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ABSTRACT Genetic mapping is a primary tool of genetics in model organisms; however, many quantitative
trait loci (QTL) contain tens or hundreds of positional candidate genes. Prioritizing these genes for validation
is often ad hoc and biased by previous findings. Here we present a technique for prioritizing positional
candidates based on computationally inferred gene function. Our method uses machine learning with
functional genomic networks, whose links encode functional associations among genes, to identify network-
based signatures of functional association to a trait of interest. We demonstrate the method by functionally
ranking positional candidates in a large locus on mouse Chr 6 (45.9 Mb to 127.8 Mb) associated with
histamine hypersensitivity (Histh). Histh is characterized by systemic vascular leakage and edema in re-
sponse to histamine challenge, which can lead to multiple organ failure and death. Although Histh risk is
strongly influenced by genetics, little is known about its underlying molecular or genetic causes, due to
genetic and physiological complexity of the trait. To dissect this complexity, we ranked genes in the Histh
locus by predicting functional association with multiple Histh-related processes. We integrated these pre-
dictions with new single nucleotide polymorphism (SNP) association data derived from a survey of 23 inbred
mouse strains and congenic mapping data. The top-ranked genes included Cxcl12, Ret, Cacna1c, and Cntn3,
all of which had strong functional associations and were proximal to SNPs segregating with Histh. These
results demonstrate the power of network-based computational methods to nominate highly plausible quan-
titative trait genes even in challenging cases involving large QTL and extreme trait complexity.
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Identifyingcausalvariantswithinquantitative trait loci (QTL) isacentral
problem of genetics, but genetic linkage often prevents narrowing QTL

to less than several megabases (Mb). Thus, QTLmay contain hundreds
of candidate genes. Instead of revealing the exact gene (or genes)
responsible for trait variation, QTL mapping produces positional
candidate genes. Rigorously narrowing a QTL by fine mapping with
congenic strains can take years or decades, particularly in organisms
like mice that have long generation times. Moreover, high-resolution
congenic mapping often reveals that the overall QTL effect is due to
multiple linked genes within theQTL rather than a single gene (Parker
et al. 2013; Yazbek et al. 2011). Thus, positional data alone are generally
insufficient to nominate candidate genes for subsequent biological
follow up. To overcome the limitations of mapping data, researchers
look within a QTL for plausible candidate genes. However, these
selections are typically done by ad hoc criteria using prior knowledge
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or a literature search. This strategy is strongly biased toward
prior knowledge and is highly error prone due to missing anno-
tations. There is a need for rigorous and systematic strategies to
distinguish among positional candidate genes for mechanistic
follow up.

We developed a novel approach to rank positional candidates based
on functional association with a trait. To avoid annotation or literature
bias, we use functional genomic networks (FGNs), which encode
predicted functional associations among all genes in the genome.
FGNs such as the FunctionalNetworks of Tissues inMouse (FNTM)
(Goya et al. 2015) and HumanBase (Greene et al. 2015), are Bayesian
integration networks that combine gene co-expression, protein-
protein binding data, ontology annotation and other data to predict
functional associations among genes. With these networks we can
expand on known gene-trait associations to identify genes that were
not previously associated with the trait.

Recent studies with functional genomic networks have demon-
strated their power to generate novel associations between genes and
specific phenotype terms (Guan et al. 2010) or biological processes
(Ju et al. 2013). For example, Guan et al. (2010) used a support
vector machine (SVM) classifier to identify a gene network associ-
ated with bone mineralization. They predicted and validated novel
associations between genes and bone mineralization phenotypes for
genes that lay outside of all published QTL for bone mineralization
phenotypes (Guan et al. 2010). Subsequent studies using similar
network-based techniques have made novel predictions of hy-
pertension- and autism-associated genes (Greene et al. 2015;
Krishnan et al. 2016). We have expanded these methods to rank
genes in a mapped QTL based on multiple putative functional
terms and to integrate these rankings with genetic association
p values from strain surveys. We generated a ranked list for all
genes in the QTL that incorporated both the functional and po-
sitional scores of each candidate gene.

Our strategy first built trait-associated gene lists from structured
biological ontologies (e.g., the Gene Ontology (Ashburner et al. 2000;
Gene Ontology Consortium 2018) and the Mammalian Phenotype
Ontology (Smith and Eppig 2012)) and public transcriptomic data
from the Gene expression Omnibus (GEO) (Edgar et al. 2002; Barrett
et al. 2012). We then applied machine learning classifiers to the func-
tional networks of tissues in mice (FNTM) (Goya et al. 2015) to
identify network-based signatures of the trait-related gene lists. This
strategy allowed us to predict gene-trait associations that were not
annotated within a structured ontology, overcoming the missing an-
notation problem.

We applied our approach to a large QTL associated with histamine
hypersensitivity (Histh) in mice. Histh in mice is a lethal response to a
histamine injection. In insensitive mice, a histamine injection produces
an inflammatory response that resolveswithout further treatment.Mice
with the Histh response develop excitation and ear blanching, followed
byprogressive respiratorydistress, vasodilation, anaphylactic shock, and
death (Vaz et al. 1977; Wang et al. 2014). Histh can be induced in a
subset of mouse strains by sensitization with Complete Freund’s Ad-
juvant (CFA). Histh also develops spontaneously in SJL/J animals older
than six months of age.

