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Abstract

Background: Transcription factor knockout microarrays (TFKMs) provide useful information about gene regulation.
By using statistical methods for detecting differentially expressed genes between the gene expression microarray
data of the mutant and wild type strains, the TF knockout targets of the knocked-out TF can be identified.
However, the identified TF knockout targets may contain a certain amount of false positives due to the
experimental noises inherent in the high-throughput microarray technology. Even if the identified TF knockout
targets are true, the molecular mechanisms of how a TF regulates its TF knockout targets remain unknown by this
kind of statistical approaches.

Results: To solve these two problems, we developed a method to filter out the false positives in the original TF
knockout targets (identified by statistical approaches) so that the biologically interpretable TF knockout targets can
be extracted. Our method can further generate experimentally testable hypotheses of the molecular mechanisms of
how a TF regulates its biologically interpretable TF knockout targets. The details of our method are as follows. First,
a TF binding network was constructed using the ChIP-chip data deposited in the YEASTRACT database. Then for
each original TF knockout target, it is said to be biologically interpretable if a path (in the TF binding network) from
the knocked-out TF to this target could be identified by our path search algorithm. The identified path explains
how the TF may regulate this target either directly by binding to its promoter or indirectly through intermediate
TFs. After checking all the original TF knockout targets, the biologically interpretable ones could be extracted and
the false positives could be filtered out. We validated the biological significance of our refined (i.e., biologically
interpretable) TF knockout targets by assessing their functional enrichment, expression coherence, and the
prevalence of protein-protein interactions. Our refined TF knockout targets outperform the original TF knockout
targets across all measures.

Conclusions: By jointly analyzing the TFKM and ChIP-chip data, our method can extract the biologically
interpretable TF knockout targets by identifying paths (in the TF binding network) from the knocked-out TF to
these targets. The identified paths form experimentally testable hypotheses regarding the molecular mechanisms of
how a TF may regulate its knockout targets. About seven hundred hypotheses generated by our methods have
been experimentally validated in the literature. Our work demonstrates that integrating different data sources is a
powerful approach to study complex biological systems.
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Background
A living cell responds to physiological and environmental
changes mainly by reorganization of transcriptional pro-
grams, which are regulated by transcription factors (TFs)
[1-5]. TFs control the expressions of their targets in two
ways. TFs either directly regulate their targets by binding
to the promoters or indirectly regulate their targets by
the transcriptional regulatory chains through intermedi-
ate TFs [6,7]. Thus, identifying the direct and indirect
targets of TFs is very crucial for understanding the tran-
scriptional rewiring in response to various stimuli.
A powerful high-throughput experimental technology,

called the transcription factor knockout microarray
(TFKM) [8], is widely used to investigate the regulatory
relationships between TFs and genes. First, the genome-
wide gene expression profiles between a TF knockout
strain and a wild type strain are measured using micro-
arrays. Then the differentially expressed genes between
these two strains can be identified by using various stat-
istical methods [9,10]. These genes are called the TF
knockout targets because their expressions change sig-
nificantly due to the knockout of the TF-encoding gene
under study. In yeast, experimental data of a compen-
dium of 269 TFKMs performed by Hu et al. [8] were
released in 2007. Covering almost all known TFs in
yeast, these data are the most comprehensive TF knock-
out experiments available for any organism and provide
rich information for studying gene regulation [11]. Hu
et al. [8] used an error model for identifying differen-
tially expressed genes in their TFKMs. Later, Reimand
et al. [11] applied a more sophisticated statistical
method, called the moderated eBayes t-test [12], to Hu
et al.’s TFKMs and found nine times the total TF knock-
out targets reported by Hu et al. They also showed that
their result was more biologically meaningful than that
of Hu et al. However, due to the experimental noises in-
herent in the high-throughput microarray technology,
the TF knockout targets inferred solely from the noisy
TFKMs may contain a certain amount of false positives.
Even if the identified TF knockout targets are true, the
molecular mechanisms of how a TF regulates its TF
knockout targets remain unknown by this kind of statis-
tical approaches. Therefore, further justifications of the
identified TF knockout targets are needed before they
can be used as a high quality source for gene regulation
study.
Unlike Reimand et al. [11] who attacked the problem

