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Abstract

Viruses exist within hosts at large population sizes and are subject to high rates of mutation. As such, viral populations ex-
hibit considerable sequence diversity. A variety of summary statistics have been developed which describe, in a single num-
ber, the extent of diversity in a viral population; such measurements allow the diversities of different populations to be
compared, and the effect of evolutionary forces on a population to be assessed. Here we highlight statistical artefacts under-
lying some common measures of sequence diversity, whereby variation in the depth of genome sequencing may substan-
tially affect the extent of diversity measured in a viral population, making comparisons of population diversity invalid.
Specifically, naive estimation of sequence entropy provides a systematically biased metric, a lower read depth being
expected to produce a lower estimate of diversity. The number of polymorphic loci per kilobase of genome is more unpre-
dictably affected by read depth, giving potentially flawed results at lower sequencing depths. We show that the nucleotide
diversity statistic p provides an unbiased estimate of diversity in the sense that the expected value of the statistic is equal
to the correct value of the property being measured. Our results are of importance for studies interpreting genome sequence
data; we describe how diversity may be assessed in viral populations in a fair and unbiased manner.
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1. Introduction

Many viruses form large within-host populations and evolve un-
der the influence of high mutation rates. As a consequence,
within-host viral populations may contain a large amount of se-
quence diversity (Lauring, Frydman, and Andino 2013). Sequence
diversity has a close relationship with the evolution of viral pop-
ulations; changes in host-mediated pressure on the virus may
cause changes in sequence diversity (Poirier and Vignuzzi 2017),
while diversity itself may enable more rapid adaptation to new
selective pressures (Illingworth 2015). The extent of within-host
diversity has been explored in a range of viral diseases
(Shankarappa et al. 1999; Bull et al. 2012; McWilliam Leitch and

McLauchlan 2013; Grad et al. 2014; Pennings, Kryazhimskiy, and
Wakeley 2014; Raghwani et al. 2016; Debbink et al. 2017).

While sequence diversity is complex property, there exist a
range of statistical measures of diversity, each capturing the di-
versity of a population in a single numerical value. Such meas-
ures, which include the number of polymorphisms per thousand
bases, sequence entropy, and the population genetics parameter
p, allow for the simple evaluation of changes in population diver-
sity. For example, the amount of diversity in one population may
be compared to the amount of diversity in another. In an evolv-
ing population, increases and decreases in diversity may be mea-
sured over time (Gall et al. 2013; Maldarelli et al. 2013).
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Measuring sequence diversity requires an accurate repre-
sentation of the population under study, acquired through
genome sequencing. A broad range of publications have ac-
knowledged, measured, or sought to correct noise in genome
sequence data (Beerenwinkel and Zagordi 2011; Archer et al.
2012; Illingworth et al. 2017; Zanini et al. 2017). Accurate ex-
perimental techniques have been highlighted as a necessary
first step to measuring viral sequence diversity (McCrone and
Lauring 2016).

Here we show that an accurate experimental protocol for se-
quencing is not sufficient to obtain a correct assessment of viral
diversity; in addition, an unbiased diversity metric needs to be
applied. While previous studies have highlighted biases in naive
estimators of entropy statistics (Miller 1955; Harris 1977;
Grassberger 1988; Herzel, Schmitt, and Ebeling 1994;
Nemenman et al. 2008), their importance in the analysis of viral
sequence data has not been fully investigated, and the use of
raw entropy statistics is common in the virological literature.
Data may be used to evaluate the within- or between-host di-
versity of populations (Renzette et al. 2017). We here consider
three measures of sequence diversity, demonstrating that po-
tentially serious bias may arise from realistic depths of genome
sequencing. We highlight the need to account for the stochastic
nature of diversity statistics and outline steps via which the di-
versity of one population may be accurately compared to that of
another.

2. Methods
2.1 Sequence data

Viral sequence data were downloaded from publicly available
datasets. The HIV data analysed was that collected after
2639 days in Patient 1 of the dataset described by Zanini et al.
(2015); pre-calculated variant frequencies were used for this
analysis. The influenza data analysed was from the sample
MH5817_20140113_A (SRR6121395) of the dataset described by
McCrone et al. (2018). Short-read data from this dataset were
aligned using the BWA algorithm (Li and Durbin 2009), with var-
iant frequencies being calculated using the SAMFIRE software
package (Illingworth 2016).

