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It is now known that multicomponent protein assemblies strictly regulate many protein functions. The
S100 protein family is known to play various physiological roles, which are associated with alternative
complex formations. To prepare sufficient amounts of heterodimeric S100A8 and S100A9 proteins, we
developed a method for bicistronic coexpression from a single-vector system using Escherichia coli cells
as a host. The complex formation between S100A8 and S100A9 appears to be dependent on the ther-
modynamic stability of the protein during expression. The stable S100A8/A9 heterodimer complex
spontaneously formed during coexpression, and biologically active samples were purified by cation-
exchange chromatography. Semi-stable homodimers of S100A8 and S100A9 were also formed when
expressed individually. These results suggest that the assembly of S100 protein complexes might be
regulated by expression levels of partner proteins in vivo. Because protein assembly occurs rapidly after
protein synthesis, coexpression of relevant proteins is crucial for the design of multicomponent re-
combinant protein expression systems.
& 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The heterodimer S100A8/A9, also known as MRP-8/14 or cal-
protectin, belongs to the family of EF-hand calcium-binding pro-
teins and presents predominantly in the granules of neutrophils or
macrophages [1–3]. A recent study showed that released S100A8/
A9 can play a key role in inflammatory diseases, multiple forms of
arthritis, tumor metastasis, and sepsis [4]. Progression of these
diseases is triggered by binding of S100A8/A9 to the receptor for
advanced glycation endproducts (RAGE) and Toll-like receptors
(TLR) [5–7]. The S100A8/A9 heterodimeric complex also shows
antimicrobial activity due to the chelation of divalent metal ions
[8]. In order to study the S100A8/A9 protein complex, purification
of S100A8/A9 protein from human granulocytes has been the
standard procedure to obtain biologically active samples. Along
with increasing interest in the biological and clinical significance
of S100A8/A9, there is a need for reliable expression of the
r B.V. This is an open access article
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heterodimeric S100A8/A9 recombinant protein.
Because S100 proteins are known to form homo- and het-

erodimers, as well as higher order oligomers, within the
homologous family of proteins [9], a wide range of inter-
molecular interactions could occur during the preparation of
recombinant S100 proteins. The intermolecular associations to
form dimers or oligomers are spontaneous processes that
minimize the free energy. The natural occurrence of the S100A8/
A9 heterodimer in vivo indicates that this heterodimer is more
stable than relevant homodimers [10]. However, hetero-
dimerization from semi-stable homodimers is not a sponta-
neous process because it requires external energy to dissociate
the homodimers into monomers. Because of this property, co-
folding or coexpression of heterodimerizing S100 proteins is a
reasonable strategy to yield stable heterodimer. The former
cofolding procedure has been previously described [11,12]. An
equimolar mixture of S100A8/A9 dissolved in denaturant can be
refolded into heterodimer. This refolded S100A8/A9 hetero-
dimeric protein has been successfully used for functional ana-
lysis and crystal structure analysis [11]. In this study, we present
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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a coexpression strategy [13], utilizing a bicistronic plasmid DNA
expression system. This simplified methodology allows one to
obtain large quantities of biologically active heterodimeric
S100A8/A9 protein from E. coli, and then purified it using single
step ion-exchange chromatography.
2. Materials and methods

2.1. Construction of recombinant S100A8/A9 plasmid DNA

The gene fragments encoding human S100A8 (Uniprot:
P05109) and S100A9 (Uniprot: P06702) were prepared by GeneArt
Strings DNA fragment gene synthesis service (Life Technologies)
with the sequence optimized for E. coli protein expression. The
synthesized gene fragments were cloned into the pET21a vector
(Novagen) digested by NdeI and BamHI, using an In-Fusion Clon-
ing Kit (Clontech). Gene fragments containing a T7 promoter and
the protein open reading frame were amplified by PCR using a pair
of primers binding 20-bp upstream of the T7 promoter (T7-20.Fw:
CTCCGTCGACAAGCTAGATCTCGATCCCGCGAAAT) and downstream
of the XhoI site (T7.ESS.Rv: AGTGGTGGTGGTGGTGGTGCTCGA). The
amplified gene fragments were gel purified and cloned into the
constructed pET21-S100A8 or pET21-S100A9 vectors, digested by
HindIII and XhoI, using the In-fusion Cloning Kit. The final con-
structs were verified by DNA sequencing.