WepreviouslymappedHisth toa locusonChr6(45.9Mbto127.8Mb;
theHisth locus), whichwas confirmed using a congenic line (B10.S-HisthSJL)
(Raza et al. In Press). Because of the large size of this locus, addi-
tional information is required to identify causal variants. To narrow
down candidates, we integrated novel genetic association data from
interval-specific congenic recombinant lines (ISCRLs) and an in-
bred strain survey with our network-based functional predictions of

Histh-related genes. By augmenting positional data with functional pre-
dictions, we dramatically reduced the candidate gene list to a trac-
table set of high-quality candidates that are implicated in Histh-
related processes.

MATERIALS AND METHODS
As a supplement to the computational portion of the methods
section, this paper includes an executable workflow (See Data Avail-
ability). An outline of the computational workflow is shown in Figure 1.
The workflow includes all files and parameters required to recreate
the computational portions of this study.

Animals
A total of 23mouse strains (129X1/SvJ, A/J, AKR/J, B10.S-H2s/SgMcdJ
(B10.S), BALB/cJ, BPL/1J, BPN/3J, C3H/HeJ, C57BL/6J, C57BL/10J,
CBA/J, CZECHII/EiJ, DBA/1J, DBA/2J, FVB/NJ, JF1/MsJ, MOLF/EiJ,
MRL/MpJ, NOD/ShiLtJ, NU/J, PWD/PhJ, PWK/PhJ, SJL/J and SWR/J
were purchased from the Jackson Laboratory (Bar Harbor, ME). All
mice, including B10.S-HisthSJL and B10.S-HisthSJL ISRC lines, were
generated and maintained under specific pathogen-free conditions
in the vivarium of the Given Medical Building at the University of
Vermont according to National Institutes of Health guidelines. All
animal studies were approved by the Institutional Animal Care and
Use Committee of the University of Vermont.

Histh Phenotyping
On day 0 mice were injected at two s.q. sites with complete Freund’s
adjuvant (CFA) (Sigma-Aldrich, St. Louis, MO) supplemented with
200 mg of Mycobacterium tuberculosis H37Ra (Difco Laboratories,
Detroit, MI). On D30 histamine hypersensitivity was determined
by i.v. injection of histamine (mg/kg dry weight free base) in phos-
phate buffered saline (PBS). Deaths were recorded at 30 min post
injection and the data are reported as the number of animals dead
over the number of animals studied. Significance of observed differ-
ences was determined by Chi-square with p-values,0.05 significant.

DNA extraction and genotyping
DNA was isolated from mouse tail clippings as previously described
(Sudweeks et al. 1993). Briefly, individual tail clippings were incu-
bated with 300mL cell lysis buffer (125m g/mL proteinase K, 100 mM
NaCl, 10mM Tris-HCl (pH 8.3), 10 mM EDTA, 100mM KCl, 0.50%
SDS) overnight at 55∘C. The next day, 150mL of 6M NaCl were added
followed by centrifugation for 10 min at 4∘C. The supernatant layer
was transferred to a fresh tube containing 300mL of isopropanol.
After centrifuging for two minutes, the supernatant was discarded,
and pellet washed with 70% ethanol. After a final two-minute centri-
fugation, the supernatant was discarded, and DNA was air dried and
resuspended in 50mL TE.

Genotyping: Genotyping was performed using either microsatellite
markers in a standard PCR reaction or sequence-specific SNP primers
in a phototyping reaction. Polymorphic microsatellites were selected
to have a minimum polymorphism of 8bp for optimal identification
by agarose gel electrophoresis. Briefly, primers were synthesized by
IDT-DNA(Coralville, IA) anddiluted to a concentrationof 10mM.PCR
amplification was performed using Promega GoTaq. The cycling con-
ditions included a two-minute initial denaturation step at 94� followed
by 35 cycles of 94� for 30 sec, 55� for 30 sec and 72� for 30 sec followed
by a final extension step at 72� for five minutes. Amplicons were sub-
jected to 2% agarose gel electrophoresis and visualized by ethidium
bromide and UV light.
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Phototyping: Genotyping was performed using sequence-specific
primers that differ only at the 3’ nucleotide corresponding to each
allele of the identified SNP (Bunce et al. 1995). Each primer set was
designed using Primer3 to have a Tm of 58-60∘C, synthesized by IDT-
DNA (Coralville, IA), and used at a concentration of 100mM (primer
sequences are available in Supplemental File 1). PCR reactions were
subjected to multistage (high, medium and low stringency) cycling con-
ditions as described in Supplemental File 2 and if found to be necessary,
the cycle conditions at each stage were adjusted to accommodate the
optimal annealing temperature. Amplicons were electrophoresed with
10mL Orange G loading buffer on a 1.5% agarose gel stained with ethi-
diumbromide and visualized byUV light. The presence of a SNP-specific
allele was scored by observing an amplicon of the expected size in either
reaction. Cycling conditions are available in Supplemental File 2.

Generation of Histh congenic lines and GigaMUGA
B10.S-HisthSJL ISRC lines were generated by identifying recombinant
haplotypes across the Histh interval among (B10.S-HisthSJL · B10.S) ·
B10.S BC1 mice and then fixed as homozygous lines (Figure 3). To
identify potential contaminating background loci segregating among
the strains and to further refine the recombination break points of each
line, the lines were further genotyped using GigaMUGA arrays
(143,259 markers) by the commercial service of Neogen/Geneseek
(Lincoln, NE).

