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The tumor microenvironment (TME) refers to the cellular environment in which tumors
exist. An increasing number of reports have emphasized its role in tumor progression,
prognosis, relapse, metastasis, and therapeutic response with breast cancer (BRCA).
Few studies have revealed a systematic landscape of immune cell infiltration (ICI) in
BRCA. In this study, we comprehensively analyzed the immune cells infiltrating TME in
BRCA. Three ICI patterns were identified through an unsupervised clustering method and
an ICI score was developed by a principal component analysis (PCA). A Kaplan-Meier
survival with log-rank test revealed a significant overall survival (OS) difference of BRCA
patients with these three ICI patterns. We also found that a high ICI score was
characterized by an elevated tumor mutation burden (TMB), effector T-cell infiltration,
INF-g-related cytotoxicity, and cytolytic activity score. An independent cohort validated
that this ICI score could be a prognostic indicator for BRCA. Two immunotherapeutic
cohorts and two chemotherapeutic cohorts confirmed that patients with higher ICI scores
showed significant chemotherapeutic and immunotherapeutic advantages. In summary,
these results suggest that the ICI patterns could act as a prognostic indicator and that the
ICI score could precisely predict the clinical outcome for BRCA patients.

Keywords: breast cancer, tumor microenvironment, immune cellular infiltration, tumor mutation burden,
immunotherapy, chemotherapy
Abbreviations: BRCA, Breast Cancer; TME, Tumor microenvironment; ICI, Immune cells infiltration; ssGSEA, single sample
gene set enrichment analysis; OS, overall survival; PFS, free progress survival; PCA, principal component analysis; CDF,
cumulative distribution function; TMB, tumor mutation burden; DEGs, differential expressed genes; MRDEGs, the most
representative differential expressed genes; TCGA, The Cancer Genome Atlas; GEO, Gene Expression Omnibus; AUC, Area
under curve; ROC, receiver operating characteristic; PD1, Programmed cell death-1; PD-L1, Programmed cell death-ligand-1;
MAGE-A3, Melanoma-associated antigen 3; METABRIC, Molecular Taxonomy of Breast Cancer International Consortium;
RR, Responder rate; HR, Hazard ratio; CI, Confidence interval; GO, Gene Ontology; CC, Cellular components; BP, Biological
processes; MF, Molecular functions; TILs, Tumor-infiltrating lymphocytes.
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INTRODUCTION

Breast cancer (BRCA) is one of the most common malignancies
worldwide with more than 2.2 million newly diagnosed and 680
thousand deaths per year (1). Current therapies have greatly
improved the survival rate of early-stage patients. However, the
5-year survival rate remains less than 28% in terminal BRCA
patients. To date, the prediction of BRCA prognosis and
therapeutic responses mainly depends on the tumour-node-
metastasis (TNM) stage. However, BRCA patients in the same
TNM stage show different prognoses and therapeutic responses
because of tumor heterogeneity. Thus, it is of great importance to
incorporate other valuable indicators to predict prognosis and
therapeutic responses.

The tumor microenvironment (TME) refers to a cellular
environment in which tumors exist, including the surrounding
immune cells, stromal cells, and signaling molecules (2–5).
Extensive studies have reported a critical role of tumor
infiltrating immune components in cancer progression,
prognosis, relapse, metastasis, and therapeutic response. For
instance, Erdag et al. (6) found that TME differences in
immune homing receptors and ligands that influence
prognosis in melanoma patients by affecting immune cell
recruitment. Kulasinghe et al. (7) reported that tumor-
infiltrating lymphocyte-associated biomarkers in the triple-
negative breast cancer TME affect chemotherapeutic response
and survival. Hu et al. (8) revealed that distinct immune
phenotypes have different prognoses, gene mutations, immune
infiltrations, and drug sensitivities in TNBC. Risom et al. (9)
revealed that myoepithelial disruption in the TME protects
BRCA against recurrence via multiplexed ion beam imaging by
time of flight. Medrek et at. (10) reported that the M2 phenotype
tumor-associated macrophages is related to immunosuppressive
TME that is permissive to tumor growth and spread. However,
one or two single immune components of BRCA are not
sufficient to characterize a complex TME. Hence, it is of great
significance to investigate the expansive landscape of immune
cells infiltrating TME in BRCA.

To date, quantitating the immune cell abundances of tumor
tissues in the lab has been a challenge to researchers. A newly
issued computational algorithm, single sample gene set
enrichment analysis (ssGSEA), can estimate the relative
immune cell abundances of bulk RNA-seq samples through a
given immune cell gene set (11). This algorithm enables
researchers to depict the immune cell infiltration (ICI)
landscape. Through this algorithm, previous studies had
comprehensively sketched the ICI landscape to predict
prognoses and therapeutic benefits in other types of cancers,
such as lung adenocarcinoma, gastric cancer, and head and neck
squamous cell carcinoma (5, 12, 13). However, a comprehensive
ICI landscape in the TME with BRCA has not yet been
fully elucidated.