2.2. Protein expression and purification

E. coli T7 Express cells (New England Biolabs), a derivative of
BL21(DE3) cells, were freshly transformed with each expression
plasmids. For the coexpression experiment, pET21-S100A8-
S100A9 was used for protein production. About 20 colonies were
inoculated into 20 mL of LB containing 100 mg/mL ampicillin and
the culture was grown at 37 °C with shaking for 2 h. Twenty
milliliters of preculture was inoculated into 800 mL of LB con-
taining 100 mg/mL ampicillin. When the cell density reached an
OD600 of 0.5, 0.5 mM of isopropyl β-D-1-thiogalactopyranoside
(IPTG) was added, and further incubated for 3 h. The bacterial cells
were then harvested by centrifugation, and pelleted cells were
washed once with 0.15 M NaCl. The cells were resuspended in
80 mL of 50 mM Tris–HCl buffer, pH7.5, containing 50 mM NaCl
and 5 mM MgSO4, and were disrupted by sonication on ice. In
order to digest nucleic acids, 1 mL of Benozonase-HC (Novagen)
was added and incubated for 30 min at room temperature. Di-
gested nucleic acids were precipitated by adding polyethylenimin
(PEI, averaged molecular mass 600, Wako Chemical), adjusted to
pH 8 by HCl, dropwise into the lysate while vigorously stirring on
ice to a final concentration of 0.7%. The remaining soluble proteins
were precipitated by the addition of 45.2 g ammonium sulfate
(80% saturation) and string with gentle stirring. The precipitate
was then dissolved in 20 mM Tris-HCl buffer, pH7.5, containing
30 mM dithiothreitol (DTT), and it was then incubated at 37 °C for
1 h to complete the reduction of disulfide bonds. The resulting
protein sample was extensively dialyzed against 50 mM sodium
phosphate buffer, pH 6.0 at 4 °C. Recombinant protein was further
purified with cation-exchange column chromatography using SP-
Toyopeal 650 M (Tosoh), with a linear gradient of NaCl (0–0.5 M)
in 50 mM sodium phosphate buffer, pH 6.0.

Mammalian cell derived S100A8/A9 protein was prepared by
using transient protein expression vector [14] containing S100A8-
Myc-HisTag connected with internal ribosome entry site and
S100A9-HA-HisTag, using suspension-culture adapted human
embryonic kidney 293 (HEK293) cell line: FreeStyle™ 293‐F cells
(Life Technologies). Secreted proteins were purified by im-
mobilized metal-affinity chromatography.
2.3. Analysis of molecular complex by size-exclusion HPLC

The intermolecular association of recombinant S100A8 and
S100A9 proteins was analyzed with size-exclusion chromato-
graphy (SEC-HPLC, COSMOSIL 5Diol-300-II, Nacalai Tesque) equi-
librated with 50 mM sodium phosphate buffer, pH 6.0, at flow rate
of 1.0 mL/min. Both the S100A8 and S100A9 proteins were purified
individually by cation-exchange column chromatography as a
single peak, thus both peak fractions were analyzed. For the co-
expressed S100A8/A9 protein, the estimated heterodimeric peak
fraction (Peak 1, Fig. 2B) was analyzed. For all samples of peak
fractions on cation-exchange column chromatography, 30 mg of
protein was injected and the elution was detected by absorbance
at 280 nm. Molecular mass from the chromatographic analysis was
estimated by using the gel filtration calibration kit LMW (GE
Healthcare). All SEC-HPLC injected samples simultaneously ana-
lyzed by SDS-PAGE under reducing and non-reducing conditions
to evaluate intermolecular disulfide bond formation.

2.4. Biological assay using recombinant S100A8/A9

Biological activity of the purified S100A8/A9 heterodimer was
evaluated by an in vitro invasion assay using transwell culture
inserts with 8 mm pore filters (BD Biosciences) coated with BD
Matrigel™ Basement Membrane Matrix (BD Biosciences) in a 24-
well plate. Briefly, 1�104 human glioblastoma cells T98 (ATCC)
were suspended in DMEM with 10% FBS and were placed into the
upper chamber. The cells were allowed to invade through the
matrix for 12 h. After removal of non-invasive cells, invasive cells
were stained by hematoxylin and eosin and quantified by taking
the average from five separate fields. Statistical significance was
determined using a t-test.
3. Result