Targeted genetic association testing
We retrieved genotype data (both coding and non-coding) of the
23 mouse strains from the databases at the Sanger Institute (Keane
et al. 2011) (https://www.sanger.ac.uk/science/data/mouse-genomes-
project) and The Jackson Laboratory (Bogue et al. 2017) (https://
phenome.jax.org/). The lack of representation of wild-derived strains
e.g., MOLF/EiJ and others, in these databases was compensated for by
genotyping using Illumina Hiseq 2500 platform https://www.illumina.
com/. For detailed methods see Supplemental File 3. All these data
sources were collated to generate genotype information for a total of
15,302 SNPs across theHisth locus (45-128Mbp, Supplemental File 4).

To calculate associations between genetic polymorphisms and
Histh, we used efficient mixed-model association (EMMA) (Kang
et al. 2008). This method treats genetic relatedness as a random
variable in a linear mixed model to account for population structure,
thereby reducing false associations between SNPs and the measured
trait. To calculate the kinship matrix, we compiled a set of 470,365
SNPs across all strains from the Mouse Genome Informatics database
(Mouse Genome Informatics Mouse Genome Informatics Web Site).
We removed the SNPs in the congenic interval from the kinship esti-
mation, and generated the kinship matrix with the remaining 455,068
SNPs. We used the likelihood ratio test function (emma.ML.LRT) to
generate p values. Significance was definedwith a Bonferroni correction
(p ¼ 0:05=15; 302). Genomic coordinates included for each SNP
using the latest mouse genome build GRCm38.p5/mm10.

Trait-related gene sets
The positional candidate genes were ranked based on their predicted
association with seven functional terms related to the Histh phenotype:
“aging”, “Mycobacterium tuberculosis”, “cardiac”, “G-protein coupled
receptor”, “histamine”, “inflammation”, “type I hypersensitivity”, and
“vascular permeability.” We used Gene Weaver (Baker et al. 2012) to
generate gene sets associated with each term. To do this, we entered
each term into the Gene Weaver homepage (https://geneweaver.org).
We restricted the search to human, rat, and mouse genes, and to curated
lists only. Mouse orthologs for each gene were retrieved using the batch
query tool inMGI (http://www.informatics.jax.org/batch_data.shtml). In
addition, we used Gene Expression Omnibus (GEO) and PubMed
to retrieve expression data sets for each phenotype term. We re-
moved all positional candidates from the gene lists used for train-
ing such that no true-positive positional candidates were used for
training. The gene lists used are available as a set of zipped text
files in Supplemental File 5.

FNTM network
We trained support vector machines (SVMs) to classify genes in each
gene list using features derived from FNTM (Goya et al. 2015). In this
functional genomic network, genes are nodes, and the edge weights
between them are continuous values between 0 and 1 predicting the
degree towhich each pair of genes is functionally related. Larger values
indicate higher predicted functional relatedness. Functional related-
ness in this network was predicted through Bayesian integration of
data sets from multiple sources, including gene expression, protein-
protein interaction data, and annotation to GO terms (Goya et al.
2015). We downloaded the top edges of the mouse network on Jan-
uary 15, 2018 from http://fntm.princeton.edu.

Clustering gene sets
Guan et al. (2010) observed that support vector machines trained
on 200 to 300 genes yielded the best classification accuracy. Two of
our gene lists had fewer than 100 genes. For all lists over 400 genes,
we reduced the size of our training sets by clustering each term gene
set into modules using the fast greedy (Newman 2004) algorithm in
the R/igraph package (Csardi 2006). We applied the fast greedy
algorithm iteratively until all modules comprised fewer than 400 genes.
Using a maximum modules size of 300 overly fragmented the net-
works yielding many modules with fewer than 100 genes.

Machine learning
Toclassify positional candidates as belonging to a functionalmodule, we
trained SVMs using the connection weights in the FNTM network as

Figure 1 Workflow Overview. The workflow is broken into blocks by
color, each with a bolded title. Each block shows how data (blue
rectangles) were operated on (gray rectangles) to achieve results
(green rectangles). Arrows show the general flow of work and
dependence (and independence) of individual analyses.
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features, as described in Guan et al. (2010). Briefly, an annotated set of
genes (Figure 2A, blue nodes) is used as a set of known positives for the
corresponding functional module. Other genes in this module are
expected to be strongly functionally connected to these known posi-
tives, i.e., have a high probability of functionally interacting with known
positives. Each gene, therefore, is represented as a feature vector of
connection weights to the known positives, which can be visualized
as a sub-matrix of the adjacency matrix of the network (Figure 2B).
Correspondingly, the rows of this matrix are labeled as either known
positive or not (Figure 2B, blue dots vs. gray dots). We used the e1071
package in R (Meyer et al. 2018) to train SVMs to distinguish the
known positive genes from an equal-sized set of genes selected at ran-
dom from outside the known positive list using the network-based
feature vectors (Figure 2C). The trainedmodel can then annotate novel
genes as belonging to the functional module by classifying any gene in
the genome (Figure 2C, green bordered nodes).

