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Abstract
In certain modeling approaches, activation analyses of task-based fMRI data can involve a relatively large number of predictors.
For example, in the encoding model approach, complex stimuli are represented in a high-dimensional feature space, resulting in
design matrices with many predictors. Similarly, single-trial models and finite impulse response models may also encompass a
large number of predictors. In settings where only few of those predictors are expected to be informative, a sparse model fit can be
obtained via L1-regularization. However, estimating L1-regularized models requires an iterative fitting procedure, which con-
siderably increases computation time compared to estimating unregularized or L2-regularized models, and complicates the
application of L1-regularization on whole-brain data and large sample sizes. Here we provide several functions for estimating
L1-regularized models that are optimized for the mass-univariate analysis approach. The package includes a parallel implemen-
tation of the coordinate descent algorithm for CPU-only systems and two implementations of the alternating direction method of
multipliers algorithm requiring a GPU device. While the core algorithms are implemented in C++/CUDA, data input/output and
parameter settings can be conveniently handled via Matlab. The CPU-based implementation is highly memory-efficient and
provides considerable speed-up compared to the standard implementation not optimized for the mass-univariate approach.
Further acceleration can be achieved on systems equipped with a CUDA-enabled GPU. Using the fastest GPU-based imple-
mentation, computation time for whole-brain estimates can be reduced from 9 h to 5 min in an exemplary data setting. Overall,
the provided package facilitates the use of L1-regularization for fMRI activation analyses and enables an efficient employment of
L1-regularization on whole-brain data and large sample sizes.
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Introduction

Over the last two decades, various fMRI activation analysis
approaches have been established that involve a relatively
large number of predictors. For example, single-trial models
can be employed to obtain activation estimates for individual
experimental trials (Mumford et al. 2012). The single-trial
estimates can be subsequently used as input for further

analyses such as multivariate pattern analyses or connectivity
analyses (Mumford et al. 2014; Rissman et al. 2004). As
single-trial models require a separate predictor for each exper-
imental trial, the resulting design matrices typically encom-
pass a relatively large number of predictors.

The finite impulse response (FIR) model is another exam-
ple for an fMRI activation analysis approach involving many
predictors (Ollinger et al. 2001). In the FIR approach, the
fMRI signal is modeled by a set of impulse response predic-
tors, instead of a predefined hemodynamic response shape.
This modeling approach can capture activation dynamics de-
viating from the canonical response shape, but typically in-
volves a large number of predictors (growing proportionally
with the size of the FIR basis set). Both in single-trial and FIR
models, the large number of predictors can reduce the robust-
ness of the beta estimates.

Another fMRI modeling approach typically involving a
large number of predictors is the so-called encoding model
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approach (Naselaris et al. 2011; van Gerven 2017). In this
approach, stimuli are represented in a high-dimensional fea-
ture space instead of being assigned to a low-dimensional set
of categories. For example, instead of assigning visual stimuli
to object categories such as houses, trees, etc., the stimuli are
represented by a high-dimensional vector of feature weights.
Such features may comprise a set of Gabor wavelets (Kay
et al. 2008), may be extracted from deep neural networks
(Güclü and van Gerven 2015) or may simply consist of pixel
values (Schoenmakers et al. 2013). The encoding model ap-
proach has also been employed outside the visual domain, for
example to characterize semantic representations of words
(Huth et al. 2016). In this study, the feature space was defined
as a basic dictionary of English words, and the model was
fitted on whole-brain data. The high-dimensional representa-
tion of stimuli used in the encoding model approach typically
translates into design matrices encompassing more predictors
than time points. In this setting, a unique model fit can only be
obtained by adding a regularization term to the model.

Model regularization adds additional constraints to the
model fitting procedure on top of minimizing the error term.
As the number of predictors approaches the number of col-
lected time points (i.e. the length of the fMRI time series),
model regularization becomes increasingly relevant, and for
saturated models, regularization is indispensable. In the con-
text of fMRI activation analyses, model regularization can
improve the robustness of single-trial and FIR models, and
is crucial for the encoding model approach.