In this study, we compared immune cell abundances and
stromal cells contents in TME among tumor with normal tissues.
Additionally, we systematically characterized ICI patterns in the
TME with tumor tissues using the TCGA-BRCA cohort.
Through principal component analysis (PCA), we defined an
Frontiers in Oncology | www.frontiersin.org 2
ICI score to quantify the ICI status for each sample. An
independent cohort, METABRIC, confirmed that the ICI score
was a robust prognostic tool for BRCA patients. We found that a
high ICI score was related to upregulated tumor mutation
burden (TMB), effector T-cell infiltration, INF-g-related
cytotoxicity, and cytolytic activity. Two chemotherapeutic
cohorts confirmed that patients with high ICI scores had a
higher responder rate to chemotherapy (GSE5462 cohort:
responder rate [RR], 35.71% in the high ICI group versus
20.83% in the low ICI group; chi-square test, P < 0.001;
GSE20181 cohort: [RR], 71% in the high ICI group versus 50%
in the low ICI group; chi-square test, P <0.05). Two
immunotherapeutic cohorts confirmed that patients with the
high ICI score had a higher responder rate to immunotherapy
(GSE35640 cohort: [RR], 42.9% in the high ICI group versus
21.4% in the low ICI group; chi-square test, P <0.0001;
GSE91061 cohort: [RR], 30.7% in the high ICI group versus
13.2% in the low ICI group; chi-square test, P <0.0001). In
conclusion, in this study, we developed an ICI score to
characterize the extensive immune cell infiltrating TME for
BRCA, which could precisely predict the prognoses and
response to chemotherapy and immunotherapy.
METHODS

Data Accession
Discovery cohort: The RNA-seq data, clinical information, and
somatic structural variation data of BRCA patients, were
downloaded from The Cancer Genome Atlas (TCGA) (https://
portal.gdc.cancer.gov) database. We enrolled 967 tumor samples
and 112 adjacent normal samples with complete information
including survival time, vital status, treatment strategies, RNA-
seq data, and somatic variation data.

Validation cohort: We downloaded the RNA-seq data and
clinical information of the Molecular Taxonomy of Breast
Cancer International Consortium (METABRIC) cohort (14)
from the cBio Cancer Genomics Portal website (www.
cbioportal.org). A total of 1424 samples were enrolled to
validation cohort with complete information including RNA-
seq data, overall survival (OS), progression-free survival (PFS),
and survival status.

Application cohorts: In total, we gathered 2 chemotherapeutic
cohorts (GSE5462 and GSE20181) and 2 immunotherapeutic
cohorts (GSE35640 and GSE91061). We downloaded the RNA-
seq data and clinical data with these datasets from the Gene
Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo)
database by the GEOquery R package (15). We removed these
samples with absent or vague therapeutic responses.

Evaluation of Immune Cell Abundances in
the Discovery Cohort
To evaluate specific immune cell subsets, we systematically
retrieved the issued studies and adopted an immune cell gene
set that was proposed by Beibei Ru et al (16). This gene set was
consisted of 742 gene signatures representing 28 immune cell
subtypes including activated CD8 T cells, central memory CD8 T
June 2022 | Volume 12 | Article 844082
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Li Tumor Microenvironment Characterization in Breast Cancer
cells, effector memory CD8 T cells, activated CD4 T cells, central
memory CD4 T cells, effector memory CD4 T cells, T follicular
helper cells, gamma delta T cells, type 1 T helper cells, type 17 T
helper cells, type 2 T helper cells, regulatory T cells, activated B
cells, immature B cells, memory B cells, natural killer cells, CD56
bright natural killer cells, CD56 dim natural killer cells, myeloid
derived suppressor cells, natural killer T cells, activated dendritic
cells, plasmacytoid dendritic cells, immature dendritic cells,
macrophages, eosinophils, mast cells, monocytes, and
neutrophils (Supplementary File 1). The ssGSEA algorithm of
the GSVA R package (17) was used to evaluate the relative
immune cell abundances in each patients based on bulk RNA-
seq data. The estimate R package (2) was used to asses immune
and stromal cell contents for each sample. To comprehensively
analyze the ICI status, we merged the immune cell abundance
matrix and stromal cell content matrix for subsequent analyses.
(Supplementary File 2).

Comparison of the TME Between Normal
and Tumor Tissues in the
Discovery Cohort
To investigate TME differences between normal and tumor
tissues, we compared the immune cell abundances and stromal
cell contents of 112 normal tissues and their matched tumor
tissues. We visualized the landscape of immune cell abundances
and stromal cell contents through a heatmap by the pheatmap R
package (18). The Wilcoxon test was used to compare the
significant differences, and a two-tailed P <0.05 was considered
to indicate a significant difference. Paired Student’s t test was
used to compare the significant differences in PD1 and PD-L1
expression. The box plot drawn by the ggplot 2 R package (19)
was used to show these data.

Clustering for ICI Phenotypes With the
Discovery Cohort
Based on the immune cell abundances and stromal cell contents
of 967 tumor tissues, we performed unsupervised clustering by
the consensusClusterPlus R package (20) to identify the ICI
phenotypes. Unsupervised clustering depended on Euclidean
distance and Ward’s linkage, and was repeated 1000 times to
ensure the classification stability. The optimal number of clusters
was determined by consensus matrix and relative change of area
under a cumulative distribution function (CDF) curve. Finally,
we obtained three distinct ICI phenotypes termed ICI Cluster
ABC that divided the discovery cohort into three groups.

Differentially Expressed Gene Analysis
and Genotype Identification in the
Discovery Cohort
To reveal the internal molecular characterizations with these
three distinct ICI phenotypes, we performed pairwise
comparisons to identify differentially expressed genes (DEGs)
by the edgeR R package (21). Genes with a false discovery rate
(FDR) adjusted P value < 0.05 and absolute value of |log2FC|
(fold change) >1.3 were considered to statistically significant. To
identify ICI genotypes, each Fragments Per Kilobase Million
Frontiers in Oncology | www.frontiersin.org 3
(FPKM) normalized DEGs expression value was standardized
through log2 (expression value +1) formula across 967 BRCA
samples. Additionally, the unsupervised clustering method
proposed above was applied to identify ICI genotypes. A
relative change in the area under the CDF curve and a
consensus matrix were used to determine the optimal number
of clusters. We obtained three ICI genotypes termed Gene
Cluster ABC that classified the discovery cohort into three
distinct groups.

