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Abstract

We performed a post-occupancy assessment based on 500 occupant surveys in eight build-

ings using embedded radiant heating and cooling systems. This study follows-up on a quan-

titative assessment of 60 office buildings that found radiant and all-air buildings have

comparable temperature and acoustic satisfaction with a tendency for increased tempera-

ture satisfaction in radiant buildings. Our objective was to investigate reasons of comfort

and discomfort in the radiant buildings, and to relate these to building characteristics and

operations strategies. The primary sources of thermal discomfort are lack of control over the

thermal environment (both temperature and air movement) and slow system response, both

of which were seen to be alleviated with fast-response adaptive opportunities such as oper-

able windows and personal fans. There was no optimal radiant design or operation that max-

imized thermal comfort, and building operators were pleased with reduced repair and

maintenance associated with radiant systems compared to all-air systems. Occupants

reported low satisfaction with acoustics. This was primarily due to sound privacy issues in

open-plan offices which may be exacerbated by highly reflective surfaces common in radi-

ant spaces.

1 Introduction

Energy consumption in US commercial buildings accounts for 18% of the country’s primary

energy use, with 30% of that being HVAC related [1]. There is a need to reduce buildings’

energy use to achieve carbon emission goals. In parallel, the building industry is becoming

increasingly aware that the indoor environment impacts our health and well-being. A typical

person spends around 90% of their lives indoors [2]. This long exposure to indoor environ-

ments pushes us to rethink the design and operation of our most common spaces in order to

address and support occupants’ well-being, performance, and health. Researchers and building

professionals seek design strategies to simultaneously address the dual challenges of indoor

environmental quality (IEQ) and energy use.
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Radiant heating and cooling systems are thermally controlled surfaces that exchange heat

mainly through thermal radiation. Radiant systems are relatively new to North America, and

an NBI study found Zero Net Energy commercial buildings often use radiant systems [3].

Within the larger family of radiant systems, embedded radiant systems such as thermally acti-

vated building systems (TABS) and embedded surface systems (ESS) operate at relatively low-

temperature for heating and high-temperature for cooling. These systems have the potential to

achieve significant energy savings [4]. Radiant buildings also have to meet the occupants’

needs for comfort and workspace quality. These objectives often remain difficult to address in

the day-to-day operation of commercial buildings, primarily due to the limited understanding

of human comfort and its in situ assessment.

Radiant systems are commonly assumed to provide improved thermal comfort in compari-

son to all-air systems. Cited theories for improved thermal comfort include creating uniform

thermal conditions in a space [4,5], reducing risk of unwanted air movement [6–9], and reduc-

ing or eliminating discomfort from hot or cold surfaces (i.e., radiant asymmetry) [9,10]. Kar-

mann et al. completed a critical literature review to learn if spaces using radiant system

provide better, worse, or similar thermal comfort compared to spaces using an all-air system

[11]. Their review revealed a lack of studies based on occupant’s perception, while more stud-

ies relied on calculated thermal comfort. Considering the limited number of studies available

and the small sample sizes for each study, their review could not establish a definitive state-

ment on the effectiveness of radiant systems for thermal comfort. Aside from thermal comfort,

little has been studied about the ways in which radiant systems affect space acoustics. Radiant

systems are commonly installed on large acoustically reflective surfaces (e.g., ceilings or floors)

that are kept exposed to maximize thermal radiation. In practice, exposed concrete surfaces

can lead to increased reverberation and lower acoustic satisfaction, but this assumption

requires validation from the field considering spaces experienced by building occupants.

2 Background

Karmann et al. found few existing studies used occupant surveys to compare comfort in spaces

with radiant systems to those with all-air systems [11]; therefore, Karmann et al. conducted a

quantitative survey study to determine whether radiant systems provide higher satisfaction

than all-air systems [12]. The study included 26 radiant buildings (1,645 occupant responses)

and 34 all-air buildings (2,247 occupant responses) of comparable key characteristics (e.g.,

building size, year built, climate zones). 21 of the 26 radiant buildings (over 2/3 of the individual

responses) used TABS or ESS. Fig 1 shows boxplots for occupant satisfaction by conditioning

type. Temperature satisfaction is the only category that showed a difference in median between

the two subsets. The difference in mean was statistically significant (p<0.001), and the Spear-

man’s ρ effect size of the difference (ρ = 0.14) was the largest observed in this study; however,

the practical difference shall be considered as either negligible or small [13,14]. Karmann et al.

[12] concluded that indoor environmental quality is the same with a tendency for increased

thermal satisfaction in radiant buildings. Acoustical categories ranked as the lowest performing

for both systems, and neither noise nor sound privacy satisfaction showed statistical or practical

significant differences between the two subsets. A mixed effects model showed that 21% of the

variance for sound privacy could be described by ‘between office type’ differences (e.g., private,

open-plan, etc.), which is more than the variance explained by conditioning systems.

3 Objective

The quantitative analysis from (Karmann et al. 2017) was able to show trends and provide

answers to the commonly asked questions comparing radiant to all-air systems. Yet, it was
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grounded only on aggregated answers to a post-occupancy survey and was detached from the

idiosyncratic characteristics of each building. Further, the majority of thermal comfort evalua-

tions in radiant spaces are in laboratory conditions or small-scale field studies, and reported

comfort is based on calculated PMV-PPD which has very low prediction accuracy [15]. To

expand on previous assessments, we selected eight TABS or ESS radiant buildings to further

investigate reasons of thermal and acoustical satisfaction, and to uncover relations, if any,

between occupants’ impressions to building characteristics and operation strategies. Our post-

occupancy evaluation approach was to find shared themes across several buildings rather than

to focus on the specific and unique outcomes of each individual building. We accomplished

this through in-depth review of over 500 occupant surveys (including open-ended comments)

and interviews of building operators to provide useful lessons learned and insight into occu-

pant satisfaction in buildings using radiant systems.