We trained 100 SVMs on eachmodule selecting a new set of random
genes for each run.We used a linear kernel and 10-fold cross-validation
for eachSVM.We trainedeachSVMover a seriesof costparameters.We
started with the sequence 1 · 1025 to 1 · 102 by factors of 10, and
iteratively narrowed the range of cost parameters until we found a series
of eight cost parameters that maximized the accuracy of the SVM
(see Workflow).

We calculated the area under the ROC curves (AUC) over all runs in
the following way: For a sequence ranging from the minimum SVM
score to the maximum SVM score, we quantified all true positives (TP),
true negative (TN), false positives (FP) and false negatives (FN). The TP
genes in this case were those genes from the known positives that were
correctly classified as being in themodule (above the SVM score cutoff).
TN genes in this case were those genes outside the module that were
correctly classified as being outside the module (below the SVM score
cutoff).Wecalculated theAUCacross theaveragecurve forall100SVMs
for each module.

Positional Candidate Scoring
We used the trained SVMs to score each positional candidate gene
in the Histh locus. The score for each gene gave an estimate of how
functionally related each gene was to each module based on its
connection weights to the known module genes in the FNTM

mouse network. SVMs classify inputs into two classes, and inputs
receive either a positive or a negative score depending on which
class the SVM places them. The larger the magnitude of this score,
the more confident the classification. Genes with large positive
scores were predicted by the SVMs to interact functionally with
the genes in the module, while genes with large negative scores
were predicted to not functionally interact with the module genes.
The scale of these SVM scores can vary widely between models.
Thus, to compare SVM scores across different trained models, we
calculated a false positive rate (FPR) for each gene. The FPR lies
between 0 and 1 and can be compared across different models. For
each gene’s SVM score we calculated the number of true positives
(TP), true negatives (TN), false positives (FP) and false negatives
(FN) classified by the SVM. The FPR for a given SVM score was
calculated as FP=ðFP þ TNÞ.

The final functional score for each gene was themaxð2log10ðFPRÞÞ
across all modules. This meant that genes with a high functional score
for a single module, but low functional scores for other modules, re-
ceived higher overall scores than genes with moderately high scores
across all modules.

Combined Gene Score
High-qualitycandidategenes in the locusshouldnotonlybe functionally
related to the trait of interest, but should also segregate with the trait of
interest. We thus defined a combined gene score (Scg) that combined
these two aspects of the analysis:

Scg ¼
2log10

�
pEMMA

�

max
pos:cand:

2 log10ðpEMMAÞÞ þ
2log10ðFPRSVMÞ

max
pos:cand:

2 log10ðFPRSVMÞ;

where the denominators of the two terms on the right hand side
are the maximum values of 2log10ðpEMMAÞ and 2log10ðFPRSVMÞ
over all positional candidates in Histh, respectively, which nor-
malizes the functional and positional scores to be comparable to
each other. EMMA p values for SNPs were assigned to the nearest
gene within 1 megabase using the R package biomaRt (Durinck
et al. 2005, 2009) (Supplemental Table 1). Genes for which more
than one SNP was assigned were given the maximum2log10ðpEMMAÞ

Figure 2 Network-based machine
learning for functionally annotating
genes. A Known-positive genes
annotated to a functional term
(blue nodes) are typically densely
interconnected in a functional net-
work. B The adjacency matrix of a
network is a tabular representation
of the connectivity structure of the
network in which each row/column
corresponds to a node of the
network, and connected pairs
of nodes have non-zero values in
the corresponding cell of the ma-
trix. Note that in general the con-

nections are weighted, but for display we are only showing present/absent links (white/black cells). The connections from every gene in
the genome to the known positives form a sub-matrix of the adjacency matrix called the feature matrix (vertical red lines), whose rows are the
feature vectors for each gene. C Using the network-based feature vectors for each gene, we train SVMs to distinguish known positives (blue dots)
from random genes in the genome (gray dots) to identify the full sub-network corresponding to the true positive genes (green bordered dots and
dotted red lines in panels A,B).
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across all SNPs associated with that gene. The full matrix of combined
scores across all gene sets is in Supplemental Table 2. The rows of this
matrix are sorted by the maximum gene score across all gene lists.

Data availability
AreproducibleworkflowinRmarkdown isavailableonGitHub(https://
github.com/MahoneyLab/HhsFunctionalRankings). This workflow
contains all code required to reproduce the figures and results pre-
sented in this manuscript.

The data used as input for the workflow, as well as intermediate
and final results, are available on figshare (https://figshare.com/
articles/Data_required_to_run_HhsFunctionalRankings_workflow/
8205356). The data set is called under HhsFunctionalRankings.
Supplemental material available at figshare: https://doi.org/
10.25387/g3.9989117.