from the statistical perspective, we solved this problem
from the biological perspective. It is known that TFs
regulate their direct targets by binding to the targets’
promoters and regulate their indirect targets by tran-
scriptional regulatory chains through intermediate TFs
[6,7]. In this paper, we proposed a method that uses this
knowledge as a biological filter for extracting biologically
interpretable TF knockout targets from the original TF
knockout targets identified by Reimand et al. [11].
The flowchart of our method is shown in Figure 1 and

described as follows. First, a TF binding network was
constructed using the ChIP-chip data, which provide ex-
perimental evidence of the binding relationships be-
tween TFs and genes. A node in the TF binding network
represents a gene in the yeast genome. A directed edge
from a TF-encoding gene to another gene in the TF
binding network means that there exists experimental
evidence (from the ChIP-chip data) showing that the TF
could bind to the promoter of the gene. Then for each
original TF knockout target, our modified breadth-first
search (mBFS) algorithm was applied to find a shortest
path from the knocked-out TF to this target in the TF
binding network (see Methods for more details). There
are three possible outcomes: (i) if a shortest path of
length one is found, then this TF knockout target is
regarded as a direct target of the knocked-out TF since
the TF could bind this gene; (ii) if a shortest path of
length larger than one is found, then this knockout tar-
get is regarded as an indirect target of the knocked-out
TF since the TF may regulate this gene by the identified
transcriptional regulatory chain through intermediate
TFs; (iii) if no path could be found, then this knockout
target is regarded as a false positive in the original data-
set. Examples of the three possible outcomes could be
seen in Figure 1. In summary, an original TF knockout
target is said to be biologically interpretable if a path (in
the TF binding network) from the knocked-out TF to
this target could be found. The identified path might ex-
plain how the TF regulate this target either by binding
to its promoter directly or by a transcriptional regulatory
chain through intermediate TFs. After running this pro-
cedure, biologically interpretable TF knockout targets
could be extracted from the original TF knockout
targets.

Results
On average 90% in the original TF knockout targets are
biologically interpretable
We considered 112 TFs that have enough ChIP-chip
data for our analyses (see Additional file 1: Figure S1 for
details). The numbers of our refined (i.e., biologically in-
terpretable) and the original TF knockout targets identi-
fied by Reimand et al. [11] for these 112 TFs were listed
in Additional file 2: Table S1. The ratios of biologically
interpretable TF knockout targets in the original datasets
for these 112 TFs are very concentrated (mean= 0.903,
standard deviation = 0.025) in a range between 0.817 and
0.963 (see Figure 2). On average, 90% of the original TF
knockout targets are biologically interpretable.
Note that the biologically interpretable TF knockout

targets (identified by our method) cannot be found by



Using our mBFS algorithm
to determine whether there exists
a path in the TF binding network

from TF A to Gene X

Given a pair (TF A, Gene X)

Gene X : a TF knockout target of TF A in the

original dataset

Case 1a:
A shortest path of length

one is found

Case 1b:
A shortest path of length
larger than one is found

Case 1:
Gene X is a biologically interpretable

TF knockout target of TF A

Case 2:
Gene X is a false positive in the

original dataset

Yes No

e.g. (Hsf1, HSP82) e.g. (Hsf1, RPT4)

e.g. (Hsf1, YGR259C)

TF Binding Network

Figure 1 (See legend on next page.)
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Figure 1 Flowchart of our method and the examples of the outcomes. In the TF binding network, an oval represents a TF-encoding gene
and a rectangle represents a gene whose gene product is not a TF. Examples of the three possible outcomes of our method for a given TF-gene
pair are as follows. In Case 1a, HSP82 is a direct target of Hsf1. Hsf1 regulates HSP82 by directly binding to its promoter. In Case 1b, RPT4 is an
indirect target of Hsf1. Hsf1 regulates RPT4 through the intermediate TF RPN4. In Case 2, YGR259C is regarded as a false positive in the original
dataset because no path could be found from Hsf1 to YGR259C.
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simply intersecting the TFKM data with the ChIP-chip
data since the overlap is very low (see Figure 3). This in-
tuitive strategy can only interpret 6% of the original
dataset, which corresponds to those biologically inter-
pretable TF knockout targets with the shortest paths of
length one (i.e., the direct targets of the knocked-out
TF). Our method can further interpret the other 84% of
the original dataset, which corresponds to those bio-
logically interpretable TF knockout targets with the
shortest paths of length larger than one (i.e., the indirect
targets of the knocked-out TF).
We claim that our refined TF knockout targets are