For linear models, the two most common types of regular-
ization are L1-regularization and L2-regularization (also
known as lasso and ridge regression, Tibshirani 1996; Hoerl
and Kennard 1970). While L1-regularization puts a threshold
on the sum of absolute values of the beta estimates, L2-
regularization bounds the sum of squared beta-values. These
two types of regularization can result in fundamentally differ-
ent beta estimates: L2-regularizedmodels return nonzero beta-
values for all predictors, whereas L1-regularized models re-
turn a sparse model fit, that is, most of the beta-values are set
to zero and only a few predictors are included in the model fit.
Whether to employ L1- or L2-regularization depends on a-
priori assumptions on the data at hand. L2-regularization as-
sumes that most of the predictors have an impact on the fMRI
signal. In contrast, L1-regularization is based on the assump-
tion that the fMRI signal can bemodeled by a small fraction of
the included predictors.

While both types of regularization have been employed in
fMRI studies (Huth et al. 2016; Nishimoto et al. 2011), L2-
regularization seems to occur more frequently in the neuroim-
aging literature than L1-regularization. This might be partly
explained by the fact that fitting L1-regularized models is
considerably more expensive, in terms of computation time,
than fitting L2-regularized or unregularized models. While
L2-regularized and unregularized models can be estimated

using closed-form solutions, L1-regularization requires an it-
erative fitting procedure. Thus, estimating L1-regularized
models instead of L2- or unregularized models substantially
increases the running time of fMRI analyses. For certain types
of analyses, for example whole-brain analyses on large sam-
ples, it is virtually infeasible to employ L1-regularization.

Here, we aim to facilitate the estimation of L1-regularized
models on fMRI data. In the following, we present a package
of functions for estimating L1-regularized models that are
optimized for the mass-univariate approach. We describe the
implementation of the functions, how to set their parameters,
and provide benchmark results for two exemplary data
settings.

Methods

In the following, we assume to have an fMRI data matrix Y of
size n × v, with n being the number of time points and v being
the number of time series (e.g. the number of voxels).
Moreover, we have a design matrix X of size n × p, with p
being the number of predictors. The beta-values are stored in
a matrix B of size p × v. The intercept of the model is of size
n × 1 and is denoted I, and the intercept’s beta-values are
stored in B0 of size 1 × v. Matrix columns are indexed by j.
We assume that the columns of the design matrix X are z-

scored, i.e. ∑n
i¼1X ij ¼ 0 and 1

n∑
n
i¼1X ij

2 ¼ 1 for all j = {1,
⋯, p}. For a given regularization parameter λ ≥ 0, the L1-

regularized model fit bB; bB
0
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In contrast to L2-regularized or unregularized models, L1-
regularized model fits cannot be computed using a closed-
form solution. Instead, an iterative procedure is required to

find bB. In the following sections, we describe two different
algorithms for fitting L1-regularized models, coordinate de-
scent (Friedman et al. 2010) and alternating direction method
of multipliers (ADMM, Boyd et al. 2010), and how we opti-
mized and implemented these algorithms for mass-univariate
analyses.

The CPU-Based Implementation: lasso_mex

In the CPU-based implementation, the model fit is computed
using the coordinate descent algorithm proposed by Friedman
et al. 2010. In each step of the iterative fitting procedure, the
beta-value of a single predictor is updated while the remaining
beta-values are fixed. As suggested by Friedman et al. 2010,
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the beta-values are computed using covariance updates, i.e.
without explicitly computing residual values.

Friedman et al. 2010 suggest to compute covariances be-
tween predictors dynamically as required during the estima-
tion process. However, in the mass-univariate setting, the
same design matrix is used to model a large number of
fMRI time series. Thus, instead of computing covariances
between predictors dynamically for each voxel, we precom-
pute the full covariance matrix of the design matrix before
starting the coordinate descent, thereby avoiding redundant
computations of predictor covariances across voxels.

