 min) and
diluted to 50 and 10 μM. Next, the samples (25 μL) were
incubated at 21, 25, 30, and 37 °C for 24 h (400 rpm),
whereupon the samples were centrifuged (1 min, 13 000 rpm)
and the supernatant was transferred to a clean Eppendorf tube.
Loss of protein in the form of precipitation/aggregation was
monitored by loading the soluble protein fraction onto an SDS-
PAGE gel, the 50 μM samples were diluted 5× to be able to
compare them to the 10 μM samples (Figure S3).
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Protein Modification with 2PCA 2. For a typical
modification using 2PCA 2, a stock solution of ELP-CCMV
in PBS buffer was prepared by spin filtration to this buffer (10
kDa MWCO, 3 × 10 min). The protein (50 μM) and the
indicated concentration of 2PCA 2 (100× stock in DMSO, 0 to
100 equiv) were combined in PBS buffer and incubated at 21
°C for 24 h (400 rpm). The samples were analyzed by ESI-
TOF (Figure 3B, C, D and Figure S4, S5) and SDS-PAGE
(Figure 3E).
Protein Modification with 2PCA 2 or 2PCA-VBA 3,

Followed by Tetrazine Ligation. ELP-CCMV was dialyzed to
PBS by spin filtration (10 kDa MWCO, 3 × 10 min) and
diluted to 10 μM. Then, 2PCA 2 or 2PCA-VBA 3 (100 mM,
100× in DMSO, 100 equiv) or DMSO were added to the
protein (10 μM) and the samples were incubated at 21 °C for
24 h (400 rpm). The samples were centrifuged (1 min, 13 000
rpm), after which they were dialyzed with PBS buffer to remove
the excess of the small molecule (Spectra/Por 4 dialysis tubing,
12−14 kDa MWCO, 10 mm flat width, 3 × 60 min). Next,
tetrazine-Cy5 4 (100 μM, 10 equiv, 10 mM stock solution in
DMSO) or DMSO was added to the protein (10 μM) and the
samples were incubated at 21 °C for 1 h. The protein
modification steps were analyzed by SDS-PAGE (Figure 4C),
whereas the protein modification step using 2PCA-VBA 3 (100
equiv) was also analyzed by ESI-TOF (Figure S6).
Protein Modification with a Concentration Range of

2PCA-VBA 3, Followed by Tetrazine Ligation. The concen-
tration range was performed using the same method as
described for “Protein modification with 2PCA 2 or 2PCA-VBA
3, followed by tetrazine ligation” only the indicated
concentration of 2PCA-VBA 3 (100× solution in DMSO, 0
to 250 equiv) was added to ELP-CCMV (10 μM) in the first
step of the modification. The samples were then analyzed by
SDS-PAGE (Figure 4D).
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