2.2 Downsampling of data

Downsampling of data was conducted by a simple multinomial
process. Supposing the read depth at the locus l to be Nl, and
that sequence data reported nl;i copies of each of the alleles i in
the set fA;C;G;Tg at position l, we calculated the observed
allele-based probabilities p̂l;i ¼ nl;i=Nl. A downsampled set of
data was generated by choosing a depth Nd for downsampling.
At each locus for which Nl > Nd, a random multinomial draw
of depth Nd and with probabilities pl;i was made in order to
sample allele frequencies. For each locus for which Nl � Nd,
the original sequence data were retained. Downsampling was
conducted to depths for which at least 90% of loci in the ge-
nome had Nl > Nd.

3. Results

Assuming sequencing to have been conducted in an error-free
manner, we evaluated the robustness of three statistics:
sequence entropy, the number of polymorphic loci per kb,
and the nucleotide diversity statistic p. In our calculations,
we use L to denote the length of a hypothetical viral genome.

At a given locus, we suppose the underlying frequencies of
each nucleotide i to be given by pi. Given sequencing of depth
N, we suppose that ni copies of each nucleotide have been
observed.

3.1 Shannon entropy

The Shannon entropy of a population is derived from informa-
tion theory, and assesses the level of ‘disorder’ in a population
(Shannon 1948); this measure has been used to assess changes
in viral sequence diversity over time (Gall et al. 2013). At the lo-
cus l, the entropy may be calculated as

Hl ¼ �
X4

i¼1

pi logðpiÞ (1)

where the sum is calculated across the frequencies of the four
possible nucleotides. Supposing that full haplotype information
for the virus is not available, a genome-wide measure of en-
tropy may then be calculated, computing the mean of this sta-
tistic across all sites (McCrone and Lauring 2016).

H ¼
XL

l¼1

Hl=L (2)

where genome sequencing is applied to a population, the result-
ing observations are stochastic in nature, arising from a random
sampling process; if sequencing is error-free this can be repre-
sented as a multinomial sample collected from the viral popula-
tion. The value of the entropy calculated from the sequence
data, which we denote Ĥ, is therefore a random variable, which
may by chance be higher or lower than the true sequence
entropy.

Calculations show that if a naive estimator is used, the
expected value of this ‘measured’ sequence entropy, or EðĤl Þ,
falls between two limits, such that

EðĤlÞ � �
X4

i¼1

pi log
ðN� 1Þpi þ 1

N

� �

EðĤlÞ �
X4

i¼1

� pi log
pi

1� ð1� piÞN
� � (3)

A full derivation of this relation is given in the Appendix. We
note that the upper limit for the measured sequence entropy is
strictly less than the true sequence entropy in Equation (1); this
result implies that a measurement of entropy from sequence
data is likely to underestimate the true entropy of the popula-
tion. We further note that, as the read depth N increases, both
the lower and upper bounds in our formula increase, both tend-
ing to the correct value. This implies that the expected shortfall
in the entropy given by the calculation will depend upon the
read depth of sequencing. As a consequence entropy, when cal-
culated in this way, is not a good measure of sequence diversity.
If two different populations are sequenced to different read
depths, values of the entropy calculated for the two populations
may or may not reflect the ordering of the true levels of popula-
tion diversity.

To investigate the effect of read depth upon the calculated
sequence entropy, we performed calculations for simulated
data describing high- and low-frequency polymorphisms. For a
variant at intermediate frequency, namely 30% of the popula-
tion, the mean calculated sequence entropy falls between the
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two limits of Equation (3), increasing with increasing read depth
(Fig. 1A). At read depths of 1,000 or less, there is a noticeable
shortfall in the entropy with respect to the true sequence diver-
sity. Variants at lower frequencies lead to more incorrect en-
tropy values at higher depths of sequencing; as shown in
Fig. 1B, the lower bound remains below the true value for much
longer. In so far as viral populations contain large numbers of
low-frequency variants, our result implies that a depth-
dependent shortfall in the measurement of entropy will be per-
vasive even at high read depths. The measure of entropy
obtained will depend upon the extent to which a population has
been sequenced.

3.2 Number of polymorphisms per kilobase

The number of polymorphisms per kilobase of genome is calcu-
lated relative to a definition of what constitutes a polymor-
phism, usually a minor allele frequency between 1% and 5%
(Xue et al. 2017; McCrone et al. 2018); given this definition, cal-
culation of the statistic is trivial. This statistic has been used to
compare the diversity of reported influenza populations,
highlighting potential discrepancies in the genome sequencing
of some datasets (Xue and Bloom 2018). An alternative measure
of viral diversity, the ‘richness’ of a viral population, is calcu-
lated as the total number of polymorphisms in the viral genome
(McCrone and Lauring 2016); the two statistics are straightfor-
wardly related.