Gene Ontology Functional Annotations and
ICI Score Development
The steps with ICI score development were processed as follows.
First, we utilized a random forest algorithm to screen the most
representative differentially expressed genes (MRDEGs) for these
three distinct ICI genotypes by the randomForest R package (22).
The random forest algorithm performed classifications and
predictions to DEGs through multidecision trees. This algorithm
ranked these DEGs by scoring their representativeness according
to an accuracy or a Gini value. Here, the top one-third DEGs
ranked by accuracy value were recognized as MRDEGs.
Furthermore, GO functional annotations were used to
investigate the functions of these MRDEGs by the clusterProfiler
R package (23), and a P < 0.05 was considered to statistically
significant. GO functional annotations included biological
processes (BP), molecular functions (MF), and cellular
components (CC). Next, we performed PCA using R software
(version 4.0.2) to compute signature scores for each BRCA patient
based on MRDEGs expression levels. Component 1 was extracted
as signature scores according to a pervious study (13). Finally, we
applied a method similar to gene expression grade index (24) to
define the ICI scores for each patient as follows:

ICI  score   =  oPC1i  −  oPC1j

Where i is the signature score whose Cox efficiency is positive,
and j is the signature score whose Cox efficiency is negative.
Additionally, we calculated the ICI score of validation cohort
based on the above steps using MRDEGs expression value. To
investigate the prognostic value of the ICI score, we grouped the
BRCA patients in the discovery cohort and validation cohort by
an optimal cutoff area under the curve (AUC) of time-dependent
receiver operating characteristic (ROC) analysis (25).

Somatic Genetic Variation Data Analysis
With the Discovery Cohort
The maftools R package (26) was used to count the total number
of non-synonymous mutations to determine the TMB. To
further investigate the prognostic value of TMB, we classified
967 tumor samples in the discovery cohort into high and low
TMB subgroups based on an optimal cutoff AUC of ROC
analysis. The maftools R package was used to visualize the
landscape of the top 30 highest frequent alteration genes
among the high and low ICI score subgroups. The chi-square
test was used to detect the mutated genetic differences between
high and low ICI score subgroups by the maftools R package, and
a P <0.05 was regarded as statistically significance.
June 2022 | Volume 12 | Article 844082
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Genomic and Clinical Dataset Analysis
With Application Cohorts
To investigate the predictive role of the ICI score for therapeutic
benefits, we filtered these MRDEGs expression value of the
application cohorts. Next, we developed the ICI scores with
application cohorts through the methodology proposed above.
Finally, we grouped the patients who received corresponding
therapies into high and low ICI score subgroups according to a
median cutoff of the ICI score for further analysis.

Statistical Analysis
All statistical analyses were conducted by R software (Version
4.0.2), and a P < 0.05 was considered to statistically significant.
Univariate Cox regression analysis was performed to evaluate
relationships between immune cells abundances and OS by
survival R package (27). The comparisons of OS with specific
groups were performed by the log-rank test of the survminer R
package (28). The Kruskal–Wallis test and Wilcoxon test were
utilized to examine the non-normalized distribution data.
Student’s t test was used to compare normalized distribution
data. The chi-square test was used to compare the categorical data.
RESULTS

The TME Difference Between Tumor and
Normal Tissues
We compared the relative immune cell abundances and stromal
cell contents of 112 normal tissues and their matched tumor
tissues. Firstly, we visualized the relative immune cell
abundances and stromal cell contents with tumor and normal
tissues by a heatmap. Next, the Wilcoxon test was utilized to
compare these immune cell abundances and stromal cell
contents. We found that tumor tissues were remarkably
characterized by high densities of central memory CD8 T cells,
activated CD4 T cells, immature B cells, CD56 dim natural killer
cells, myeloid-derived suppressor cells, and activated dendritic
cells, but normal tissues were significantly characterized by high
densities of effector memory CD8 T cells, T follicular helper cells,
type 1 T helper cells, activated B cells, natural killer cells, CD56
bright natural killer cells, plasmacytoid dendritic cells, immature
dendritic cells, mast cells, stromal score, and immune score
(Figures 1A, B). In addition, we observed a significantly
upregulated PD1 (paired Student’s t test; P < 0.0001,
Figure 1C) and an undifferentiated PDL1 (paired Student’s
t test; P > 0.05, Figure 1D) expression level in tumor tissues.

Landscape of ICI Phenotypes With BRCA
We performed an unsupervised clustering to systematically
characterize the ICI patterns for BRCA using the relative
immune cell abundances and stromal cell contents of tumor
tissues. According to a consensus matrix and a relative change in
area under the CDF curve, three divisions for TCGA-BRCA
cohort was the best segregation that divided 967 BRCA patients
into three heterogeneous phenotypes termed ICI Cluster A (464
patients), ICI Cluster B (425 patients), and ICI Cluster C (78
Frontiers in Oncology | www.frontiersin.org 4
patients) (Figure S1B–F). Figure 2A sketched a landscape of
BRCA clinical information and immune cellular distributions
with these three ICI phenotypes. Prognostic analysis revealed a
significant survival difference in these three ICI phenotypes (log-
rank test; P = 0.00019, Figure 2B). Almost all immune cell types
were remarkably different except for activated CD8 T cells,
effector memory CD4 T cells, T follicular cells, type 17 T
helper cells, type 2 T helper cells, regulatory T cells, immature
B cells, natural killer T cells, activated dendritic cells, immature
dendritic cells, macrophages, and eosinophils (Kruskal–Wallis
test; P > 0.05, Figure 2C) in these ICI phenotypes. Among these
distinct ICI phenotypes, ICI Cluster A patients, characterized by
the lowest densities of almost all immune cell types except for
activated CD4 T cells, CD56 dim natural killer cells, and
monocytes, were associated with a favorable prognosis (median
survival of 6472 days). The ICI Cluster B patients with a median
survival time of 3842 days, were significantly marked by high
densities of all immune cell types. Conversely, ICI Cluster C
patients were witnessed the shortest OS (median survival of 2464
days) and were characterized by the lowest densities of activated
CD4 T cells, CD56 dim natural killer cells, and monocytes.
(Figures 2B, C).