more biologically meaningful than the original ones
identified by Reimand et al. [11]. To justify our claim,
the following three analyses were performed.
The refined dataset displays greater functional
enrichment
Since TF knockout targets represent the genes that are
co-regulated by the same TF, they should be associated
with common molecular functions or biological pro-
cesses. For each of the 112 TFs, the Generic GO Term
Finder [13] web server was used to identify enriched GO
terms [14] (with the chosen ontology aspect and FDR
cutoff ) in the refined and original TF knockout targets,
respectively. We used all three ontology aspects (mo-
lecular function, biological process, and cellular compo-
nent) and 0.05 as the FDR cutoff. Then for each TF, an
enrichment score (proposed by Reimand et al. [11]) was
used to measure the enrichment of functional
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Figure 2 The ratios of the biologically interpretable TF knockout targ
knockout targets in the original datasets for the 112 TFs under study are ve
between 0.817 (for TF Smp1) and 0.963 (for TF Tos8). In the x-axis, only 38
annotations in the refined/original dataset by summing
the absolute logarithms of the p-values of the enriched
GO terms found in the refined/original dataset. Finally,
an aggregate enrichment score (also proposed by Reim-
and et al. [11]) of the whole refined/original datasets for
all 112 TFs was computed as the sum of the enrichment
score for each TF.
Comparing individual TFs, the refined dataset has an

equal or higher enrichment score than the original data-
set in 84% (94/112) of the cases. If we compare all 112
TFs as a whole, the refined datasets also have a higher
aggregate enrichment score (47859 vs. 44069) than the
original datasets (see Additional file 3: Table S2 for more
details). In summary, the refined dataset displays greater
functional enrichment than the original dataset.
The refined dataset has better expression coherence
Since TF knockout targets represent the genes that are
co-regulated by the same TF, their expression patterns
are expected to be correlated. This motivates us to test
which dataset (refined or original) has higher expression
coherence. The expression data were downloaded from
Ihmels et al.’s study [15] which collected 1011 published
genome-wide expression profiles. The testing procedure
is as follows. First, two distributions were formed by
computing the absolute value of the Pearson correlation
coefficient between the expression data of any two genes
in the refined and original dataset, respectively. Then one
dataset is said to have higher expression coherence than
the other if its distribution is stochastically greater than
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TF names are shown due to the space limit.



The knockout targets of the
TFs under study (inferred

from the TFKM data)

The genes bound by the
TFs under study (inferred
from the ChIP-chip data)

Direct
Targets
6%

Indirect
Targets
84%

False
Positives
10%

Figure 3 The overlap between the TFKM data and the ChIP-chip data is very low. Simply intersecting the TFKM data with the ChIP-chip
data can only interpret 6% of the original dataset, which corresponds to those biologically interpretable TF knockout targets with the shortest
paths of length one (i.e., the direct targets of the knocked-out TF). Our method can further interpret the other 84% of the original dataset, which
corresponds to those biologically interpretable TF knockout targets with the shortest paths of length larger than one (i.e., the indirect targets of
the knocked-out TF). The other 10% of the original dataset, for which no path could be found, is regarded as the false positives.
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the other. The statistical significance was computed
using Wilcoxon rank sum test [16]. The above procedure
was applied for each of the 112 TFs under study. Finally,
the p-values were corrected for multiple hypotheses test-
ing to ensure FDR < 0.05.
Among 112 TFs, 55% (62/112) show significantly

higher expression coherence in the refined dataset. In
contrast, only 4% (4/112) show significantly higher ex-
pression coherence in the original dataset (see Add-
itional file 4: Table S3 for more details). In summary, the
refined dataset has better expression coherence than the
original dataset.