Calculations show that the measured number of polymor-
phisms per kilobase is also dependent upon read depth, albeit
that the influence of read depth is more complex than is the
case for sequence entropy. To illustrate this, we suppose that a
threshold frequency of 1% is used to define the existence of a
polymorphism. Given a binomial sample of depth N, an allele
will be identified as polymorphic if at least n copies of the mi-
nority allele are observed, where n=N � 0:01. If the true variant
frequency is given by p, the probability of identifying a polymor-
phism is given by the cumulative distribution function:

P
n
N
� 0:01

� �
¼
XN

i¼k

N!

i!ðN� iÞ! pið1� pÞN�i (4)

where k is the minimum value for which k=N > 0:01; the
broad-scale behaviour of this function is shown in Fig. 2.
While this function is non-monotonic in N, it is straightforward

to observe that, as N becomes large, the probability of identify-
ing a polymorphism tends towards 0 if P < 0.01, tends towards 1
if P > 0.01, and tends towards 0.5 if P = 0.01. (The probability is
further influenced by discrete-value effects, illustrated in
Fig. 2B.)

In so far as the chances of identifying a single polymorphism
are influenced by the read depth, the expected number of poly-
morphisms per thousand bases is also dependent upon N. In a
system for which a large number of variants are polymorphic at
frequencies less than, but close to 1%, the number of identified
polymorphisms will decrease at higher read depths, as higher
precision observations show these variants to be below the
polymorphism threshold. Conversely, if a large number of loci
are polymorphic at frequencies slightly above 1%, an increase in
read depth will cause the expected diversity also to increase.
Since changes in sequencing depth can both increase and de-
crease the number of polymorphisms identified, this statistic is
not so affected by read depth as the calculation of entropy.
However, it is not an ideal statistic for the comparison of sam-
ples; statistics calculated for samples with different read depth
profiles may not be formally comparable.

3.3 Nucleotide diversity p

The diversity statistic p was first derived for the comparison of
sequences in a phylogenetic tree (Nei and Li 1979), but can be
applied to viral sequence data even where full genomes are not
available (Nelson and Hughes 2015). As with other measures,
this statistic has been applied to evaluate both to compare di-
versity values, and to evaluate changes in diversity in viral pop-
ulations over time (Maldarelli et al. 2013; Dinis et al. 2016). At
the locus l, where ni copies of the allele i are observed, the pro-
portion of pairwise differences between alleles may be calcu-
lated as

Dl ¼
P

i6¼j ninj

1
2 NðN� 1Þ

¼ NðN� 1Þ �
P

i niðni � 1Þ
NðN� 1Þ (5)

The statistic p may then be calculated for a genome as

p ¼
XL

l¼1

Dl=L (6)

A B

Figure 1. Mean sequence entropy values calculated for sets of 1,000 loci each of which has a consistent minor variant frequency. Means of these values calculated

across 100 replicates are shown as black dots, with vertical bars, where visible, showing an interval of 62 standard deviations. The correct entropy is shown by a

dashed red line. The dashed blue lines, where not obscured by the correct entropy value, show the upper and lower limits described in Equation (3), with the upper

limit showing the correct sequence entropy value. Data are shown for (A) a variant frequency of 30% and (B) a variant frequency of 0.03%.
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Calculating an expression for the expected value of Dl

showed it not to be dependent upon the depth of sequencing,
but only upon the underlying frequencies of the alleles at this
locus.

EðDlÞ ¼ 1�
X4

i¼1

p2
i (7)

Derivation of this result is shown in the Appendix. Here we
see that, unlike the statistics considered above, this value does
not depend upon the depth at which the locus is sampled, being
a function only of the underlying allele frequencies pi. As such,
where samples with different read depths are compared, the
statistic p should not cause systematic biases in the reported
results. We note that the variance of the statistic Dl is depen-
dent upon N: higher read depths are likely to generate more pre-
cise estimates of diversity.

3.4 Application to viral sequence data

In order to investigate the effect of depth-dependent biases
upon diversity statistics when applied to biological sequence
data, we analysed published data describing within-host HIV
and influenza populations (Zanini et al. 2015; McCrone et al.
2018). Data were chosen to represent contrasting viral

populations when evaluated in terms of sequence diversity;
plots of allele frequency spectra for each dataset are shown in
Fig. 3.

Downsampling of data from each population showed sub-
stantial changes in the calculated sequence entropy as the
number of reads was altered (Fig. 4). For example, downsam-
pling the influenza dataset to a depth of 100 led to a calculated
entropy value only 66.1% of the ‘correct’ value, calculated
from the original data. Even where data were downsampled
to a read depth of 5� 104, the calculated entropy was still frac-
tionally lower than the value calculated for the dataset as a
whole.