We also performed univariate Cox regression analysis to
reveal the prognostic roles of 28 immune cell abundances and
stromal cell contents. As depicted in a forest plot, the abundances
of activated CD4 T cells (hazard ratio [HR], 0.68; 95% confidence
interval [CI], 0.58-0.8; P < 0.0001), CD56 dim natural killer cells
(HR, 0.4; 95% CI, 0.26-0.62; P < 0.0001), activated CD8 T cells
(HR, 0.75; 95% CI, 0.63-0.9; P < 0.01), immature B cells (HR,
0.76; 95% CI, 0.63-0.93; P < 0.01), myeloid derived suppressor
cells (HR, 0.82; 95% CI, 0.7-0.96; P < 0.05), activated B cells (HR,
0.84; 95% CI, 0.72-0.97; P<0.05), activated dendritic cells (HR,
0.63; 95% CI, 0.42-0.95; P < 0.01), monocytes (HR, 0.49; 95% CI,
0.25-0.94; P < 0.05), and memory B cells (HR, 0.64; 95% CI, 0.42-
0.98; P < 0.05) could serve as protective factors for BRCA
patients. Conversely, the abundances of plasmacytoid dendritic
cells (HR, 1.93; 95% CI, 1.19-3.13; P < 0.01) and mast cells (HR,
1.32; 95% CI, 1.07-1.62; P < 0.05) were the hazard factors for
BRCA patients (Figure 2D). These findings were consistent with
the worse OS with ICI Cluster C patients and the favorable OS
with ICI Cluster A patients. Moreover, we compared the mRNA
expression levels of two vital immune checkpoints (PD1 and PD-
L1) in each ICI phenotypes by Wilcoxon test. We found that ICI
Cluster A was remarkably characterized by the lowest PD1
(Wilcoxon test, P < 0.0001) and PD-L1 expression (Wilcoxon
test, P < 0.0001). Conversely, ICI Cluster B was observed to have
the highest PD1 (Wilcoxon test, P < 0.0001) and PD-L1
(Wilcoxon test, P < 0.0001) expression. Compared with ICI
Cluster A, ICI Cluster C was observed to have the same PD1
(Wilcoxon test, P > 0.05) but significantly higher expression of
PD-L1 (Wilcoxon test, P < 0.0001) (Figure 2E, F).

Differentially Expressed Gene Analysis and
Genotype Clustering
To investigate the intrinsic biological differences that led to distinct
ICI phenotypes, we performed pairwise comparisons to identify
the DEGs among these three ICI phenotypes. In total, 1183 DEGs
June 2022 | Volume 12 | Article 844082
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were observed among these three ICI phenotypes (Supplementary
File 3). As depicted in Figure S2, compared with ICI Cluster A,
265 upregulated and 94 downregulated mRNAs were identified in
ICI Cluster B (Figure S2A). Compared with ICI Cluster B, 456
downregulated and 138 upregulated mRNAs were identified in ICI
Cluster C (Figure S2B). Compared with ICI Cluster A, 49
upregulated and 605 downregulated mRNAs were observed in
ICI Cluster C (Figure S2C). Figure S2D shows the gene
relationships among these three ICI phenotypes. Figure S2E
depicts a whole landscape of these 1183 DEGs expression levels.
Next, an unsupervised clustering using these 1183 DEGs was
performed to identify genotypes for BRCA patients. Three
classifications dividing the discovery cohort into Gene Cluster A
(437 patients), Gene Cluster B (342 patients), and Gene Cluster C
(189 patients) were the best optimal according to the consensus
Frontiers in Oncology | www.frontiersin.org 5
matrix and relative change in the area under the CDF curve
(Figures S3A–E).

Figure 3A delineates a landscape of these 1183 DEGs and the
clinical feature distributions with these 967 BRCA patients
among distinct ICI genotypes. A significant difference in OS
was observed among these three ICI genotypes (log-rank test; P =
0.0061, Figure 3B). Gene Cluster A patients characterized by the
highest densities of neutrophils (Kruskal–Wallis test; P < 0.0001),
suffered from the shortest median OS time with 3682 days. Gene
Cluster B patients had a median OS time (4326 days),
characterized by high densities of activated CD8 T cells, central
memory CD8 T cells, effector memory CD8 T cells, central
memory CD4 T cells, T follicular helper cells, type 1 T helper
cells, immature B cells, memory B cells, natural killer cells, CD56
bright natural killer T cells, CD 56 dim natural killer T cells,
A