With this study, we want to provide insight into occupant satisfaction and perception that

can help designers and building operators address or plan for improved occupant comfort and

well-being in radiant buildings.

4 Methods

4.1 Building selection

For this study, we targeted office-type buildings located in different climates in North America

and using embedded types of radiant system (i.e., TABS or ESS) for which occupant satisfac-

tion surveys, building characteristic, and radiant design data was available or could be

acquired. All buildings use the radiant system for cooling and heating. In buildings where only

select spaces use radiant, we limited occupant surveys to those spaces. We selected these build-

ing systems because embedded systems have a much longer time constant than panel systems

[16], and may have thermal comfort and acoustical issues. Moreover, we expect they would

have the possibility of thermal storage (grid to building load flexibility), improved energy per-

formance, and lower cost than radiant panel buildings. We intentionally included an array of

Fig 1. Boxplot for occupant satisfaction with workspace, temperature and acoustics in 60 radiant and all-air

buildings. The differences in mean values (radiant–all-air) statistical and practical significance (effect size) of this

difference are indicated on the right.

https://doi.org/10.1371/journal.pone.0258888.g001
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buildings performing well or poorly in either or both occupant satisfaction or energy perfor-

mance to better assess sources affecting comfort and the possible correlation to energy

performance.

4.2 Occupant satisfaction survey

This study relied on occupant satisfaction data collected by the Center for the Built Environ-

ment (CBE) at the University of California, Berkeley [17,18]. The IEQ occupant satisfaction

survey covers nine core categories including thermal comfort and acoustics [19]. It uses a

7-point Likert scale ranging from ‘very satisfied’ (+3) to ‘very dissatisfied’ (-3), with a ‘neutral/

neither satisfied nor dissatisfied’ midpoint (0). Dissatisfied responses trigger branching ques-

tions targeting the source of the dissatisfaction. The survey does not include similar branching

questions when an occupant expresses satisfaction; this was done as a method to minimize sur-

vey fatigue. The voluntary and web-based survey also includes fields for open-ended responses.

The surveys are intended to gather long-term occupant experiences rather than “right now”

surveys which might be paired with objective information such as environmental measure-

ments and current system operation.

The analysis uses the survey’s branching questions and open-ended responses to identify

sources of satisfaction and dissatisfaction. The open-ended responses allowed us to also infer

sources of satisfaction or dissatisfaction that were not captured within the branching questions.

We reported some of these comments (as quotes) when they captured interesting insights

about comfort conditions experienced in their space. We calculated the percentage of dissatis-

fied occupants across all buildings and per building for both temperature and acoustic satisfac-

tion, considering the different satisfaction intervals described in standards and common

definitions. The survey response rate depends on the willingness of occupants to provide feed-

back. Therefore, we did not establish a threshold for minimum response rate. We reported the

response rate for each building and considered all occupant feedback as suggestive of trends,

regardless of response rate achieved.

The Institutional Review Board at the University of California, Berkeley approved this work

(IRB-2010-05-1550). We administered all surveys online and consent was informed; partici-

pants provided their written consent online prior to advancing to the survey. The study did

not include minors. We used R v.3.5.0 (R Development Core Team 2017) for all numerical

analysis.

4.3 Building and radiant system characteristics survey

For each building in this study, we also collected data on the building’s characteristics, radiant

design, and facility and system operations. Information collected includes type of radiant sys-

tem, control strategy, temperature setpoints, zone sizes, ventilation strategy, window and shad-

ing design, presence of other HVAC systems, and more. The building manager, the facilities

manager, or a member of the design team provided this information in an online survey. We

used this information to detect any relationship between occupant satisfaction and building

characteristics or radiant design.

The data collection did not include physical measurements or occupant tracking informa-

tion. The analysis relies exclusively on anonymous survey responses and selected interviews.

4.4 Building operator interviews

We interviewed the primary engineer and/or knowledgeable contacts with the building opera-

tion team for six buildings; contacts at two buildings did not respond to our requests. Five of

these interviews took place by telephone, and one was conducted during a site visit. The goals
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of the interviews were to gain their perspective on: 1. occupant feedback for IEQ parameters;

2. the balance and synergies between energy performance and occupant thermal comfort; 3.

lessons learned during commissioning and operation.

5 Results and discussion

The following sections provide aggregated findings based on occupant experiences in their

spaces and suggestions for building designers and operators. Occupant satisfaction data is pro-

vided in S1 Dataset.