The refined dataset shows higher tendency to have
physical protein-protein interactions
It has been reported that TFs tend to regulate genes that
interact with each other [17]. Reimand et al. [11] proposed
a measure to test this tendency by calculating the statis-
tical significance of the TF knockout targets for being in
the same protein-protein interaction module. According
to Reimand et al.’s definition, a protein-protein interaction
module consists of core genes and neighborhood genes.
Core genes are those genes which are in the dataset and
have physical protein-protein interactions with at least
one gene in the dataset. Neighborhood genes are those
genes which are not in the dataset but have physical
protein-protein interactions with at least one of the core
genes. The physical protein-protein interaction data were
downloaded from BioGRID database [18]. For each of the
112 TFs, we tested whether a dataset (refined or original)
is enriched in the same protein-protein interaction mod-
ule using Reimand et al.’s measure. The statistical signifi-
cance was computed using hypergeometric distribution
[19] (see Methods for more details). Finally, the p-values
were corrected for multiple hypotheses testing to ensure
FDR<0.05.
Of the 112 TFs, 82% (92/112) are enriched for mem-

bership to a protein-protein interaction module in the
refined dataset, compared with only 71% (80/112) for
the original dataset (see Additional file 5: Table S4 for
more details). The refined dataset has 11% performance
improvement over the original dataset on this test. In
summary, the refined dataset shows higher tendency to
have physical protein-protein interactions.
Discussion
Our method can generate experimentally testable
hypotheses of how a TF may regulate its knockout
targets
In our method, an original TF knockout target (identified
by Reimand et al. [11]) is said to be biologically interpret-
able if a path from the knocked-out TF to this target
could be identified in the TF binding network. The iden-
tified paths form experimentally testable hypotheses
regarding the molecular mechanisms of how a TF may
regulate its TF knockout targets, providing possible
insights for biologists to do more detailed investigations.
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The experimentally testable hypothesis for each biologic-
ally interpretable TF knockout target could be found in
Additional file 2: Table S1. About seven hundred hypoth-
eses generated by our method have been experimentally
validated in the literature (see Additional file 6: Table S5
for more details). Two examples are discussed in details
here. The first example is a hypothesis of how Hsf1 regu-
lates RPT4. RPT4 is a knockout target of Hsf1 from Reim-
and et al.’s study [11]. RPT4 encodes an ATPase of the 19S
regulatory particle of the 26S proteasome involved in the
protein degradation process and Hsf1 is a heat shock tran-
scription factor [20]. Since the RPT4 promoter has no Hsf1
binding sites, it is hard to imagine how Hsf1 regulates
RPT4. Our method identified a path Hsf1!RPN4!RPT4,
suggesting Hsf1 regulates RPT4 through the intermediate
TF Rpn4, a TF that regulates expression of proteasome
genes involved in the protein degradation process [20].
The identified path has been experimentally proven to exist
in the yeast cells. Several studies [6,7,21-26] showed that
Hsf1 can directly regulate RPN4 by binding to the HSE
(heat shock element) in the RPN4 promoter and Rpn4 can
directly regulate RPT4 by binding to the PACE (prote-
asome-associated control element) in the RPT4 promoter
(see Figure 4a). The heat-induced expression of Rpn4 pro-
tein (activated by Hsf1) leads to expression of Rpn4 direct
targets (e.g., RPT4) at later stages of heat stress, providing
a temporal controlling mechanism for proteasome synthe-
sis to degrade the irreversibly damaged proteins caused by
heat stress [22]. In summary, the identified path explains
Figure 4 Examples of our hypotheses that have been experimentally
Reimand et al.’s study [11]. Since the RPT4 promoter has no Hsf1 binding s
identified a path Hsf1!RPN4!RPT4, suggesting Hsf1 regulates RPT4 throug
experimentally proven to exist in the yeast cells [6,7,21-26]. (b) ETR1 is a kn
ETR1 promoter has no Stp2 binding sites, it is hard to imagine how Stp2 re
suggesting Stp2 regulates ETR1 through the intermediate TF Adr1. The iden
[6,7,23,27-29].
how a heat shock TF can regulate a protein involved in the
protein degradation, indicating a close linkage between the
heat shock response and the protein degradation process.
Another example is a hypothesis of how Stp2 regu-