B

C

D

FIGURE 1 | Comparison of the TME between tumor and normal tissues with BRCA. (A) Heatmap of the ICI landscape between tumor and normal tissues.
(B) Box plot of normalized immune cell abundances (Kruskal–Wallis test, ns, no significance P > 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001). Comparison of
the expression levels of two vital immune checkpoint molecules; (C) PD-1 and (D) PD-L1 (paired Student’s t test).
June 2022 | Volume 12 | Article 844082
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plasmacytoid dendritic cells, immature dendritic cells,
macrophages, eosinophils, mast cells, stromal score, and
immune score. Conversely, Gene Cluster C patients enjoyed
the longest median OS time (7345 days), characterized by high
densities of activated CD4 T cells, effector memory CD4 T cells,
gamma delta T cells, type 2 T helper cells, regulatory T cells,
Frontiers in Oncology | www.frontiersin.org 6
activated B cells, myeloid derived suppressor cells, natural killer
T cells, activated dendritic cells, and monocytes (Kruskal–Wallis
test; P < 0.0001, Figures 3B, C). Significantly upregulated PD1
and PD-L1 expression was observed in Gene Cluster B and
Cluster C compared with Gene Cluster A (Kruskal–Wallis test;
P < 0.0001, Figures 3D, E).
A

C

B

D FE

FIGURE 2 | The ICI landscape in the TME of BRCA. (A) Unsupervised clustering for ICI phenotypes in the TME. The rows represent immune cells, and the columns
represent BRCA samples. (B) The Kaplan–Meier curves showing OS (overall survival) outcomes in BRCA patients among these distinct ICI clusters. Log-rank test
showing P = 0.00019. (C) The normalized immune cell abundances and stromal cell contents with distinct ICI clusters. (Kruskal–Wallis test, ns, no significance P >
0.05; ****P < 0.0001). (D) The prognostic role of immune cell abundance and stromal cell content. (Univariate Cox regression model, ns P > 0.05; *P < 0.05; **P <
0.01; ****P < 0.0001). Comparison of the expression level of two vital immune checkpoint molecules with these distinct ICI clusters; PD1 (E) and PD-L1 (F).
(Wilcoxon test, ns P > 0.05; ****P < 0.0001).
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Li Tumor Microenvironment Characterization in Breast Cancer
Immune Cell Infiltration Score
Development and Validation
First, we extracted 398 MRDEGs via a random forest algorithm
(Supplementary File 4; Figures S4A, B). Figure S4C shows the
whole landscape of these MRDEG expression levels with distinct
ICI genotypes. To further validate the functions of these
MRDEGs, we performed GO functional annotations. GO BP
analysis showed that these MRDEGs were significantly enriched
in the terms T-cell selection, lymphocyte costimulation, and
Frontiers in Oncology | www.frontiersin.org 7
positive regulation of T-cell proliferation. GO CC analysis
showed that these MRDEGs were significantly enriched in the
terms immunological synapse and alpha-beta T-cell receptor
complex. GO MF analysis showed that these MRDEGs were
significantly enriched in the terms T-cell receptor binding and
cytokine receptor activity (Figure S4D, Supplementary File 5).
Next, we utilized PCA to calculate the signature scores using
these 398 MRDEG expression levels. Then, the patients were
divided into two groups as high or low ICI scores basing on an
A

C

B

D E

FIGURE 3 | Identification of ICI genotypes. (A) Unsupervised clustering for DEGs among these distinct ICI clusters, which grouped BRCA patients into three Gene
Clusters (A–C). (B) The Kaplan–Meier curves showing OS outcomes in BRCA patients among these distinct gene clusters. Log-rank test showing P = 0.0061. (C)
Normalized immune cell abundances and stromal cell contents in distinct gene clusters. (Kruskal–Wallis test, ****P < 0.0001). Comparison of the expression levels of
two vital immune checkpoints (D) and PD-L1 (E) among these distinct ICI clusters; (Wilcoxon test, ns, no significance P > 0.05; ****P < 0.0001).
June 2022 | Volume 12 | Article 844082
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optimal AUC cutoff value with ROC analysis. We also developed
an ICI score and grouped the validation cohort using the
methodology proposed above (Supplementary File 6).

Figure 4A depicts the distribution of BRCA patients among
these three genotypes. In addition, we assessed the level of
effector T-cell infiltration (CD8A and CXCL10) and INF-g-
related cytotoxicity (IFNG, GZMA, GZMB, EOMES, and
TBX21) for each ICI group based on a seven-gene panel
designed in the POPLAR trial (29). Moreover, a cytolytic
Frontiers in Oncology | www.frontiersin.org 8
activity score calculated by the geometrical mean of PRF1 and
GZMA mRNA expression levels was used to reflect the
magnitude of the antitumor response (30). All of these eight
parameters in the high ICI score group were remarkably higher
than those in low ICI score group (Wilcoxon test; P < 0.0001,
Figure 4B; Student’s t test; P < 0.0001, Figure 4C).

Kaplan–Meier survival with log-rank test was used to assess
the relationships between OS and ICI score. We observed that
BRCA patients with high ICI scores (median survival time: 6632
A B