5.1 Description of the buildings

The eight buildings selected for the qualitative analysis use embedded radiant systems (either

TABS or ESS) for both heating and cooling, are of varying sizes and design, and located in five

different ASHRAE 90.1 climate zones in North America. Table 1 summarizes the building

characteristics, including thermal comfort ranking, and Table 2 provides the HVAC, comfort,

and energy concept for each building. As seen in Table 1, the buildings represent a range of

occupant comfort and energy performance. Energy performance is categorized by annual

Energy Use Intensity (EUI) which incorporates all energy sources and an ENERGY STAR

Score, which normalizes energy use by key drivers, including building size, location, number

of occupants, and operating hours, and number of computers. Buildings B4 and B5 performed

the best in terms of thermal comfort satisfaction relative to the other six buildings. Interest-

ingly, B2 and B6 were low performing buildings and had the highest annual Energy Use Inten-

sity (EUI) by more than double the next closest building. All buildings are LEED certified,

with many achieving Platinum certification. Four buildings were designed with supplemental

cooling equipment, but it is unknown what portion of sensible and latent cooling these systems

serve in operation and how that might impact thermal comfort.

Table 1. Building characteristics.

Bldg.

ID

Function Building size

(m2)

Year built

(original)(a)

Certifications Location ASHRAE

climate zone

IEQ thermal

satisfaction rank(b)

EUI(c) (kWh/

m2)

ENERGY STAR

Score(d)

B1 Office 4,831 2003 LEED Platinum, Living

Building Challenge

Seattle, WA Mixed-marine

(4C)

14th/26 38 99

B2(e) Library <10,000 � 2010

(renovated)

LEED Gold - Mixed-marine

(4C)

26th/26 486 1

B3(f) Office + Multi-

purpose

18,859 2015 (1910) LEED Platinum, LEED

EBOM

San Diego,

CA

Warm-dry (3B) 17th/26 unknown Unknown

B4 Office 16,016 2015 LEED Platinum, Net zero Fremont, CA Warm-marine

(3C)

3rd/26 75 100

B5 Office 33,445 2010 LEED Platinum Golden, CO Cool-dry (5B) 9th/26 114 98

B6 Office 4,088 2010 (1986) LEED Platinum Atlanta, GA Warm-humid

(3A)

21st/26 555 NA(g)

B7 Office + Lab 1,512 2012 LEED Platinum Victoria, BC Mixed-marine

(4C)

12th/26 151 98

B8 Office + Multi-

purpose

18,581 2012 LEED Platinum Sacramento,

CA

Warm-dry (3B) 16th/26 unknown unknown

(a) In case the building was renovated, we indicated original year of construction in parenthesis.
(b) We ranked our buildings based on mean temperature satisfaction out of the 26 radiant buildings in the study [12].
(c) EUI: Annual Energy Use Intensity inclusive of all energy sources(from [20], converted to kWh/m2).
(d) ENERGY STAR Score yields a 1-to-100 percentile ranking, from [20].
(e) Building B2 requested to be anonymous (non-trackable), therefore we did not provide identifying information.
(f) Building B3 was ranked in IEQ thermal performance using the office portion only.
(g) Buildings must be at least 5,000 square feet to calculate an ENERGY STAR Score.

https://doi.org/10.1371/journal.pone.0258888.t001
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5.2 Thermal comfort assessment

The thermal comfort assessment is based on qualitative feedback from occupant surveys, not

calculated PMV-PPD.

5.2.1 Compliance with ASHRAE 55. The objective of ASHRAE Standard 55 is to have a

“substantial majority (more than 80%) of the occupants” find their thermal environment

“acceptable”; however, the advised method for verification is based on occupant survey asking

about “satisfaction”. We used this method to verify compliance to the standard, but we note

that this shift from ‘satisfaction’ (in the question/scale used) to ‘acceptability’ (in the intent)

Table 2. Comfort and energy concept of the building.

Bldg.

ID

Radiant

type(a)
Radiant

zone

portion(b)

Ventilation

type(c,d)
Ventilation

distribution(c)
Supplemental

Cooling

System

Htg/Clg

Setpoints

System

operation

Unoccupied

operation(c,e)
Adaptive

opportunities(f)
Acoustic

treatment

Shading(c,g)

B1 ESS

(floor)

80% MM

(change-

over)

Overhead

(DOAS)

None 20/26 ˚C Constant

flow,

variable

temperature

24/7 with

setback

Operable

windows,

ceiling fans

unknown i(o),e(o)

B2 TABS

(ceiling)

100% MM

(change-

over)

Underfloor

(DOAS)

Upsized

DOAS

23/26 ˚C Constant

flow,

variable

temperature

24/7 without

setback

Operable

windows, desk

fans�

Carpet e(f)

B3 ESS

(floor)

40% MM

(unknown)

Overhead

(DOAS)

None 21/24 ˚C Variable

flow,

variable

temperature

24/7 with

setback

Operable

windows, desk

fans�, ceiling

fans

unknown i(o)

B4 TABS

(floor)

51–75% MM

(concurrent,

change-over)

Overhead

(DOAS)

Active chilled

beams

20/23 ˚C Variable

flow,

variable

temperature

Turns on

before

occupancy

Operable

windows, desk

fans�, heaters�,

thermostat

Carpet,

wall panels

i(o)

B5 TABS

(ceiling)

100% MM

(unknown)

Underfloor

(DOAS)

Fan coils and

upsized DOAS

22/26 ˚C Variable

flow,

constant

temperature

Turns on

before

occupancy

Operable

windows, desk

fans�, ceiling

fans

Carpet, tall

partitions,

white

noise

generator

e(f)

B6 ESS

(ceiling)

76–100% MV (fully) Underfloor

(DOAS)

Unknown 21/23 ˚C unknown unknown Desk fans�,

heaters�
Carpet i(o)

B7 TABS

(floor)

100% MM

(change-

over)

Trickle vent

(DOAS)