With the exception of values measured at the lowest down-
sampling depths, calculations of the number of polymorphisms
per kb showed relatively smaller changes with read depth. We
note that in the HIV dataset, after an initial fall, this statistic in-
creased with read depth, while in the influenza dataset the sta-
tistic gradually decreased to the correct value; the precise
distribution of frequencies affects the manner in which this sta-
tistic is biased by sample depth.

Calculations of the nucleotide diversity p showed roughly
constant results across downsampled datasets. No clear rela-
tionship between this statistic and the downsampling depth
was observed; the diversity calculated from the complete data-
set was always encompassed in the range of values obtained
from downsampled data.

A B

Figure 2. (A) Trend in the probability of a variant being identified as a polymorphism at 1% frequency as a function of read depth. At very high read depth, variants

with a frequency greater than 1% will always be identified as polymorphisms, while variants below this frequency will never be identified as polymorphisms. Details of

the function in the region between the vertical grey dashed lines are shown in (B). Detailed probability values. The range of frequencies at which a variant can be iden-

tified is constrained to the set of values i/N where N is the read depth; this constraint leads to a sawtooth pattern in the probability of identifying a polymorphism.

Figure 3. Allele frequency spectra for the two datasets analysed in this study. The within-host influenza dataset shows a small number of polymorphic sites relative to

the HIV data.
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4. Discussion

Viral sequence diversity is an important property in the evolu-
tion of viral populations. While diversity is complex, statistics
which measure it as a single numerical value provide a useful
tool for the comparison of viral datasets, either across genome
sequencing studies, or within the course of a single infection.
Here, assessing three commonly used such statistics, we have
highlighted potentially severe problems in the use of sequence
entropy, with lesser though potentially important issues with
the number of polymorphisms per kb of genome. Issues arise
with these statistics due to the inherent dependence of each
upon the read depth of sampling. Entropy is dependent upon
read depth in a systematic way, with greater sampling giving a
higher estimate of diversity. The number of polymorphisms per
kb is dependent upon depth in a more complex manner; greater
sampling may increase or decrease the value of this metric.

The depth-dependence of statistics shown here matters in
cases where such statistics are used to compare diversity be-
tween different populations. Differences either in the overall
read depth, or in the distribution of read depth across the ge-
nome, could produce misleading results if poor quality statistics
are used for the evaluation of population-level diversity. While
technologies such as the Illumina HiSeq can be used to achieve
very high read depths, the use of appropriate statistics is a more
efficient approach for the evaluation of sequence diversity. We
note that diversity statistics may also be applied to evaluate
data at the between-host level (Renzette et al. 2017). Such analy-
ses may involve lower sequence ‘depths’ than within-host data.
Care in the analysis of both within- and between-host diversity
measurements is required.

We here make two recommendations. Firstly, where a vari-
ety of statistics have been used to measure viral diversity, we
propose that the nucleotide diversity p outperforms other

Figure 4. Diversity statistics calculated for HIV (black) and influenza (red) sequence data following downsampling of the data to lower read depths. Ten replicate down-

sampling calculations were performed for each point; dots show mean values, with vertical bars, where visible, showing an interval of 62 standard deviations. Dashed

grey lines show the values calculated from the complete dataset.
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metrics in providing an estimator that is unbiased by factors of
genome sequencing. Particularly where samples with different
read depth profiles are compared, this metric allows the fair
evaluation and comparison of sequence diversity. While correc-
tions allowing the unbiased estimation of entropy can be made
(Montgomery-Smith and Schürmann 2014), the simplicity and
general acceptance of p by the evolutionary community make
this, in our opinion, the favoured solution. Secondly, we pro-
pose that where diversity statistics are compared, an estimate
of the uncertainty of such statistics should also be made. In be-
ing generated from genome sequence data, which describes the
output of a random sampling process, diversity statistics are
themselves statistical entities. Processes such as bootstrapping,
the resampling of datasets from the allele frequencies they orig-
inally report, can give a straightforward estimate of the uncer-
tainty in a given diversity measurement.
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1. Mathematical appendix
We here derive the results stated in the main text. In our calcu-
lations, we represent the process of sequencing as one of sam-
pling with replacement, giving rise to a multinomial
formulation; this assumes the within-host viral population to
be small. We note that the alternate assumption, of sampling
without replacement, leads to similar results.