Aside from precomputing the covariance matrix, our im-
plementation includes features such as warm starts and active
sets described in Friedman et al. 2010. The idea behind active
sets is to iterate only through predictors whose beta-values
were set to nonzero values at an earlier stage. Once conver-
gence among the beta-values included in the active set is
achieved, the algorithm iterates through all beta-values to
check whether additional predictors have to be included.
Using active sets can considerably speed up the estimation
procedure, and moreover beta-values can be stored in sparse
format, thereby reducing memory usage.

The estimation procedure for a given λ parameter can be
considerably accelerated by properly initializing the beta-
values, instead of starting with all beta-values set to zero.
Such an initialization can be obtained from a prior estimate
using a larger λ parameter. Generally, computation times in-
crease as λ becomes smaller, due to the larger number of
nonzero beta-values. Thus, successively fitting models along
a decreasing sequence of lambda parameters using warm starts
is typically faster than starting from scratch for each lambda
value (Friedman et al. 2010).

To further accelerate the estimation procedure, the CPU-
based implementation distributes computations among multi-
ple CPU cores using a parallel for-loop over the voxels,
exploiting the fact that models are fitted independently across
voxels in the mass-univariate analysis approach. To this end,
the algorithm was implemented in C++ using OpenMP for
parallelization. The performance improvement achieved by
this parallelization step depends on the number of available
CPU cores.

How to Use lasso_mex

While the underlying coordinate descent algorithm is imple-
mented in C++, the lasso_mex function can be conveniently
called from Matlab via the mex API. The function takes a
design matrix X, a matrix Y containing fMRI time series
and a sequence of lambda-parameters lambda_seq as input.
Technical parameters can be optionally specified using an
options structure, otherwise default values are used. The col-
umns of the design matrix Xmust be z-scored, and Xmust not
contain an intercept column. The function returns beta-values

in sparse format, with b_values containing the actual beta
values, b_indexes containing the indexes of the values, and
N_nz containing the number of nonzero beta-values for each
voxel. Unregularized intercept coefficients are returned in b0.

b values; b indexes;N nz; b0½ � ¼ lasso mex X;Y; lambda seqð Þ;

The function lasso_mex is written inMatlab and calls, after
some sanity checks and precomputations, the MEX function
lasso_mex_cpp.c, which is written in C++ and runs the coor-
dinate descent algorithm.

The resulting beta-values in sparse format can be converted
to full format using the convert_betas_sparse_to_full func-
tion:

b full ¼ convert betas sparse to full

b values; b indexes;N nz; size X; 2ð Þð Þ;

The sequence of lambda-parameters lambda_seq should be
decreasing in order to benefit from warm starts as described
above. Lambda-values are typically defined on a log-scale,
e.g. λ ∈ {2k, 2k − 1,⋯, 2k − n}. The lambda parameter deter-
mines the degree of model regularization. For lambda-values
larger than a certain data-dependent threshold, all beta-values
are set to zero, and the model fit only consists of the intercept.
The critical threshold can be computed using the
calculate_lambda_start function.

lambda start ¼ calculate lambda start X;Yð Þ;

For lambda-values larger than lambda_start, all beta-values
will be zero. Thus, the first value of the lambda sequence is
typically set to lambda_start or to value from a predefined
discrete scale that is close to lambda_start. How to set the
smallest value of the lambda-sequence is less clear and in-
volves a trade-off between computation time and the desired
degree of model saturation. Generally, estimating weakly reg-
ularized models requires longer computation times than esti-
mating strongly regularized models. As the number of nonze-
ro beta-values approaches the number of time points of the
fMRI time series, model estimation can become time-
consuming and unstable in overparameterized settings (i.e.
when p > n). Thus, the smallest value of the lambda sequence
is typically chosen to achieve a certain degree of model satu-
ration while keeping computation time within reasonable
bounds.

Optionally, technical parameters of the lasso_mex function
can be set via the options structure. The default values are:

options:n iter max ¼ 1e5;

options. tol _ value = 1e − 3;

options:buffer factor ¼ 3;
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options. cpu _ load _ factor = 1;

b values; b indexes;N nz; b0½ � ¼ lasso mex X;Y; lambda seq; optionsð Þ;

The n_iter_max parameter defines an upper bound for the
number of iterations performed by the coordinate descent al-
gorithm. This parameter can be set to a larger value if the
default value results in the error message Max. iter.
Reached, no convergence!. However, reaching the maximum
number of iterations can also indicate that model regulariza-
tion is too weak and more stringent regularization is required.