Yes, only in

conference

rooms

21/24 ˚C Variable

flow,

constant

temperature

24/7 Trickle vent,

thermostat

VanAir

doors(h)
i(o)

B8 TABS

(ceiling)

100% MV (fully) Overhead

(DOAS)

Considering

adding heat

pumps(i)

21/24 ˚C Variable

flow,

constant

temperature

Turns on

before

occupancy

Desk fans�,

heaters�, ceiling

fans

Vertical

ceiling

panels

e(f)

(a) Embedded surface systems (ESS), thermally activated building systems (TABS).
(b) Percent of building served by radiant system.
(c) Applies to the radiant zones of the building.
(d) MV: Mechanical ventilation (no operable windows), NV: Natural ventilation, MM: mixed-mode (type: change-over, concurrent, zoned).
(e) How the radiant system is operated during unoccupied hours.
(f) Adaptive opportunities may refer to fast-response actions that either affect groups (i.e., operable windows, ceiling fans) or individuals (i.e., desk fans, heaters). We

used an asterisk to indicate opportunities supporting individual actions.
(g) Shading classification: i = internal, e = external, (f) = fixed, (o) = operable.
(h) Passive door ventilation with sound trap.
(i) Building operators are considering adding supplemental cooling to address added load from higher than designed occupant density.

https://doi.org/10.1371/journal.pone.0258888.t002
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can be misleading. Furthermore, ASHRAE 55 modified its threshold for “acceptable” in the

version ASHRAE 55–2017 [21], the standard suggests to include votes falling between ‘-1’

(‘slightly dissatisfied’) and ‘+3’ (‘very satisfied’), while in the 2013 version [22], it asked to

include votes between ‘0’ (‘neither satisfied not dissatisfied’) and ‘+3’ (‘very satisfied’).

The original dataset of 26 radiant buildings has 65% (17/26) of radiant buildings meeting

the ASHRAE 55–2017 definition of acceptability [12], and 85% (22/26) meeting this definition

if we consider 75% of occupant satisfied (instead of the ASHRAE threshold of 80%). Our sub-

set of eight building is representative of the larger sample as 5/8 (62%) meet the ASHRAE 55–

2017 definition of acceptability while 7/8 (85%) reach 75% of occupant satisfied for the same

interval. Table 3 provides the results of the thermal comfort analysis considering all defini-

tions. We bolded the text when the 80% criteria was met. We italicized the text for buildings

which the response rate was less than the 35% (not recommended by the ASHRAE 55).

If we consider all eight radiant buildings in this dataset (independently from the response

rate), three do not comply with any thermal comfort definitions, five buildings comply with

ASHRAE 55–2017, two of which also comply with ASHRAE 55–2013, but no buildings were

able to meet the thermal comfort definition based on satisfaction. If we only consider buildings

that reached 35% response rate (B1, B2, B6, B7), two buildings comply with ASHRAE 55–

2017, and no buildings were able to meet ASHRAE 55–2013 or the thermal comfort definition.

The generally low compliance observed, despite the quality of the buildings analyzed, is aligned

with the commonly observed low temperature satisfaction rate found in buildings [23].

Extending the interval to equate a negative response (‘slightly dissatisfied’) to a positive vote

(‘acceptable’), as in the 2017 version, is questionable jump in regard to what occupants

reported about their conditions.

5.2.2 Sources of satisfaction/dissatisfaction with thermal comfort. Occupants that

expressed dissatisfaction with temperature, were asked to select any or all of 20 listed sources

of discomfort. Given that this is a “check all that apply” question and there are a different num-

ber of occupants per building, we represented the results in two ways: Fig 2(A) shows the per-

centage of dissatisfied votes across all eight buildings (n = 173), and Fig 2(B) shows the

percentage of dissatisfied votes per building. This was done so that conclusions were not

informed only by buildings with large occupancy and portion of dissatisfied occupants. We

Table 3. Temperature satisfaction by building.

Bldg.

ID

# of occupant responses

(response rate)

Percentage reported for temperature satisfaction

% satisfied considering votes from (-1)

to (+3)(a)
% satisfied considering votes from (0)

to (+3)(b)
% satisfied considering votes from

(+1) to (+3)(c)

B1 78 (62%) 89%(e) 67% 63%

B2 28 (37%) 64% 39% 32%

B3(d) 23 (27%) 78% 61% 61%
B4(d) 47 (4%) 96% 89% 79%
B5(d) 41 (<1%) 93% 85% 73%
B6 91 (48%) 76% 53% 46%

B7 36 (53%) 94% 75% 64%

B8(d) 207 (28%) 88% 72% 60%

(a) ‘Slightly dissatisfied’ (-1) is the lowest threshold for a positive vote for thermal acceptability in the ASHRAE 55–2017.
(b) ‘Neither satisfied not dissatisfied’ (0) is the lowest threshold for a positive vote for thermal acceptability in the ASHRAE 55–2013.
(c) The thermal comfort definition specifies a clear satisfaction statement.
(d) The buildings indicated in italic had a response rate lower than 35%.
(e) Bolden text for buildings that meets the ASHRAE 55 target of 80% satisfaction rate.

https://doi.org/10.1371/journal.pone.0258888.t003
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considered two survey options as the same for these buildings: “thermostat is inaccessible” and

“thermostat is controlled by other people”. Only one building allowed occupants to make

direct changes to the thermostat setpoints, so all responses are interpreted as “lack of thermo-

stat control”. An occupant’s vote was only counted once if both options were selected. The sur-

vey is not designed to distinguish between system types, so occupant responses are inclusive of

supplemental systems.