RESULTS

Generation of interval specific recombinant congenic
lines (ISRCL) across the Histh locus
In prior work, we mapped the genetic locus regulating suscepti-
bility to age- and/or inflammation (CFA)-dependent sensitivity to
histamine on Chr 6 in SJL/J mice (Raza et al. In Press). The
B10.S-HisthSJL congenic mice exhibited Histh and carry a large
� 83 Mb region of SJL/J between 45.9 Mb to 127.8 Mb on the
resistant B10.S background (Raza et al. In Press) (MGI:6360897). This
large QTL includes 628 protein coding genes. To narrow this region,
we generated five ISRCLs using B10.S-HisthSJL x B10.S backcross mice
and assessed their susceptibility to Histh (Figure 3). Under an additive
model, these data suggest thatHisth is composed of four sub-QTL which
we have designated Histh1 (MGI: 6362992), Histh2 (MGI: 6362994),
Histh3 (MGI: 6362996), and Histh4 (MGI: 6362997), each contributing
17%, 19%, 14% and 10%, respectively, to the overall penetrance. Impor-
tantly, for each sub-QTL this makes positional candidate gene identifi-
cation using interactive high-resolution congenic mapping impractical.

Inbred strain survey of Histh
To investigate whether the Histh phenotype is unique to SJL, we
assessed histamine responses for 23 inbredmouse strains (including

SJL/J and B10.S; Table 1). These strains were chosen using hap-
lotype structure across the Histh interval to identify additional
mouse strains that are likely to share a susceptible Histh allele
(data not shown). 129X1/SvJ, ALR/LtJ, BPN/3J, FVB/NJ, NOD/
ShiLtJ, NU/J, SJL/BmJ and SWR/J mice were identified as having
similar haplotype structure as SJL/J at the Histh locus. ALR/LtJ
and SJL/BmJ mice required embryo recovery and were therefore
not included. Histh phenotyping identified FVB/NJ, SWR/J, and
NU/J mice as Histh-susceptible, whereas 129X1/SvJ, NOD/
ShiLtJ, and BPN/3J were resistant. Taken together with our ear-
lier data, these results indicate that Histh susceptibility segregates
among a unique subset of SJL/J-related strains (Petkov et al.
2004).

Targeted genetic association analysis for Histh
Our result from previous linkage analysis (Raza et al. In Press) and
congenic mapping localized Histh to an � 83 Mb region on Chr
6 between 45.9 Mb to 127.8 Mb. Given that Histh-susceptibility is
restricted to a unique subset of inbred strains, particularly the
closely related SJL/J, FVB/NJ, and SWR/J, we performed a targeted
association analysis between SNPs in the Histh locus across all 23
inbred strains (cf. Benson et al. (2017)).

We tested the association of 15,302 SNPs across the Histh locus
using efficient mixed-model association (EMMA) (Kang et al.
2008). A total of 84 SNPs in 23 genes showed significant associations
(p# 3:68 · 1026) (Figure 4, Supplemental Table 3). The majority of
the significant hits were intronic (71%), non-coding (12%), intergenic
(4%) or regulatory (5%) variants. Interestingly, there was overlap be-
tween three of the fourHisth sub-QTL (Figure 3) and SNP-association
peaks.

Network-based prediction of Histh-associated genes
To predict functional candidates among the positional candidates in the
Histh locus, we delineated a list of Histh-associated biological processes
and trained machine learning classifiers to identify sub-networks of
functional genomic networks associated with each of these processes.
An overview of our workflow is in Figure 1. We first defined gene sets
that were related to seven terms that are functionally related to the
Histh phenotype.

Figure 3 Interval specific recombinant congenic line (ISRCL) mapping identified four linked QTL controlling Histh. ISRCLs were injected (D0) with
CFA and subsequently challenged (D30) by i.v. injection of 75 mg/kg histamine to determine histamine hypersensitivity. Deaths were recorded
at 30 min post injection and the data are reported as the number of animals dead over the number of animals studied. Significance of observed
differences was determined by a x2 test with p-values #0:05 considered significant.
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The terms and their justifications are as follows:

• Type I hypersensitivity/Anaphylaxis: The death response following
systemic histamine challenge exhibits symptoms of type I hypersen-
sitivity/anaphylaxis including respiratory distress, vasodilation, and
anaphylactic shock (Vaz et al. 1977).

• Cardiac: There is evidence suggesting that anaphylactic shock in
mice is associated with decreased cardiac output, rather than solely
a function of systemic vasodilation (Wang et al. 2014).

• Histamine: Histh is elicited by a systemic histamine challenge (Raza
et al. In Press).

• G-protein coupled receptor: Histamine receptor H1 (Hrh1) signaling
is required for the Histh phenotype, and all histamine receptors
belong to the family of G-protein coupled receptors (Hill et al. 1997).

• Aging: Spontaneous Histh develops after six months of age in sen-
sitive mouse strains (Raza et al. In Press).

• Inflammation: Treatment with pro-inflammatory CFA induces
Histh in sensitive mouse strains.

• Tuberculosis: Histh is induced in somemouse strains by CFA, which
contains inactivated Mycobacterium tuberculosis (Raza et al. In
Press).

• Vascular permeability: The Histh response includes vascular leakage
in skin and skeletal muscles as assessed byMiles’assay (Raza et al. In
Press).