The tol_value parameter determines the precision of the
estimated beta-values. The coordinate descent algorithm stops

when max
j

Bnew
j −Bold

j

���
���< tol_value. If higher than default pre-

cision is required, the tol_value parameter can be set to a
smaller value, which will typically increase computation time.
Vice versa, low-precision estimates can be obtained by setting
tol_value to a larger value, which might accelerate the estima-
tion procedure.

To minimize memory requirements, beta-values are stored
in sparse format. The maximum number of nonzero beta-
values per voxel is determined by the buffer_factor parameter.
Internally, the buffer_factor is multiplied by n (the number of
rows of the design matrix X) in order to compute how much
memory is preallocated for the beta-values. In well-defined
settings, i.e. if p ≤ n, the buffer_factor parameter can be set
to 1. In overparameterized settings (i.e. if p > n), if the default
value results in the error message N_nz over maximum, larger
buffer is required!, the buffer_factor parameter should be set
to larger value. How the buffer_factor impacts memory de-
mands is detailed in the Supplementary Material section on
memory usage.

The parameter cpu_load_factor determines the degree of
CPU utilization. For a cpu_load_factor of 1 (default value),
all CPU cores are engaged, whereas for a cpu_load_factor of
0, only a single core is occupied. To distribute computations
among all but one core, the cpu_load_factor can be set to 0.99.

The GPU-Based Implementations: lasso_mexcuda and
lasso_GPU

The two GPU-based implementations are based on the alter-
nating direction method of multipliers (ADMM) algorithm
described in Boyd et al. 2010. In contrast to the coordinate
descent algorithm, the ADMM algorithm does not sequential-
ly cycle trough the beta coefficients but instead all beta coef-
ficients are updated simultaneously via matrix multiplication.
While the ADMM procedure is less memory-efficient than
coordinate descent, it can be accelerated on the GPU by
parallelizing matrix multiplications and other steps. The first
version (lasso_mexcuda) can be called from Matlab and does

not require any Matlab toolboxes. After some sanity checks
a n d p r e c o m p u t a t i o n s , t h e m e x f u n c t i o n s
ADMMcublasOverMex.c or ADMMcublasUnderMex.c are
called (depending on whether the design matrix is
overparameterized or not), which are written in C++. These
f u n c t i o n s t h e n c a l l ADMMcub l a sOv e r . c u o r
ADMMcublasUnder.cu, which contain CUDA code calling
functions from the cuBLAS library to run the ADMM algo-
rithm on the GPU. The second version (lasso_gpu) is imple-
mented directly in Matlab using gpuArray and thus depends
on the Parallel Computing Toolbox. For both versions, a
CUDA-enabled GPU device is required (see also Table 1).

Both lasso_mexcuda and lasso_gpu use warm starts along
the supplied lambda sequence, and the same considerations on
the choice of the lambda sequence as discussed above in the
lasso_mex section also apply to the lasso_mexcuda and
lasso_gpu functions.

How to Use lasso_mexcuda and lasso_gpu

The functions take a design matrix X, a matrix Y containing
fMRI time series and a sequence of lambda-parameters
lambda_seq as input. Technical parameters can be optionally
specified using an options structure, otherwise default values
are used. The columns of the design matrix X must be z-
scored, and X must not contain an intercept column. Beta-
values are returned in full format in B, and unregularized
intercept coefficients are returned in B0. As lasso_mexcuda
and lasso_gpu are optimized for the GPU, B and B0 are
returned in single-precision format.