The order of sources of thermal discomfort in Fig 2(A) follows that observed for the 26

radiant buildings [12], suggesting that the eight buildings selected for this assessment are rep-

resentative. Across all eight buildings, 173 of 551 occupants expressed dissatisfaction with tem-

perature. As seen in Fig 2(B), there is variability in the top source of discomfort between

buildings. This is not surprising given that each building is unique. Regardless of the variability

in votes between buildings, there are clear trends in sources that are always or rarely selected,

as suggested by the average percent dissatisfied across each of the individual buildings (black

diamond).

Based on Fig 2, occupant open-ended responses, and building operator interviews, the fol-

lowing aspects appear to be related to thermal comfort in these buildings:

The ability to quickly and individually change the thermal environment. The top two sources

of discomfort are “lack of thermostat control” and “slow system response”. These results are

not surprising given that TABS and ESS systems have high response times; if temperature set-

points are adjusted, it could take one hour up to several hours for those changes to be felt [16].

This is a primary reason why temperature setpoint changes is not a recommended control

action to quickly address thermal discomfort in high thermal mass radiant system buildings.

This is a concern regardless of the ability of radiant systems to be able to instantaneously

extract part of the radiant load [24]. Additionally, the method used to modulate temperature

setpoints and the placement of slab temperature sensors could further influence system

response [25]. We do not have sufficient information to assess if radiant temperature control

methods affected occupant comfort.

Fig 2. (A) Percentage of dissatisfied occupants across all eight buildings (n = 173), and (B) percentage of dissatisfied occupants per building for

each of the 19 potential sources of thermal discomfort (n by building). The black diamond represents the average percent dissatisfied across each of

the individual buildings.

https://doi.org/10.1371/journal.pone.0258888.g002
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Satisfaction was higher in buildings where occupants were equipped with fast-response

adaptive opportunities that enable either group control (i.e., operable windows, ceiling fans) or

personalized control (i.e., desk fans, heaters) of thermal conditions. Three buildings had occu-

pants indicate “my area is colder than others” and “my area is hotter than others” in the same

open-plan office area of the building, exemplifying that individual occupants feel differently in

the same environment. In such spaces where centrally controlled temperature setpoints cannot

satisfy all occupants, building designers operators should consider offering individualized con-

trol (e.g., personal fans and heaters) to address individual thermal preferences and comfort.

“I don’t have much control over temperature. I usually run warm, so I like to have a fan.”

“I love the operable windows.”

“When it’s too hot or cold it can take up to 2–3 days to be corrected. If you are in a fair bit of
discomfort that is a long time to wait.”

We note that loose dress codes are also supportive of individual comfort and provide an

additional source of adaptive opportunity to occupants. Building operators for three buildings

mentioned that adaptive opportunities supported energy goals by providing comfortable con-

ditions during shoulder seasons without heating and cooling in the same day.

User-controlled air movement. Mechanically-supplied air in radiant buildings is generally

for ventilation only and therefore at low velocity, but we know that increased air movement is

preferred under neutral to warm temperature sensation [26]. There were 75% more com-

plaints for “air movement too low” than for “air movement too high”, suggesting occupants

desire more air movement. The nature of the survey is to provide feedback on overall occupant

experience, so we cannot correlate the desire for air movement with temperature or system

operation; we can only conclude that occupants often feel the desire for more air movement.

For occupants that indicated air movement was too high or felt discomfort from drafts, their

comments revealed it was commonly due to automated (non-user controlled) features such as

automated windows, trickle vents, and ceiling fans operating at too low temperatures, which is

unpleasant [27]. Manually operable windows and desk fans appear to provide the best user-

controlled air movement and building designers and operators should consider including

these features or allowing occupant adjustment to ceiling fan operation.

“The windows often open for airflow or for (what I assume) is anticipated higher temperatures
later in the day, often leaving our space too cold.”

(Automated windows)

“Overhead fans in the past have gone on way too early and it seems to be too cool.”

Thermal comfort uniformity and overall temperature predictability. Radiant design resources

and researchers commonly reference uniform thermal conditions as an expected positive ther-

mal comfort outcome in radiant buildings. There are multiple terms used to express this con-

dition, including temperature uniformity and thermal comfort uniformity, and multiple cited

outcomes and benefits, including 1) having a small vertical temperature gradient [4,7,28], 2)

having a uniform spatial distribution of temperature [28], or 3) having uniform thermal com-

fort conditions (i.e., PMV) throughout a conditioned space [7,29]. In this study, as we did not

conduct temperature measurements in the buildings, we only assessed the uniformity of ther-

mal comfort conditions by relying on occupant subjective responses to the question “How sat-

isfied are you with the temperature of your workspace?” on a 7-point scale and open-ended
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responses. Occupant open-ended responses and building operator feedback indicate that there

is uniform thermal comfort conditions, at least in open-plan office areas. Building operators

reported that they receive fewer hot or cold spot complaints than in all-air buildings. Occu-

pants in open-plan offices that selected “my area is colder than others” or “my area is hotter

than others” typically referenced the space (or building) being too warm or too cool every-

where rather than in their particular workstation. Although this means that the thermal condi-

tions were not considered comfortable, occupants rarely implied that spatial differences in

temperature led to discomfort. Further, occupants suggest that there were predictable condi-

tions throughout a space, throughout a day, or from day-to-day, which allows occupants to

prepare accordingly. We hypothesize that these buildings have more stable interior tempera-

tures due to the high thermal mass, but cannot confirm without physical measurements.