3.1. Expression and purification of recombinant S100A8/A9 proteins

An expression plasmid for recombinant S100A8 and S100A9
was prepared using codon-optimized artificial genes that were
cloned into a pET21a vector without adding any tags. A gene
fragment containing the T7 promoter and each open reading
frame was amplified by PCR, and then was cloned downstream
into each expression vector encoding the partner protein (Fig. 1A).
After transformation of these plasmids into E. coli T7 Express cells
(NEB), recombinant proteins were successfully overexpressed
using both monocistronic and bicistronic expression (Fig. 1B). For
coexpression, proteins encoded downstream of the T7 promoter
showed higher expression than those encoded upstream. These
results can be reasonably explained because the mRNA transcript
from the upstream T7 promoter possesses two open reading
frames, and the downstream open reading frame was expressed by
bicistronic translation. Most of the expressed protein was in a
soluble form. After cell lysis by sonication, nucleic acids were
precipitated by PEI, which improved the subsequent cation-ex-
change chromatographic purification. Ammonium sulfate pre-
cipitation of recombinant S100 proteins showed as significant
bands using SDS-PAGE analysis (Fig. 2A). The solubilization solu-
tion containing DTT at pH 7.5 was crucial for resuspending pre-
cipitated S100A8 and S100A9 proteins, because both proteins
possess one reactive Cys, making it easy to form disulfide-bound
homodimers, which are frequently observed for S100A9 under
non-reducing conditions. Both recombinant S100A8 and S100A9
were successfully purified individually by cation-exchange chro-
matography as a single peak. Coexpressed heterodimeric S100A8/
A9 proteins showed multiple peaks using cation-exchange



Fig. 1. Schema for construction of S100A8/A9 coexpression vector and their protein expression in E. coli. (A) Expression vector for S100A8 or S100A9 were reconstructed into
coexpression vectors by PCR amplification of each open reading frame and then subcloned by recombinase reaction. (B) Recombinant protein expression by each plasmid
DNA for pET21-S100A8 (Lane 1), pET21-S100A9 (Lane2), pET21-S100A8-S100A9 (Lane 3), and pET21-S100A9-S100A8 (Lane 4) were confirmed by SDS-PAGE. Gels were
stained with Coomassie Brilliant Blue (CBB).
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chromatography (Fig. 2B). The SDS-PAGE analysis of these fractions
revealed that the main peaks (Fig. 2C, fractions 18–21) were
composed of almost 1:1 M ratio of S100A8 and S100A9, because
the band intensity ratios (S100A9/S100A8) were 0.86–1.04. The
later peak eluted by a higher concentration of NaCl is thought to be
a S100A9-rich higher complex (Fig. 2C). The yields of the purified
recombinant protein using cation-exchange chromatography from
1 L of bacterial cell culture of S100A8, S100A9, and S100A8/A9
proteins were 11.9, 13.3, and 56.3 mg, respectively.
3.2. Quaternary structural analysis of S100A8/A9 proteins

The molecular size of purified recombinant proteins was ana-
lyzed by SEC-HPLC. Coexpressed and purified S100A8/A9 proteins
showed heterodimer complex formation without monomeric
fractions, as well as a higher complex predicted to be a
(S100A8/A9)2 tetramer [10,15,16]. Both S100A8 and S100A9 pro-
teins purified individually were mixtures of homodimer and
monomer (Fig. 3A). These intermolecular complexes to form
homo- and heterodimer were formed by non-covalent interactions



Fig. 2. Purification of recombinant S100A8/A9 heterodimer. (A) Soluble fraction of
cell lysate (Lane 1) and after nucleic acid precipitation by PEI (Lane 2). Total protein
after ammonium sulfate precipitation (Lane 3) and soluble fraction after dialysis
(Lane 4). Each lane contained protein sample from 50 μL bacterial cell culture
equivalent. (B) Cation-exchange chromatographic purification of S100A8/A9 het-
erodimer. (C) SDS-PAGE analysis of fractionated samples under reducing (DTT þ)
and non-reducing (DTT �) conditions. The ratio of S100A9/S100A8 were measured
by band intensities using samples electrophoresed under reducing conditions.