C D

F G

E

FIGURE 4 | Development and validation with the ICI score. (A) Gene phenotype distribution of the ICI score and clinical outcomes. (B) Gene expression levels of
effector T-cell infiltration (CD8A and CXCL10) and INF-g-related cytotoxicity (IFNG, GZMA, GZMB, EOMES, and TBX21) between the high and low ICI score group.
(Wilcoxon test ****P < 0.0001). (C) The cytolytic activity score between the high and low ICI score groups. (Student’s t test, ****P < 0.0001). (D) Kaplan–Meier curve
showing OS outcomes between the high and low ICI score groups in the TCGA-BRCA cohort. Log-rank test showing P = 0.0041. (E, F) Kaplan–Meier curve
showing OS outcomes (E; log-rank test, P = 0.052) and PFS outcomes (F; log-rank test, P = 0.0027.) with BRCA patients between the high and low ICI score
groups in METABRIC cohort. (G) Kaplan–Meier curve showing OS outcomes of BRCA patients between the high and low ICI score groups treated with radiotherapy
(RT) or chemotherapy (CT) in the TCGA-BRCA cohort (log-rank test, P = 0.016).
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days) had significantly favorable OS versus patients with low ICI
scores (median survival time: 3564 days) in the discovery cohort
(log-rank test: P = 0.0041, Figure 4D). Additionally, a significant
survival advantage of BRCA patients with high ICI scores was
observed in PFS (log-rank test; P = 0.0027, Figure 4F) rather
than OS (log-rank test; P = 0.052, Figure 4E) in the validation
cohort. We also found that BRCA patients with high ICI scores
who received radiotherapy or chemotherapy retained a
significant survival advantage in discovery cohort (log-rank
test; P = 0.016, Figure 4G).
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The Relationships Between the ICI Score
and Somatic Genetic Variation
Previous studies have reported that tumor somatic genetic
variation is related to cancer prognoses and determines
therapeutic responses (31, 32). Inspired by these studies, we
investigated the relationships between TMB and ICI score. First,
a significantly elevated TMB was observed in BRCA patients with
high ICI scores (Wilcoxon test; P < 0.05, Figure 5A). We also
found that TMB was remarkably and positively correlated with
ICI score (Spearman coefficient: R = 0.093, P = 0.0039,
A C

E F

DB

FIGURE 5 | Correlation between ICI score and somatic mutation. (A) The TMB among the high and low ICI score groups (Wilcoxon test, *P < 0.05). (B)
Correlation between the ICI score and TMB with distinct gene clusters (Spearman correlation test, P = 0.0039; spearman correlation coefficient = 0.093). (C)
Kaplan–Meier curves showing OS outcomes of BRCA patients between high and low TMB group. Log-rank test showing P = 0.0013. (D) Kaplan–Meier curves
for BRCA patients stratified by both TMB and ICI scores. Log-rank test showing P = 0.00031. (E, F) Landscape of the top 30 drive mutated genes for the low
ICI score (E) and high ICI score groups (F). Each column represents the individual patients and each row represents a drive mutated gene.
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Figure 5B). To further study the prognostic value of TMB, we
categorized BRCA patients into high TMB or low TMB
subgroups based on an optimal cutoff of TMB value (0.37)
with ROC analysis. As shown in Figure 5C, BRCA patients
with low TMB had statistical survival advantage over those with
high TMB (log-rank test; P = 0.0013). Additionally, hierarchical
survival analysis revealed that this survival advantage was
independent of TMB (log-rank test; P = 0.00031, Figure 5D).

The subsequent analyses assessed the distribution of driver
somatic variant genes between the high and low ICI score
subgroups. Figure 5 shows the top 30 most frequently mutated
genes with high (Figure 5E) and low (Figure 5F) ICI score
groups. A total of 124 statistically different somatic variant genes
were detected between high and low ICI score groups through
the chi-square test conducted by the maftools R package
(Supplementary File 7).
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The Role of the ICI Score in the Prediction
of Therapeutic Benefits
We assessed the role of ICI score in predicting chemotherapeutic
benefits using the GSE5462 and GSE20181 datasets. The
GSE5462 and GSE20181 datasets recorded microarray and
clinical data from BRCA patients before and after letrozole
treatment. As depicted in Figure 6, letrozole did not elevate
the ICI score of BRCA patients (paired Wilcoxon test; P > 0.05,
Figures 6A, C) but patients with high ICI scores had higher
responder rate (GSE5462 cohort: responder rate [RR], 35.71% in
the high ICI group versus 20.83% in the low ICI group; chi-
square test, P < 0.001, Figure 6B; GSE20181 cohort: [RR], 71% in
the high ICI group versus 50% in the low ICI group; chi-square
test, P < 0.05, Figure 6D). We also investigated the
immunotherapeutic benefit prediction role of the ICI score
using GSE35640 and GSE91061 datasets. The GSE35640 and
A C DB

E G HF

FIGURE 6 | Value of the ICI score in predicting chemotherapeutic and immunotherapeutic benefits. (A) ICI score of patients with letrozole treatment before and
after 10-14 days. (Paired Wilcoxon test; P > 0.05). (B) Rate of clinical response to letrozole among the low and high ICI score group after 10-14 days (chi-
square test; P < 0.001). (C) ICI score of patients with letrozole treatment before and after 90 days. (paired Wilcoxon test; P > 0.05). (D) Rate of clinical response
to letrozole in the low and high ICI score groups after 90 days (chi-square test; P < 0.05). (E) ICI score of melanoma patients with MAGE-A3 antigen treatment
between responder and nonresponder groups (Wilcoxon test; P < 0.05). (F) Rate of clinical response to MAGE-A3 antigen treatment among the low and high
ICI score groups (chi-square test; P < 0.0001). (G) ICI score of melanoma patients before and after PD-L1 antigen treatment (paired Student’s t test; P = 0.021).
(H) Rate of clinical response to PD-L1 antigen among the low and high ICI score groups (chi-square test; P < 0.0001).
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GSE91061 datasets recorded microarray and clinical data of
melanoma patients with anti-MAGE-A3 and anti-PD1
treatments, respectively. We found that melanoma patients in
the anti-MAGE-A3 responder group had higher ICI scores
(GSE35640 cohort: paired Wilcoxon test; P < 0.05, Figure 6E).
In contrast to chemotherapy, anti-PD1 treatment was found to
elevate the ICI score of melanoma patients (GSE91061 cohort:
paired Student’s t test; P < 0.0001, Figure 6G). Moreover, higher
responder rates were observed in the high ICI score group with
both anti-MAGE-A3 and anti-PD1 treatments (GSE35640
cohort: [RR], 42.9% in the high ICI group versus 21.4% in the
low ICI group; chi-square test; P < 0.0001, Figure 6F; GSE91061
cohort: [RR], 30.7% in the high ICI group versus 13.2% in the
low ICI group; chi-square test; P < 0.0001, Figure 6H).
DISCUSSION