“The temperature is always fantastic, never too hot or too cold, there are no spots in the build-
ing where the temperatures vary significantly.”

“It’s often stuffy/hot in the morning in the summer, but I dress accordingly.”

We are not drawing any conclusions on thermal comfort impacts from hot or cold surface

or incoming solar radiation. As seen in Fig 2, only 11% of dissatisfied occupants identified

floors as a source of discomfort and less than 10% identified hot or cold walls, windows, or

ceilings. The low number of responses could be attributed to lack of occupant knowledge of

radiant heat transfer rather than the absence of discomfort from these sources. Additionally,

the building characteristic surveys indicated that buildings had well insulated envelopes and all

had shading strategies to avoid direct solar heat gains through windows.

Miscellaneous sources. There are sources of comfort/discomfort that were unique to one or

two buildings but could be relevant for other buildings outside this dataset. These include:

• Supplementary air-cooling systems in at least two buildings appear to be a cause of discom-

fort, including over-cooling in warm weather.

• Although spatial differences in temperatures did not appear to be a problem in open-plan

offices, one building has zones that serve both open-plan office and private offices. Occu-

pants in private offices more often responded that their space was “hotter than others” com-

pared to those in the open-plan office, especially when the private offices did not have

operable windows or a mechanism for air movement. It is common for temperature sensors

to be located in open-plan offices in this scenario. Building designers should closely consider

the thermal comfort impact of this type of design.

• Humidity levels were not identified as a problem in any of the buildings, but only one is

located in a climate that experiences high outdoor relative humidity, with summer mean

monthly wet bulb temperature around 23 ˚C.

• Operators in two buildings indicate that they make ad hoc and frequent changes to tempera-

ture setpoints in attempts to improve comfort, which is more akin to all-air system control.

One building has large radiant zones (500–1000 m2) with ESS and poor thermal comfort and

complaints about inconsistent day-to-day temperatures, while the other building has small

radiant zones (many less than 50 m2) with TABS and thermal comfort is relatively good. We

expect this type of operation to result in poor thermal comfort, as well as energy perfor-

mance, due to the long system response times. However, the difference in thermal comfort

results between the two buildings could be attributed to the zone size or system control fac-

tors that could be further investigated. Designers and operators should better understand
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system control and could provide fast-response adaptive controls such as fans and heaters to

occupants instead of making ad hoc changes to temperature setpoints.

We did not identify any single optimal radiant design or control strategy to maximize occu-

pant comfort. However, the small sample size does not provide enough consistency in design

and radiant system control across buildings to provide a reliable conclusion. The assessment

does not indicate relationships between temperature satisfaction and the primary radiant sur-

face, radiant loop control (e.g., variable/constant flow, variable/constant temperature), temper-

ature setpoint strategy (e.g., zone air temperature setpoint, slab temperature setpoint, etc.),

ventilation distribution, or how the system is operated outside of occupied hours, with the

exception of the building in which operators make ad hoc changes to setpoints. This suggests

that designing and operating TABS and ESS radiant systems to maximize energy efficiency

shall not pose a significant threat to thermal comfort as long as design and operation are

appropriate for the radiant system context. Additionally, we do not see any correlation

between LEED certification and thermal comfort, providing further evidence that LEED certi-

fication is not strongly correlated with building performance [30].

5.2.3 Feedback from building operators. A benefit of radiant systems that has not been

widely highlighted amongst the design community is improvements to building operation

work load. Each of the six building operators had previous experience in traditional all-air

buildings and all provided examples of how radiant systems positively impact their work.

Their reasons include that the system is generally hands free, reduces the physical area of work

to mostly the manifolds, which are outside of occupant areas, and has fewer mechanical parts

for maintenance and repair.

All operators felt that radiant systems are more energy efficient compared to their experi-

ence with all-air systems, and they were generally pleased with the system’s ability to provide

comfort. However, some felt that they did not achieve as good of thermal comfort. Opera-

tors for two buildings stated that they have less granular and instantaneous control com-

pared to all-air systems, and therefore, feel they lack the ability to address individual

comfort, particularly in large zones covering open-plan office area. One of these buildings

has poor thermal comfort and operators who make ad hoc changes to temperature setpoints

for large zones, which is not a recommended operation strategy. In contrast, an operator in

another building that makes frequent temperature changes with relatively small radiant

zones felt that the more granular control was able to achieve acceptable thermal comfort, if

not better than an all-air system. This design needs further investigation, as it is an unex-

pected finding.

5.2.4 Energy performance and thermal comfort. Although there was no single radiant

design or operation that maximized thermal comfort within this small building sample size,

we identified trends that promote both energy savings and thermal comfort. We were not able

to assess the energy consumption of the radiant system by itself, only whole building consump-

tion. Additionally, two buildings are campus-style and could not provide building-level energy

data, and we were not successful in interviewing operators from the two highest energy con-

suming buildings. The following features appear to be related to energy performance and also

promote thermal comfort in these buildings.

Of the four best energy performing buildings:

• All take advantage of free cooling through operable windows, or trickle vents in one build-

ing, which can improve thermal comfort from increased air movement in warm tempera-

tures. At least one of these buildings turns off the radiant system operation to zones where

windows are open, and one of these buildings relies solely on natural ventilation.
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• All have zone air temperature deadband (i.e., degrees between heating and cooling air tem-

perature setpoints) between 2.8 and 5.6 ˚C.