We used Gene Weaver, the Gene Expression Omnibus (GEO), and
PubMed to retrieve gene sets associated with each of these terms (see
Materials and Methods). The gene sets ranged in size from 651 to
1466 genes. Because Guan et al. (2010) found that SVMs trained on
gene sets with around 300 genes performed best for network-based
functional prediction, we clustered large gene sets into modules of
approximately 300 genes and analyzed each module separately (see
Materials and Methods). Supplemental Table 4 shows the number of
genes in each module, as well as the top five enrichment terms for each
using the R package gProfileR (Reimand et al. 2018).Multiplemembers
of these gene sets are encoded in the Histh locus. For example, Hrh1
was a member of the Anaphylaxis gene set. To reduce bias in classifi-
cation, we removed all such genes from each gene set before SVM
training. We then trained an ensemble of 100 SVMs on each module
gene set. We calculated ROC curves for each model to quantify the
ability of each set of SVMs to distinguish genes inside the module gene
set from all genes outside themodule gene set. AUCs ranged from 0.9 to
0.975 indicating that the SVMs were able to classify the genes in each
list robustly. In other words, each gene set used to define a putative
Histh-related process forms a distinct subnetwork of the full functional
genomic network. We then applied the trained SVM models to the
positional candidate genes in the Histh locus. By classifying each posi-
tional candidate, we can identify genes that are likely to be functionally
associated with eachmodule gene set. For example, for the Anaphylaxis
module gene set, the histamine receptor Hrh1 received a positive score
indicating that the SVMs predicted that it belonged to the Anaphylaxis
gene set despite its absence from the training set. This example
provides a positive control and shows that the SVMs identify bi-
ologically relevant patterns in the functional genomic network. In
addition to the SVM score, we calculated a false positive rate (FPR)
for each gene (see Materials and Methods). Low FPRs indicate high
confidence in the classification. The details of this analysis are de-
scribed in an executable workflow as a companion to this paper (see
Data Availability).

n■ Table 1 A survey Histh phenotypes across 23 inbred mouse
strains

Strain HA Strain HA Strain HA

A/J 0/8 CZECHII/EiJ 0/8 NOD/ShiLtJ 0/8
AKR/J 0/8 DBA/1J 0/8 129X1/SvJ 0/8
BALB/cJ 0/8 DBA/2J 0/8 BPN/3J 0/8
BPL/1J 0/8 JF1/Ms 0/8
C3H/HeJ 0/8 MOLF/EiJ 0/8 FVB/NJ 6/8
C57BL/10J 0/8 MRL/MpJ 0/8 NU/J 5/8
C57BL/6J 0/7 PWD/PhJ 0/12 SJL/J 12/12
CBA/J 0/8 PWK/PhJ 0/6 SWR/J 6/8

Cohorts of CFA injected 8- to 10-week old mice were challenge 30 days later
with 75 mg/kg HA by i.v. injection, and deaths recorded at 30 min. Results are
expressed as the (number of animals dead)/(number of animals studied). The last
column contains strains with haplotype structure similar to SJL/J in bold
typeface. These strains are divided into those that did not develop Histh (top),
and those that did (bottom).

Figure 4 Targeted genetic association analysis for
Histh. Negative log-transformed p values of SNP asso-
ciations with Histh. Genomic coordinates (mm10 Mbp)
of each SNP are shown along the x-axis. Each circle
denotes a single SNP. Gene names are included for
SNPs that crossed p-value threshold of 3:68 ·1026

shown with a red dotted line. The location of Histh
sub-QTL are shown at the top of the figure.
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Integration of functional enrichment with
genetic association
Genes that are predicted tobe highly functionally related to the traitmay
not have functionally variant alleles in the study population, and may
therefore be unlikely todrive the observed strain differences inHisth. To
identify genes that were likely to have functionally relevant polymor-
phisms,we integrated functional scores with SNP association p values to
focus only on those candidates that satisfied both criteria. By plotting
the maximum functional score for a gene, 2log10ðFPRSVMÞ; vs. the
2log10ðpEMMAÞ (normalized to themax values; seeMaterials andMeth-
ods), we can identify genes that were predicted to be both highly func-
tionally related to Histh phenotype and likely to have functional
polymorphisms that segregated with Histh susceptibility (Figure 5).
The blue line in Figure 5 traces along the Pareto front of the gene set
in this space. For any gene on this line, finding a gene with a stronger
functional association means finding a gene with lower SNP p value,
and vice versa. The genes near the Pareto front have either segregating
polymorphisms or are predicted to be functionally related to Histh, or
both. All such genes are potentially good candidates for experimental
follow-up.

To rank the candidates with a single score, we defined a final gene
score (Scg) for each gene, which is the sum of the (normalized)
2log10ðFPRÞ and the 2log10ðpEMMAÞ (Figure 6). This score prioritizes
candidates in the upper right quadrant with simultaneously high posi-
tional and functional scores. The genes in the upper right quadrant—
Cxcl12, Ret and Cacna1c—had near-maximal scores along both axes
and were therefore ranked as the best candidates for follow-up. The full
table of gene scores by module can be seen in Supplemental Table 2.

In addition to identifying the top-ranked gene over the full Histh
locus, we identified a top-ranked gene for each sub-QTL identified
through congenic mapping. Figure 6A shows the functional associa-
tions across all modules of the top 20 genes ordered by final gene score
(Scg). The full matrix of scores for all ranked genes can be found in
Supplemental Table 2.