1.1 Expected value of sequence entropy

The expected entropy, described in Equation (3) of the main
text, assuming multinomial sampling, can be written as
follows:

EðHlÞ ¼
X

fnk j
P

nk¼Ng

X4

i¼1

� ni

N
log

ni

N

� �0
@

1
A N!Q

i ni!

Y
i

ðpiÞni

 !2
4

3
5 (A.1)

Rearranging this equation, we obtain

EðHlÞ ¼
X4

i¼1

pi

X
fnk j
P

nk¼N;ni�1g

log
N
ni

� �
ðN� 1Þ! ðpiÞni�1

ðni � 1Þ!
Y
j 6¼i

ðpjÞnj

nj!

(A.2)

Next, applying Jensen’s inequality, we obtain

EðHlÞ �
X4

i¼1

pi log
X

fnk j
P

nk¼N;ni�1g

N
ni
� ðN� 1Þ! ðpiÞni�1

ðni � 1Þ!
Y
j 6¼i

ðpjÞnj

nj!

0
@

1
A

2
64

3
75

¼
X4

i¼1

pi log
1
pi

X
fnk j
P

nk¼N;ni�1g

N!
ðpiÞni

ni!

Y
j6¼i

ðpjÞnj

nj!

2
4

3
5

¼
X4

i¼1

� pi log
pi

1� ð1� piÞN
� �

<
X4

i¼1

� pi log ðpiÞ

(A.3)

To get the lower bound, we again apply Jensen’s inequality to
Equation (A.2).

EðHlÞ � �
X4

i¼1

pi log
X

fnk j
P

nk¼Ng

ni

N
� ðN� 1Þ!

pni�1
i

ðni � 1Þ!
Y
j 6¼i

p
nj

j

nj!

0
@

1
A

2
64

3
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¼ �
X4

i¼1

pi log
1
N
þ ðN� 1Þpi

N

X
fnk j
P

nk¼N;ni�2g

ðN� 2Þ!
pni�2

i

ðni � 2Þ!
Y
j 6¼i

p
nj

j

nj!

0
@

1
A

2
64

3
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¼
X4

i¼1

� pi log
ðN� 1Þpi þ 1

N

� �

(A.4)

Examining the two bounds, we note that

lim
N!1

X4

i¼1

�pi log
ðN� 1Þpi þ 1

N

� �
¼
X4

i¼1

�pi logðpiÞ (A.5)

and

lim
N!1

X4

i¼1

�pi log
pi

1� ð1� piÞN
� �

¼
X4

i¼1

�pi logðpiÞ: (A.6)

We therefore have the result

lim
N!1

EðHlÞ ¼
X4

i¼1

�pi log ðpiÞ: (A.7)

1.2 Expected value of p and its variance

The expected value of the statistic Dl in Equation (5) for a spe-
cific locus l can be expressed as follows:

EfDlg ¼
P
fnk j
P

nk¼Ng

NðN� 1Þ �
X4

i¼1

niðni � 1Þ

NðN� 1Þ N!
Y4

j¼1

ðpjÞnj

nj!

¼ 1� 1
NðN� 1Þ

X4

i¼1

X
fnk j
P

nk¼Ng

niðni � 1ÞN!
Y4

j¼1

ðpjÞnj

nj!

¼ 1�
X4

i¼1

p2
i

X
fnk j
P

nk¼Ng

ðN� 2Þ! ðpiÞni�2

ðni � 2Þ!
Y
j 6¼i

ðpjÞnj

nj!

¼ 1�
X4

i¼1

p2
i

(A.8)

Here the value 1�
P4

i¼1 p2
i is the true proportion of pairwise

differences for the locus l; our result is independent of N. Hence,
the statistic Dl and the linear combination of these values, p, are
unbiased with respect to the depth of sequencing.

We note that the variance of Dl can also be expressed as the
function of pi and N,

VarfDlg ¼
X

fnk j
P

nk¼Ng

"X4

i¼1

niðni � 1Þ
#2

N2ðN� 1Þ2
N!
Y4

j¼1

ðpjÞnj

nj!
�
"X4

i¼1

p2
i

#2

¼ 2
NðN� 1Þ

X
i

p2
i

"
1þ ð2N� 4Þpi � ð2N� 3Þ

X
j

p2
j

#

¼ 2
NðN� 1Þ

X
i

p2
i

"
1�

X
i

p2
i

#
þ 4ðN� 2Þ

NðN� 1Þ

"X
i

p3
i � ð

X
i

p2
i Þ

2

#
:

(A.9)

Generalising this result, the variance of p may therefore be
said to be proportional to 1/N. It would be expected to tend to
zero as the read depth becomes large.
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