B;B0½ � ¼ lasso mexcuda X;Y; lambda seqð Þ;

B;B0½ � ¼ lasso gpu X;Y; lambda seqð Þ;

Optionally, the following technical parameters can be spec-
ified (set to default values here):

options:n iter max ¼ 1e5;

options:tol value ¼ 1e−3;

options:buffer size ¼ 8192;

B;B0½ � ¼ lasso mexcuda X;Y; lambda seq; optionsð Þ;

B;B0½ � ¼ lasso gpu X;Y; lambda seq; optionsð Þ;
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The n_iter_max parameter defines an upper bound for the
number of iterations performed by the ADMM algorithm.
This parameter can be set to a larger value if the default value
results in the error message Max. iter. Reached, no conver-
gence!. However, reaching the maximum number of iterations
can also indicate that model regularization is too weak and
more stringent regularization is required.

The tol_value parameter determines the precision of the es-
timated beta-values. If higher than default precision is required,
the tol_value parameter can be set to a smaller value, which will
typically increase computation time. Vice versa, low-precision
estimates can be obtained by setting tol_value to a larger value,
which might accelerate the estimation procedure.

The buffer_size determines how many voxels are simulta-
neously processed on the GPU. Setting this parameter to a
larger value might accelerate the estimation procedure, pro-
vided that the GPU has sufficient memory resources. If
buffer_size exceeds the memory capacity of the GPU,
Matlab terminates the function call with an error message.
Memory requirements can be estimated based on the heuris-
tics provided in the Supplementary Material section on mem-
ory usage.

Benchmarking

The three functions lasso_mex, lasso_mexcuda and lasso_gpu
were benchmarked in two data settings to demonstrate the
efficiency of the implementations. In both benchmarks, X
and Y data were randomly drawn from the normal distribution.
Benchmark A corresponds to an overparameterized model,
representing for example an encoding model with a large fea-
ture space. The number of time points was set to n = 300,
which corresponds to a 10 min scanner run for a TR of 2 s.
The number of predictors was set to p = 5000, i.e. p ≫ n. The
model was estimated on v = 65536 voxels, approximately cor-
responding to whole-brain data for an isotropic 3 mm resolu-
tion. The lambda sequence was set to {2−2, 2−3,⋯, 2−6}.
Benchmark B corresponds to a well-defined setting, e.g. a
single-trial or FIR model. The number of time points and
voxels in setting B were identical to setting A, but the number
of predictors was set to p = 200, i.e. p < n. The models were

estimated for a single lambda-value λ = 2−4 to allow for a
comparison of the computation times with L2-regularized
and unregularized model fits.

The three functions lasso_mex, lasso_mexcuda and
lasso_gpu were compared to the lasso function that is part of
Matlab’s Statistics and Machine Learning Toolbox. The lasso
function was repeatedly called to fit models for all voxels
using a for-loop, taking a single time series as input in each
call.

The benchmarks were run on a workstation equipped with
a dual Intel Xeon E5–2665 CPU (16 cores overall), 32 GB
memory and an Nvidia Quadro P2000 GPU. The functions
were benchmarked on Windows 10 64-bit and Matlab
R2019b, as well as Ubuntu 18.04 LTS and Matlab R2018b.
On Windows, lasso_mex was compiled using mex and the
MSVC compiler of Visual Studio 2017, and lasso_mexcuda
using CUDA Toolkit 10.1.243. On Linux, lasso_mex was
compiled using mex and gcc 6.5, and lasso_mexcuda using
CUDA Toolkit 9.1.85.

Moreover, to assess the impact of the GPU hardware, we
compared two different GPU devices using benchmark A,
Nvidia’s Quadro P2000 (1024 cores, 5 GB memory) and
Tesla V100 SXM2 (5120 cores, 16 GB memory). To this
end, the functions lasso_mexcuda and lasso_gpu were run
on a p3.2xlarge instance on Amazon Web Services (AWS)
using a Matlab Amazon Machine Image (AMI).

Code and Software Requirements

The presented software package including compiled binaries
and source code is available at https://git.io/JvUpi. Data input/
output is handled via Matlab for all functions of the package.
The functions have been tested using Matlab R2019b and
R2018b, but should work with other versions as well.
Moreover, the GPU-accelerated functions require either the
CUDA toolkit (lasso_mexcuda) or Matlab’s Parallel
Computing Toolbox (lasso_gpu). Note that each Matlab ver-
sion requires a specific version of the CUDA toolkit, as listed
here: https://mathworks.com/help/parallel-computing/gpu-
support-by-release.html. GPU devices should have compute
capability > = 3.0.