DISCUSSION
In this analysis, we identified a small set of positional candidate
genes in a large locus by combining SNP associations with pre-
dicted functional associations to Histh. SNP association tests
resulted in groups of SNPs with many significant and indistin-
guishable p values. Figure 5 shows a group of genes in the lower
right corner that have maximally significant p values. These genes
are indistinguishable by p value alone, but the functional score in
this pipeline differentiated these genes based on relatedness to the
processes of interest. Furthermore, multiple genes that were
highly ranked by the full pipeline did not receive maximally sig-
nificant p values from the SNP association tests. We assigned
SNPs to genes based on proximity, but this assignment can pro-
duce false associations between genes and phenotypes. For exam-
ple, a SNP could tag a regulatory variant that influences multiple
nearby genes, only some of which are associated to the trait.
Moreover, the SNP may not completely segregate with the causal
variant. Likewise, the complexities of genetic architecture, includ-
ing epistasis, may result in reduced significance for univariate SNP
associations for truly causal SNPs. Thus, genes with less than optimal
p values may be overlooked if p value were the only ranking criterion.
By adding a functional criterion to the ranking process, we can buffer
against mapping complexities and gene assignment errors and iden-
tify which of the positional candidates are also likely to be functionally
related to Histh. The final list of genes was highly plausible and can be
followed up relatively easily with modern genetic editing techniques.

High-quality candidates for Histh
Three genes in the final ranked list deserve particular attention: Cxcl12,
Ret, and Cacna1c. These genes did not have the most significant p
values across the locus, but were predicted to be highly functionally
related to Histh-related processes (Figure 5). The top-ranked gene,
Cxcl12 (also known as stromal cell-derived factor 1 (Sdf1)), is chemo-
tactic formast cells via the chemokine receptorCxcr4 (Ghannadan et al.
2002).Mast cells aremajor drivers of pathological events in anaphylaxis
(Lieberman and Garvey 2016), demonstrating that the final predictions
are highly relevant to Histh. Additionally, CXCL12/SDF1 secreted by
tumor cells is associated with increased endothelial permeability, both
locally and systemically. The second-ranked gene Ret encodes the ret
proto-oncogene, a cellular tyrosine kinase transmembrane receptor, the
activation of which stimulates multiple downstream pathways involved
in cell differentiation, growth, migration, and survival, inflammation
(Rusmini et al. 2013) and the development of the cardiovascular system
(Hiltunen et al. 2000). Alleles of this gene could conceivably modify
multiple processes underlying Histh, including the both the anatomical
background susceptible to Histh and the acute response to histamine.
Ret was significantly associated with multiple functional gene sets
(Figure 6A). The third-ranked gene, Cacna1c, calcium channel, voltage-
dependent, L type, alpha 1C subunit, which is expressed in the heart, blood
vessels, and central nervous system (Mouse Genome Informatics Mouse
Genome Informatics Web Site). Mutations in Cacna1c are associated with
electrophysiological alterations in the heart (Napolitano et al. 2015; Hedley
et al. 2009) suggesting a possible role for Cacna1c in impaired cardiac
function in Histh. Interestingly, SNPs in human CACNA1C were recently
associatedwith chronic spontaneous urticaria (i.e., spontaneous episodes of
hives and/or angioedema) and antihistamine drug response (Yan et al.
2018). These results suggest a direct connection between Cacna1c and
the histamine response.

All of the above genes lie in theHisth4 locus, which accounts for only
a portion of the total variation in the Histh phenotype. In the Histh3
locus, the highest-ranked candidate gene was Cntn3, which encodes for
contactin 3, also called brain-derived immunoglobulin superfamily

Figure 5 Two axes of gene scoring. Gene names are plotted by their
2log10ðpEMMAÞ on the x-axis and the 2log10ðFPRSVMÞ on the y-axis.
Both scores were scaled by their maximum value for better compari-
son. Genes farther to the right were associated with SNPs that segre-
gated with Histh. Genes higher up on the y-axis have stronger
functional association with gene modules. The blue line marks the
Pareto front. Genes on this line maximize the two scores and are the
best candidates based on the combination of both scores.

Volume 9 December 2019 | Candidate Gene Prediction for Histh | 4229



protein 1 (BIG-1) or plasmacytoma-associated neuronal glycoprotein
(PANG), was first reported in 1994 in rats (Connelly et al., 1994;
Yoshihara et al., 1994). Genetic variants of human CNTN3 are associ-
ated with an autism spectrum disorder (Morrow et al., 2008; Hussman
et al., 2011) and vascular abnormalities underlying abdominal aortic
aneurysms (Elmore et al. 2009). The latter suggests a potential con-
nection to impaired cardiac function during histamine challenge
(Elmore et al. 2009). Intriguingly, CNTN3 is near a segregating SNP
for Systemic Capillary Leak Syndrome (SCLS) from a human GWAS.
SCLS is an extremely rare disease characterized by transient but poten-
tially lethal episodes of diffuse vascular leakage of proteins and fluids

into peripheral tissues, resulting in massive whole-body edema and
hypotensive shock. The pathological mechanisms and genetic basis
for SCLS remain elusive (Xie et al. 2013), but SCLS shares many
phenotypic properties with Histh in mice. In particular, SCLS attacks
are diagnosed based on the clinical triad of hypotension, elevated
hematocrit, and hypoalbuminemia, all of which naturally occur in
the Histh-sensitive SJL mouse strain (Raza et al. In Press). The po-
tential association between CNTN3 and SCLS, therefore, lends
credence to its possible functional role in Histh as well. Indeed,
CNTN3 was not only a positional candidate in the SCLS GWAS,
but was contained within functional terms that were enriched