An increasing number of studies have reported that the TME plays
an indispensable role in tumor progression, prognosis, relapse,
metastasis, and therapeutic response in BRCA. However, most
studies have focused on a single TME component or regulator. A
comprehensive TME characterization has not yet been recognized.
Identifying distinct ICI patterns will promote our understanding
of the TME and guide precise individual therapies.

In this study, based on the TCGA-BRCA cohort, we first
investigated the difference in the TME between normal and
tumor tissues. Our results revealed relatively sparse immune
cells and an upregulated PD1 and an undifferentiated PDL1
expression level in BRCA tissues, which indicated that immune
cell dysfunction and immune escape in the tumorous TME plays
critical roles in tumorigenesis. The PD1/PDL1 pathway is
regarded as a brake of immune system which attenuates the
tumor-infiltrating lymphocytes (TILs) activation through
increasing PDL1 expression on tumor cell surface (33). In line
with our study, Uhercik et al. (34) also revealed an upregulated
PD1 and an undifferentiated PDL1 expression level in BRCA
tissues. However, Jun fang et al. (35) reported that mRNA
expression level of PD1 was up-regulated but the PDL1 was
down-regulated in BRCA tissues.

Our primary concerns were the TME with BRCA tissues, so
we focused on an ICI with tumor tissues. Based on immune cell
abundances and stromal cell contents with each tumor sample,
we identified three ICI phenotypes for BRCA termed ICI cluster
ABC. ICI Cluster A was characterized by sparse immune cells
and stromal cell contents that corresponded to the immune-
desert phenotype; ICI Cluster B was characterized by an
activation of innate immunity and adaptive immunity that
corresponded to the immune-inflamed phenotype; and ICI
Cluster C was characterized by an activation of innate
immunity and upregulated PD1 expression that corresponded
to the immune-exclude phenotype. So far, few studies have
reported the PD1 and PDL1 expression levels among those
three ICI phenotypes in BRCA. But, in the Head and Neck
Squamous Cell Carcinoma, Xinhai Zhang et al. (13) revealed a
consistent PD1 and PDL1 expression levels with our study. In
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addition, we observed that the abundances of activated CD4 T
cells, CD56 dim natural killer cells, activated CD8 T cells,
immature B cells, myeloid-derived suppressor cells, monocytes,
and memory B cells were associated with a better OS, but the
abundances of plasmacytoid dendritic cells and mast cells were
related with a worse OS, which was consistent with previous
studies (30, 36–38). However, the prognostic analysis showed a
mismatching OS order with these three ICI phenotypes.
Although the immune-exclude phenotype was also
characterized by high immune cell densities compared with
immune-inflame phenotype, the abundant surrounding
stromal cells protected these immune cells against penetrating
the parenchyma, which suppressed their antitumor effects (39).
Compared with the immune-desert phenotype, the OS
disadvantage of the immune-inflame phenotype should be
attributed to upregulated PD1 and PD-L1 expression, which
inhibits immune cellular activation and increases the
developmental T-cell exhaustion (40, 41). The mismatching OS
orders with these three ICI phenotypes also implied that the ICI
phenotypes cannot absolutely predict the prognosis. The
extensive genetic alterations of these three ICI phenotypes
might affect tumor prognosis.

These genetic alterations in tumor tissues changed the
original patterns of intercellular interactions of infiltrating
immune cells, which disturbed the balance of immunity
tolerance and activity (42). Therefore, we hypothesized that
ICI phenotype-associated genes could be novel biomarkers to
determine suitable therapeutic strategies for BRCA patients, so
we performed DEGs analysis and consensus clustering for
genotypes. We found that Gene Clusters B and C had
favorable OS with intact antigen presenting cells, CD8 T cells,
and CD4 T cells indicating an immune-hot phenotype (43, 44).
In contrast, the sparse immune and stromal cell distributions in
Gene Cluster A imply an immune-cold phenotype. In addition,
we observed that a survival advantage with Gene Cluster C might
be associated with its high immune score and low density of
neutrophils, eosinophils, and mast cells. In line with previous
studies, we found that immune-hot phenotypic patients with a
survival advantage had upregulated PD1 and PD-L1 expression,
implying that immune-hot phenotypic BRCA patients might
benefit more from immunotherapy (34, 45). In the clinical
practice, the immune cell abundances of each sample can be
detected by the Flow cytometry directly or the methodology
proposed at present study. Basing on the immune cell
abundances detected in the clinical practice and the
characterizations of each ICI phenotype or genotype we
identified, the doctors could group the patients in the matched
ICI phenotype or genotype we proposed.