Table 1 Overview over hardware and software requirements of the
different functions for estimating L1-regularized linear models. The lasso
function is part of the Statistics and Machine Learning Toolbox and only
included here for benchmarking purposes (see main text). The lasso_mex,

lasso_mexcuda and lasso_gpu functions introduced here are specifically
optimized for the mass-univariate analysis approach and depend on dif-
ferent hardware and software configurations

Function Hardware requirements Software requirements Algorithm Implementation

lasso CPU Matlab, Statistics and ML Toolbox Coordinate descent Matlab

lasso_mex CPU Matlab Coordinate descent C++, OpenMP

lasso_mexcuda CPU +CUDA-enabled GPU Matlab, CUDA Toolkit ADMM C++, cuBLAS

lasso_gpu CPU +CUDA-enabled GPU Matlab, Parallel Computing Toolbox ADMM Matlab
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Results

On both benchmarks A and B, the lasso_mex function was
considerably faster than the standard lasso function using a
single CPU core, showing that the coordinate descent al-
gorithm underlying lasso_mex is efficiently implemented
(see Fig. 1). Setting the lasso_mex function to distribute
computations across multiple CPU cores led to further re-
ductions of computation time. More details on how com-
putation time varied as a function of CPU cores are given
in Supplementary Fig. 1. The parallel implementation of
the ADMM algorithm on the GPU (lasso_mexcuda,
lasso_gpu) provided further acceleration for benchmark
A, with lasso_gpu being considerably faster than
lasso_mexcuda. In absolute numbers, a reduction of

computation time from approximately 9 h to 5 min could
be achieved on Windows using the lasso_gpu function, see
Supplementary Table 1. As shown in benchmark B, L2-
regularized (ridge regression) or unregularized (ordinary
least squares, OLS) model estimation remains faster than
accelerated L1-regularization.

The comparison of two different GPU devices using bench-
mark A on Linux revealed that the larger device (Tesla V100)
achieves a 4.5x speed-up over the smaller card (Quadro
P2000), see Fig. 2. This acceleration approximately corre-
sponds to the ratio of available CUDA cores of 5120:1024,
see Supplementary Fig. 2 for more details. In absolute num-
bers, computation time could be further reduced to 1 min
using the lasso_gpu function on the V100 device, see
Supplementary Table 2.

Fig. 1 Benchmark results for the three lasso functions lasso_mex, lasso_
mexcuda and lasso_gpu. (a): Benchmark for an overparameterized
setting with n = 300 time points and p = 5000 predictors, corresponding
for example to an encoding model with a large feature space. The lasso_
mex function required considerably less running time for whole-brain
estimates than the standard lasso function (Matlab, orange) on a single
CPU core (C++, light blue). Distributing computations across multiple
CPU cores further reduced the running time of the lasso_mex function
(OpenMP, dark blue). The lasso_mexcuda function, which runs the
ADMM algorithm on a GPU using the cuBLAS library, further acceler-
ated the estimation procedure (cuBLAS, green). The lasso_gpu function,
which runs the ADMM algorithm on the GPU using the Parallel
Computing Toolbox, provided the highest speed-up factor for benchmark

A (gpuArray, green/orange). (b): Benchmark for a well-defined setting
with fewer predictors than time points (n = 300, p = 200), corresponding
for example to a single-trial or FIR model. Again, on a single CPU core,
the lasso_mex function fitted L1-regularized models more efficiently than
the standard lasso function. Further speed-up could be achieved by dis-
tributing computations across multiple CPU cores. The GPU-based
implementations (lasso_mexcuda, lasso_gpu) performed not as fast as
the multicore CPU version on this benchmark, as the GPU was not fully
occupied in this small-scale setting. Unregularized (OLS, yellow) or L2-
regularized (ridge, gray) model estimation using closed-form solutions
remains faster than accelerated L1-regularization. Absolute computation
times are given in Supplementary Table 1