Fig. 3. Analysis of protein assembly of S100A8 and S100A9. (A) SEC-HPLC analysis
of coexpressed recombinant S100A8/A9 protein (Fig. 2B, Peak1), and individually
expressed S100A8 or S100A9 proteins purified by cation-exchange chromato-
graphy. (B) SDS-PAGE analysis of purified recombinant S100A8 (Lane 1), S100A9
(Lane 2), and S100A8/A9 heterodimer (Lane 3) under reducing and non-reducing
conditions. Analyzed proteins were same as SEC-HPLC injected samples.
(C) Thermodynamic diagram of protein assemblies from S100A8 and S100A9
monomers to semi-stable homodimers or stable heterodimers.
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Fig. 4. Biological activity of purified S100A8/A9 heterodimer. (A) The invaded cells pass through the protein Matrigel after stimulation by S100A8/A9 heterodimer for 12 h
and were counted under microscopic observation. The results represent an average of three independent samples. Data are means7SD. (B) S100A8/A9 stimulated invasive
cellular images stained by hematoxylin and eosin. (C) Comparison of biological activity among S100A8 or S100A9 (mixture of monomer and homodimer), S100A8/A9
heterodimers produced in E. coli or HEK293 cells. The assay conditions are same as (A).
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not involving disulfide bonds (Fig. 3B). These results suggest that
coexpressed S100A8 and S100A9 proteins spontaneously form a
thermodynamically stable heterodimer. Individually expressed
S100A8 or S100A9 proteins also form metastable homodimers,
thus a S100A8/A9 heterodimer is difficult to obtain by mixing of
purified S100A8 and S100A9 proteins (Fig. 3C).

3.3. Biological activity of the S100A8/A9 heterodimer

The heterodimeric S100A8/A9 is a predominant granule protein
found in neutrophils and macrophages, possesses a key role in
chronic inflammation, and has been implicated in cancer metas-
tasis. The biological activity of the purified S100A8/A9 hetero-
dimer was verified by induction of invasion of T98 cells, an ag-
gressive glioblastoma cell line. As shown in Fig. 4, the S100A8/A9
heterodimer significantly stimulated T98 cell invasion. It has been
reported that biological functions of S100A8 and S100A9 could be
regulated by post-translational modifications [17]. Recombinant
S100A8/A9 proteins coexpressed and secreted from HEK293 cells
showed equivalent biological activity compared to that derived
from E. coli (Fig. 4C). However, it was difficult to distinguish be-
tween individual homodimers and heterodimers on this invasion
assay (Fig. 4C).
4. Discussion

Preparation of biologically active heterooligomeric re-
combinant proteins is important for basic research, as well as for
production of biologics. The use of E. coli as host is considered a
very good initial choice for coexpression of sufficient amounts
protein complexes [18,19]. The E. coli-based T7 protein expression
system is one of the most widely used systems. Successful coex-
pression of multiple T7 promoter-driven open reading frames in a
single-vector strategy requires a reliable expression level for each
protein. In this study, we employed artificial synthetic genes op-
timized for E. coli protein expression. The strategy for the con-
struction of coexpression plasmid DNA presented in this study is
easy to apply for various proteins. Protein expression levels for the
downstream open reading frame could be higher than that of
upstream genes because of bicistronic translation. This property
should be taken into consideration when determining the order of
genes in the expression vector.

A number of peptide tags are frequently employed for affinity
purification in recombinant protein expression systems. In this
study, both S100A8 and S100A9 were expressed without addi-
tional tags, because our previously study showed a decreased ex-
pression of His-tag fused S100A11 (S100C) compared to that
without any tag [20]. In order to purify recombinant proteins from
bacterial cell lysate, removal of nucleic acids by PEI-precipitation is
essential before carrying out cation-exchange chromatography.
Although the ammonium sulfate precipitation step is needed to
remove residual PEI, this purification step is presumably tolerant
to S100 protein without altering protein structures, because
functional recombinant S100A11 protein has been successfully
purified through similar procedures [20]. The theoretic pI for
S100A8 and S100A9 are 6.50 and 5.71, respectively. These values
suggest that both proteins should barely adsorb to the cation-ex-
change column, but can be successfully purified after the removal
of nucleic acids.

Intermolecular disulfide bond formation within homodimers or
heterodimers is frequently observed during purification steps,
which results in higher oligomer formation. This sensitivity of
oxidative modification of S100A8 and S100A9 is reflecting func-
tional regulation of S100 proteins at extracellular conditions [17].
The crystal structure of the S100A8/A9 heterodimer (PDB:1XK4)
revealed that Cys3 in S100A9 and Cys42 in S100A8 are located on
structurally close positions [11]. Because this S100A8/A9 crystal
was composed of Cys to Ser mutant proteins, it is unclear if wild-
type S100A8/A9 possesses intermolecular disulfide bonds or not.
However, these reactive Cys groups may influence the regulation
of the protein function with local changes of the protein structure.

In conclusion, we report a successful and easy procedure for
coexpression and purification of the recombinant S100A8/A9
heterodimer. Because multi-complex formation from alternative
partners is determined by thermodynamic stability, production of
heterooligomeric recombinant proteins requires a system where
the proteins are either coexpressed or cofolded.
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