Through a random forest algorithm, we identified 394
MRDEGs for these ICI genotypes. As expected, a survival
advantage of BRCA patients with high ICI score was observed
in the discovery cohort and validation cohort. This survival
advantage profited from its high level of effector T-cell
infiltration, INF-g-related cytotoxicity, and cytokine activity.
Importantly, a hierarchical survival analysis of the discovery
cohort revealed that the prognostic role of ICI score was
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independent of therapy strategies. Recent studies have explored a
correlation between gene mutation and response or tolerance to
therapies (46–49). We also investigated the correlation between
the ICI score and variant frequency in multiple genes. Consistent
with previous studies, therapy-sensitive somatic mutation genes
were remarkably reduced in BRCA patients with low ICI scores
(13). The correlation between the ICI score and TMB was
0.0093. A hierarchical analysis revealed that the prognostic
value of the ICI score was independent of TMB. A low
correlation coefficient and different predictive values implied
that the ICI score and TMB were two distinct aspects of
tumor biology.

Currently, chemotherapy remains a primary strategy for
BRCA. Thus, it is necessary to assess the predictive value of
the ICI score for chemotherapeutic benefits in BRCA
patients. Our data indicated that chemotherapeutic
agents could not elevate the ICI score, but patients with high
ICI scores benefited more from chemotherapies. This
phenomenon should be attributed to immunosuppression of
chemotherapeutic agents. For a long time, immunotherapies
have not been considered to a suitable strategy for BRCA due
to low immunogenic peptide presentation (50). The phase III
Impassion 130 trial reported that immune checkpoint
block gained promising clinical efficacy in extending
survival time with BRCA patients, which news recaptured
researchers’ attention (51). Despite a successful application of
immunotherapies across a broad range of cancers, only a few
patients could benefit from it. Even the issued guidelines with
Society for Immunotherapy of Cancer had emphasized that a
population suitable for immunotherapies should be further
identified (52). Here, our data revealed that patients with high
ICI scores benefited more from immunotherapies, which
indicated that ICI scores could guide immunotherapies.
Generally, the ICI score we developed could be a robust tool to
guide individual treatments for cancer.

Our study also has several limitations. First, a PFS not OS
confirmed the prognostic value of the ICI score in the validation
cohort. Second, due to the absent of public BRCA
immunotherapeutic cohorts, we validated the prognostic value
with ICI score for immunotherapies using two melanoma
cohorts. Third, a comprehensive study integrating ICI patterns,
clinical information, and somatic mutation information was
solely performed in the TCGA-BRCA cohort. However, the
accessibility of these data to BRCA patients is insufficient in
the validation cohort, thus, we failed to validate all of our
findings in multiomics. Considering that these 967 TCGA-
BRCA tumor samples could sufficiently contain all ICI patterns
in the TME, we did not merge the RNA-seq datasets from
different sequencing platforms to avoid batch effects. Last, we
failed to perform RNA sequencing with an internal validation
cohort for research funding limitations. Therefore, we included
1424 samples with complete information in the validation cohort
to overcome this shortcoming. Further comprehensive studies
integrating multiomics data are still prospective in this field.

In conclusion, by applying bioinformatics and multiomics
analyses, we identified there ICI patterns and developed an ICI
Frontiers in Oncology | www.frontiersin.org 12
score to characterize the extensive immune cell-infiltrating TME
for BRCA, which could precisely predict the clinical outcome
and response to chemotherapy and immunotherapy.
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Supplementary Figure 1 | The workflow of study design and clustering for ICI
phenotypes. The workflow diagram of study design (A). Consensus matrix with 2
(B), 3 (C), 4 (D), and 5 (E) divisions for BRCA samples. (F) Scree plot of relative
change in area under cumulative distribution function (CDF) curve.

Supplementary Figure 2 | Differentially expressed genes (DEGs) identification
with these distinct ICI phenotypes. The volcano plot of DEGs with ICI Cluster A
versus Cluster B (A), ICI Cluster B versus Cluster C (B), and ICI Cluster A versus
Cluster C (C). The red dots represent upregulated genes, while the green dots
represent downregulated genes. (D) The relationships between the DEGs among
distinct ICI phenotypes. (E) The expressional landscape with DEGs.

Supplementary Figure 3 | Clustering for ICI genotypes. Consensus matrix with 2
(A), 3 (B), 4 (C), 5 (D), and 6 (E) divisions for the TCGA-BRCA cohorts. (E) Scree
plot with relative change in area under cumulative distribution function (CDF) curves.
The elbow indicates that three divisions for the TCGA-BRCA cohorts were the best
optimal.
June 2022 | Volume 12 | Article 844082

https://www.frontiersin.org/articles/10.3389/fonc.2022.844082/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2022.844082/full#supplementary-material
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Li Tumor Microenvironment Characterization in Breast Cancer
Supplementary Figure 4 | Screening of MRDEGs. (A) The relationships
between the predictive error rate and the number of trees with random forest. The
three lines in different colors represent three distinct ICI genotypes. (B) The top
30 MRDEGs according to mean decreasing accuracy and decreasing Gini. (C) The
landscape of these top 398 MRDEGs. The rows represent MRDEGs and the
columns represent BRCA samples. (D) The bubble plot of GO functional
annotations with MRDEGs.

Supplementary File 1 | The immune cells gene set.

Supplementary File 2 | Relative Fractions of tumor-infiltrating immune cells of
112 normal tissues and 968 tumor tissues with TCGA-BRCA patients.
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Supplementary File 3 | Different expressional genes of these distinct ICI phenotypes.

Supplementary File 4 | The representativeness of DEGs with descending order
by random forest algorithm and top 398 most representative DEGs expression level.

Supplementary File 5 | GO functional annotations with these top 398 most
representative DEGs.

Supplementary File 6 | ICI score of TCGA-BRCA cohort, METABRIC cohort,
immunotherapeutic cohorts, and chemotherapeutic cohorts.

Supplementary File 7 | The somatic gene mutations between high and low ICI
groups with TCGA-BRCA cohort.
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