Figure 6 Final gene scores. Gene functional values
were combined with SNP associations to assign
each gene a final gene score (Scg). Higher gene
scores indicate better candidates. A Heat map show-
ing the final score of each of the top 20 ranked genes
for each gene module. To aid visualization of the
strongest candidates, asterisks in each cell indicate
where candidate genes were associated with a mod-
ule with an FPRSVM #0:2. B The top panel shows in-
dividual SNPs plotted at their genomic location
(x-axis) and their -log10ðpEMMAÞ (y-axis). All SNPs with
nominally significant p value (p#0:05Þ are plotted.
The horizontal line indicates the Bonferroni corrected
significance cutoff (p#0:05=13598). The four sub-
QTL are demarcated by background color and are
labeled at the top of the figure. The bottom panel
shows genes plotted at their genomic location
(x-axis) and their final gene score (Scg) (y-axis) to
demonstrate how the final ranked genes align with
the SNP association data.
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among the top positional candidate genes (Xie et al. 2013), in-
dicating that CNTN3 functions in concert with other genetic risk
factors for SCLS.

In theHisth1 locus, the top hits in were Creb5 and Tril. Creb5 codes
for cAMP responsive element binding protein 5. Creb5 has high ex-
pression in the heart (Fagerberg et al. 2014) and has been implicated in
cardiac function and pathology (Schisler et al. 2015). Additionally,
CREB5 is as component of the age-associated inflammatory network
underlying disregulated cytokine expression, i.e., inflammaging. Tril is
Tlr4 interactor with leucine-rich repeats and is a functional component
of Tlr4 complex involved with LPS signaling and is highly expressed in
the kidney (Carpenter et al. 2009), indicating a potential role for Tril in
blood pressure regulation. Tril(2/2) mice also produce lower levels of
multiple proinflammatory cytokines and chemokines within the brain
after E. coli and LPS challenge (Wochal et al. 2014) and is required for
Tlr3 signaling, suggesting a potential role in immune modulation.
There were no significant hits in the Histh2 locus.

None of the prioritized genes here have been tested specifically for
association with Histh, and further experimental validation will be
required. However, the above genes each have compelling functional
associations that can inform follow-up studies.

Computation and quantitative trait gene prediction
Definitive functional validation of a quantitative trait gene (QTG) has
traditionally required either congenic mapping to resolve an extremely
narrow QTL, or ad hoc nomination of a candidate gene for direct
experimentation. The advent of modern genetic technologies, such as
CRISPR/Cas9 (Hsu et al. 2014), allow relatively fast and inexpensive
allelic manipulations, so the burden of QTG prediction is moving to-
ward a regime in which a small handful of strong candidates can be
followed up individually. Importantly, many QTL, including Histh,
containmultiple causal variants, so fine-mapping alone cannot provide
definitive validation. Therefore, computational tools that can identify a
small number of reasonable candidates can be a significant aid in bio-
logical follow-up.We have presented an integrative strategy for ranking
genes in a QTL by combining predicted functional associations to the
trait with SNP associations. Our method produces a full ranked list of
genes in the locus providing researchers with the potential to validate
multiple targets. To this end, the Histh QTL represents an extreme use
case for QTG prediction–a large, polygenic QTL associated with a
physiologically complex trait.

One major limitation to our approach is the decision of which
functional terms to include for network-based prediction. The better
tailored this set is to the trait of interest, the greater confidence we can
have in the final predictions. In principle, the inclusion of a spurious
functional term could skew the rankings toward genes that are func-
tionally associated with the spurious term but irrelevant to the trait of
interest. One potential way around this issue is to use functional data,
such as transcriptomics, directly from the mapping population. How-
ever, in some cases, including Histh, the relevant tissue in which to
measure gene expression may not be obvious. Alternatively, one could
consider distinct rankings for each functional term. In any case, the
researcher will have to exercise some measure of judgment in the
prioritization process. However, by transferring the judgments from
a large list of positional candidate genes to a smaller andmore tractable
list of trait-relatedbiological processes,wehave shownthatwe can arrive
at a strong set of follow up candidates that would have evaded naive p
value filters and are relatively unbiased by findings published in the
literature.

Another limitation to this approach is our method of assigning p
values to genes. We currently use the p value from the single best SNP

within 1Mb of the gene body, and these SNPs may or may not be
tagging the gene they are assigned to. There exist multiple methods
for assigning gene-based p values based on multiple SNP p values,
such as the Versatile Gene-Based Test for Genome-wide Associa-
tion Studies (VEGAS) (Liu et al. 2010), Combined Association Test
for Genes (COMBAT) (Wang et al. 2017), and eigenMT (Davis
et al. 2016). However, none of these methods are directly applicable
to the current experiment, and deriving a gene-based test statistic
that is applicable here is beyond the scope of this study. We will be
investigating this possibility for future implementations of this
method.

The final output of ourmethod, a ranked list of positional candidate
genes, is easy to interpret, and provides researchers with a clear set of
hypotheses to test in the lab. While this approach cannot definitively
identify the causal gene or genes in a locus, it does provide a much-
reduced set of plausible candidates to test.
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