• Three use seasonal changeovers for the radiant system, which avoids heating and cooling in

the same day. These buildings rely on operable windows, trickle vents, and/or personal con-

trol systems (i.e., desk fan, heaters) to maintain comfort during shoulder seasons.

• Multiple buildings have high performance envelopes, including sun shading to avoid direct

solar heat gains, and reduce heat transfer.

Of the two buildings with poor energy performance:

• Neither have operable windows for free cooling.

• At least one has a supplemental air-cooling system for hot and humid summer conditions

that, based on occupant comments, appears to be overcooling the space. This building has

the smallest dead band between heating and cooling (2.2 ˚C) and also has poor occupant

comfort. This small dead band could be causing heating and cooling in the same day [31],

and it could also be the cause of over-cooling in warm weather.

5.3 Acoustic quality assessment

5.3.1 Percentage of occupants satisfied with acoustics. In the IEQ survey used, satisfac-

tion for acoustics is split between satisfaction with noise level and satisfaction with sound pri-

vacy. Noise level refers to general background noise, while sound privacy describes an

occupant’s ability to avoid being overheard in or overhearing other conversations. Although

noise level and sound privacy are known sources of occupant dissatisfaction in buildings [18],

there is no target guiding minimal occupant satisfaction with acoustic in spaces. In this section,

we calculated acoustical satisfaction as the average between noise level and sound privacy per

occupant and applied the ASHRAE 55 analysis process and thresholds described in Section

5.2.1 to arrive at the percentage of occupants finding the acoustics acceptable in the eight

buildings. We also report the percentage of occupant satisfied with noise levels and with sound

privacy. As seen in Table 4, both satisfaction with noise level and with sound privacy, indicated

in parenthesis respectively, are generally low across all buildings, with sound privacy ranging

Table 4. Acoustic satisfaction by building.

Bldg.

ID

# of occupant responses

(response rate)

Percentage reported for noise levels, sound privacy (in parenthesis) and acoustic satisfaction(a)

% satisfied considering votes from

(-1) to (+3)

% satisfied considering votes from

(0) to (+3)

% satisfied considering votes from

(+1) to (+3)

B1 75 (60%) (76%, 64%) | 73% (49%, 40%) | 42% (40%, 18%) | 26%

B2 27 (36%) (82%, 71%) | 75% (54%, 57%) | 50% (43%, 36%) | 32%

B3(b) 23 (27%) (83%, 70%) | 74% (74%, 57%) | 65% (65%, 57%) | 57%
B4(b,c) 47 (4%) (89%, 72%) | 85% (81%, 51%) | 66% (70%, 45%) | 47%
B5(b) 41 (<1%) (85%, 61%) | 76% (63%, 27%) | 44% (51%, 15%) | 17%
B6 90 (47%) (78%, 53%) | 64% (60%, 28%) | 45% (42%, 12%) | 18%

B7 36 (53%) (75%, 67%) | 67% (50%, 31%) | 44% (36%, 14%) | 17%

B8(b) 204 (27%) (78%, 61%) | 68% (59%, 42%) | 52% (47%, 27%) | 33%

(a) We used the average between noise level and sound privacy per occupant to calculate satisfaction with acoustics per building.
(b) The buildings indicated in italic had a response rate lower than 35%.
(c) Bolden text is used when satisfaction rate meets the 80% threshold.

https://doi.org/10.1371/journal.pone.0258888.t004
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from only 27% to 57% satisfied considering only neutral and positive votes. Only one building

meets the 80% threshold for acoustics under the most lenient acceptability definition. Overall,

these results show that occupants are even less satisfied with acoustics than they are with ther-

mal comfort.

5.3.2 Sources of satisfaction/dissatisfaction with acoustics. Occupants that expressed

dissatisfaction with acoustics (answering negatively to either noise level or sound privacy satis-

faction), were asked to select any or all of 10 listed sources of discomfort. Given that this is a

“check all that apply” question and there are a different number of occupants per building, we

represented the results in two ways in Fig 3, similarly as what was done for the thermal comfort

assessment.

Across all eight buildings, 354 of 543 occupants expressed dissatisfaction with noise and/or

sound privacy, notably more than those that expressed dissatisfaction with temperature. 221

were dissatisfied with noise and 333 were dissatisfied with sound privacy; 200 were dissatisfied

with both. The responses are in alignment with the quantitative survey study on 60 buildings,

indicating the eight buildings are representative. Based on Fig 3, occupant open-ended

responses, and building operator interviews, the following aspects appear to be related to

acoustics in these buildings:

Sound privacy in open-plan offices remains a challenge. The top three causes of acoustical

dissatisfaction in Fig 3 are more closely aligned with sound privacy than noise, as are the

majority of open-ended responses. The primary space type in these buildings is open-plan

office, which is detrimental to sound privacy. In current design practice, radiant systems push

designs towards more open-plan space and the highly reflective thermally active surfaces for

TABS and ESS systems can exacerbate the problem. However, there are other perhaps stronger

factors driving designs towards open-plan (such as higher occupant densities, affordability,

flexibility of the space) and therefore, we cannot attribute the cause to radiant systems alone.