Neuroinform (2021) 19:385–392390



Discussion

We introduced a package of functions for estimating L1-
regularized models in the mass-univariate fMRI analysis ap-
proach. The presented functions significantly accelerate the
model estimation procedure and thereby facilitate the use of
L1-regularization in the mass-univariate approach and enable
its application on whole-brain data and large samples. While
the presented benchmarks were performed on data corre-
sponding to a single fMRI scanning session, efficiency gains
scale up linearly for multiple sessions per subject and multiple
subjects per sample. For example, for a sample of 20 subjects
and 5 scanning sessions per subject, a computation time re-
duction from 9 h to 5min per scanning session translates into a
reduction from 37 days to 8 h for the whole sample.

This speed-up makes it practically feasible to employ L1-
regularization in the context of the encoding model approach.
While the majority of studies using the encoding model ap-
proach have been focused on visual processing (van Gerven
2017), Huth et al. 2016 have shown that an extension to other
domains such as whole-brain semantic representations is pos-
sible and promising. Data-driven generation of predictive fea-
tures, for example via deep neural networks (Güclü and van
Gerven 2015; Kell et al. 2018; Mohr et al. 2019), typically
results in large feature spaces and therefore requires efficient
model estimation procedures. Given the rapid advancement of
machine learning in a range of domains that are also relevant
for neuroimaging (e.g. geometric representations of objects
(Eslami et al. 2018) or spatial navigation (Banino et al.
2018)), we expect a proliferation of the encoding model ap-
proach for predicting fMRI signals via machine-learning gen-
erated features. Estimating such large-scale encoding models
using L1-regularization can be efficiently performed by the
functions presented here.

Moreover, the presented functions facilitate the use of L1-
regularization for modeling approaches such as single-trial
and FIR models (Mumford et al. 2012; Ollinger et al. 2001).
To our knowledge, the impact of L1-regularization has not yet

been systematically evaluated for these types of models.
Using the functions presented here, future studies can effi-
ciently evaluate how L1-regularization impacts the robustness
and predictiveness of single-trial and FIR models in compar-
ison to L2-regularization or unregularized model estimation.

In the following, we discuss some limitations of L1-
regularization in general and the specific implementations pre-
sented here. It is important to note that the beta estimates
returned by L1-regularized models are typically sparse and
thus not normally distributed. Depending on how the beta
estimates are used in subsequent analysis steps, a modification
of some of these steps might be required. For example, for
aggregating data, median values can be used instead of arith-
metic means to preserve sparsity. Moreover, when using L1-
regularization for example for estimating single-trial models,
both the spatial activations patterns and the beta-series are
typically sparse. To compute correlations between such sparse
spatial patterns or beta-series, rank-based correlationmeasures
should be used instead of Pearson correlations. In contrast,
using sparse beta estimates for predicting fMRI signals in
the context of the encoding models approach would typically
not require specific adjustments. For example, to compute
model predictions of an L1-regularized model, the design ma-
trix of a given test dataset can simply be multiplied with the
sparse beta estimates obtained on a training dataset. With re-
spect to decoding techniques such as multivariate pattern anal-
ysis (MVPA), it should be noted that although it would be
technically possible to use the presented functions for estimat-
ing decoding models (by filling the design matrix with fMRI
data), no acceleration can be expected in this case, as decoding
models are typically estimated for a single outcome variable
only. Since the presented functions are optimized for the
mass-univariate approach, estimation procedures are only ac-
celerated in settings involving many outcome variables.

In conclusion, the functions introduced here significantly
accelerate L1-regularization in the mass-univariate setting and
make it practically feasible to estimate L1-regularized models
on whole-brain data and large samples.

Fig. 2 Benchmark results for two
different GPU devices. Nvidia’s
Tesla V100 GPU device yielded a
speed-up of approximately 4.5x
over the Quadro P2000 card,
which roughly corresponds to the
ratio of 5120:1024 cores.
Absolute computation times are
given in Supplementary Table 2
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