“Open office spaces need to have private areas both large and small for meetings or private
conversations”

Fig 3. (A) Percentage of dissatisfied occupants across all eight buildings (n = 354) and (B) percentage of dissatisfied occupants per building for

each of the 19 potential sources of thermal discomfort (n by building). The black diamond represents the average percent dissatisfied across each of

the individual buildings.

https://doi.org/10.1371/journal.pone.0258888.g003
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“I overhear technical conversations and my own interest in the technical issues is the problem.

I end up listening to it instead of focusing on my own work.”

Exposed reflective surfaces may contribute to unwanted sound reverberation. “Excessive echo-

ing” and “telephones ringing” are the next most prevalent sources, but, notably, there is a large

reduction in occupants selecting these as the source of their dissatisfaction. It is feasible that these

sources could also be indirectly associated with the highly reflective surfaces like the following

comments suggest; however, there are no acoustic pressure measurements to use as validation:

“Lack of ceiling tile creates an echo chamber.”

“The building tends to echo quite a bit, I can hear people on first level all the way to the third
level.”

Lack of noisy mechanical equipment. As speculated by the design community, very few

respondents identified mechanical equipment as an issue, which supports statements that radi-

ant systems are quiet. However, 16% of occupants selected office equipment as a problem. In

the building where this was primarily a problem, the issue appears to be two-fold: improperly

sized ventilation diffusers that create a whistling noise and noisy ceiling fans, neither of which

are directly related to the radiant system.

“The mechanical heating and cooling system is very quiet.”

Few designs employ noise reduction strategies. Six buildings have strategies in place to reduce

noise issues in the studied buildings, including wall or vertical acoustic panels (two buildings),

high partitions and a white noise generator (one building), carpeted floors (four buildings),

and unique acoustically designed VanAir doors (one building). No buildings included hori-

zontally hung acoustic clouds. One of the buildings that uses carpet on portions of the radiant

floor as its only acoustic treatment has 51% of the occupants satisfied with acoustics, the sec-

ond highest of all buildings. This building also has low occupant density, which could contrib-

ute to lower sound pressure levels in the space. The other solutions do not appear to be highly

effective based on comments and satisfaction scores. Outdoor noises are primarily a problem

in Building 3 with automated windows. There happened to be nearby construction at the time

of the survey that could have influenced responses, so it is not conclusive that this would

remain the primary source of dissatisfaction.

Acoustics continue to be a main area of design concern in buildings, much of it having to

do with open-plan office and sound privacy. There have been few studies on whether radiant

designs cause increased dissatisfaction, and successful studies will benefit from sound pressure

measurements.

6 Limitations

Our analysis of the eight buildings is meant to provide insight into occupant satisfaction and

perception that can help radiant building designers and building operators. Eight buildings

represent a small sample, and we are aware that results may not be generalized. We chose build-

ings that showed various levels of occupant satisfaction and that were located in different cli-

mates to broaden the range of answers we could get. This also increased the variability between

building designs and operation, which limited the common characteristics by which to assess.

Our analysis is based on information provided in the occupant, building characteristics,

radiant design, and facility operation surveys. The building and radiant design surveys were
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completed by knowledgeable contacts, and we assumed the information provided in these

forms to be correct; we did not perform a fact checking review to assess the responses. The sur-

vey responses reflect the operation at the time they were filled and have limited ability to cap-

ture system-specific details. We did not gather any field measurements for factors influencing

comfort or acoustics in the buildings. Additionally, we acknowledge that supplemental sys-

tems, such as upsized mechanical ventilation, may serve a portion of the heating and/or cool-

ing loads in these buildings. More investigation is needed to better guide proper supplemental

system sizing in high thermal mass radiant buildings.

The occupant satisfaction survey has pre-defined options, which may not capture nuances

or could be interpreted differently. The survey is voluntary, and respondents are not required

to answer every question, so survey completeness and response rate is a concern. ASHRAE

55–2017 guidance suggests 35% response rate to increase accuracy and representation of a

building’s population. We used occupant feedback from all of the eight buildings regardless of

the response rate. Additionally, the occupant survey used in this analysis is meant to capture

occupants’ subjective perceptions of their typical experience in the space, not of specific epi-

sodic events (e.g., right-now survey).

7 Conclusion

We conducted a post-occupancy assessment in eight buildings using embedded radiant sys-

tems (TABS or ESS). We investigated over 500 occupant survey responses in all eight buildings

and interviewed building operators in six. Five buildings had at least 80% occupants reaching

the ASHRAE 55–2017 criteria of thermal acceptability and seven had at least 75% reaching

this criterion. The primary factors leading to temperature discomfort in these buildings were

the lack of control over the thermal environment, both temperature and air movement, and

the slow system response (i.e., high response time) for these systems. Occupant comfort trends

in these buildings were not unique to radiant buildings. Features that appear to resolve the

comfort issues included fast-response adaptive opportunities, such as operable windows that

allow for group control, and/or personal fans or heaters that allow for individual control based

on user thermal sensation and preference. These are important for designers and operators to

consider in radiant buildings due to slow response time of the systems. Other factors contrib-

uting to temperature satisfaction were low risk for unwanted air movement, likely due to

lower airflow rates in radiant spaces compared to all-air, and predictable temperatures. We did

not find a specific radiant system design or control scheme that clearly outperformed the other

from the point of view of thermal comfort; although, the sample size is small. Acoustics had

low satisfaction across all eight buildings, and most issues stem from sound privacy in open-

plan offices; there was no strong evidence linking sources of acoustic dissatisfaction with the

radiant design. Strategies such as carpets and acoustical panels should be further explored for

effectiveness, especially in open-plan office spaces.
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