lates ETR1. ETR1 encodes a member of the medium
chain dehydrogenase/reductase family with 2-enoyl
thioester reductase activity and has a probable role in
fatty acid synthesis [20]. Stp2 is a TF which activates
transcription of amino acid permease genes [20]. Since
the ETR1 promoter has no Stp2 binding sites, it is
hard to imagine how Stp2 regulate ETR1. Our method
identified a path Stp2!ADR1!ETR1, suggesting Stp2
regulates ETR1 through the intermediate TF Adr1, a
TF that regulates expression of genes involved in the
fatty acid utilization [20]. The identified path has been
experimentally proven to exist in the yeast cells. Sev-
eral studies [6,7,23,27-29] showed that Stp2 can dir-
ectly regulate ADR1 by binding to the Stp2 binding
site (GYGCCGYR) in the ADR1 promoter and Adr1
can directly regulate ETR1 by binding to the UAS1
(type 1 upstream activation sequence) in the ETR1
promoter (see Figure 4b). In summary, the identified
path explains how a TF, which activates transcription
of amino acid permease genes, can regulate a protein
involved in the fatty acid synthesis, indicating a close
linkage between the extracellular amino acid uptake
and fatty acid synthesis. Another 690 examples which
also have been experimentally validated in the litera-
ture are listed in Additional file 6: Table S5.
validated in the literature. (a) RPT4 is a knockout target of Hsf1 from
ites, it is hard to imagine how Hsf1 regulates RPT4. Our method
h the intermediate TF Rpn4. The identified path has been
ockout target of Stp2 from Reimand et al.’s study [11]. Since the
gulate ETR1. Our method identified a path Stp2!ADR1!ETR1,
tified path has been experimentally proven to exist in the yeast cells
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Our method can separate signals from noises in the
original dataset
Our method classified the original TF knockout targets
into biologically interpretable and uninterpretable ones.
We called the former “signals” and the latter “noises”. To
justify our claim, we need to prove that the signals are
more biologically meaningful than the noises. We assessed
the functional enrichment, the expression coherence, and
the prevalence of protein-protein interactions. As shown
in Table 1, the signals outperform the noises across all
measures, indicating that our method is effective in separ-
ating signals from the noises in the original TF knockout
targets (see Additional file 7: Table S6 for more details).

Our result is better than the random results
Our result is extracted from Reimand et al.’s result by re-
moving the predicted false positives, which are about
10% of Reimand et al.’s result. Although we have shown
(in the Results section) that our result is better than
Reimand et al.’s result, it would be more convincing if
we can also show that our result is better than the ran-
dom results. The random result was obtained by ran-
domly removing 10% of Reimand et al.’s result. By
repeating this process ten times, we acquired ten ran-
dom results. We then compared our result with these
ten random results by assessing the functional enrich-
ment, the expression coherence, and the prevalence of
protein-protein interactions. As shown in Figure 5, our
result outperforms all these ten random results, suggest-
ing that our result is of statistical significance.

Our method performs better than two other existing
methods
Two other methods have been developed to infer TF
knockout targets using He et al.’s TFKMs. The first
method, developed by Hu et al. [8], defined the TF
knockout targets by using an error model for identifying
Table 1 The signals are more biologically meaningful
than the noises

Test (with FDR=0.05) Test results

Functional enrichment Our result has an equal or higher enrichment
score than the noises in 94% (105/112)
of the cases.

Expression coherence Of the 112 TFs, 57% (64/112) show
significantly higher expression coherence in
the signals, compared with only 6% (7/112)
in the noises.

The prevalence of
protein-protein
interactions

Of the 112 TFs, 82% (92/112) are enriched
for membership to a protein-protein
interaction module in the signals, compared
with only 19% (21/112) in the noises

To show that the signals are more biologically meaningful than the noises, we
assessed the functional enrichment, the expression coherence, and the
prevalence of protein-protein interactions. The signals outperform the noises
across all measures.
differentially expressed genes. The second method,
developed by Jiang et al. [30], refined Hu et al.’s result
using the TF binding and gene expression similarity in-
formation provided by ChIP-chip data and gene expres-
sion data, respectively. Since these two methods aim to
solve the same biological problem as our method does,
the performance comparison should be done. We com-
pared our result with the results of Hu et al.’s and Jiang
et al.’s by assessing the functional enrichment, the ex-
pression coherence, and the prevalence of protein-
protein interactions. As shown in Table 2, our result is
more biologically meaningful than their results, suggest-
ing that our method is better than these two existing
methods in identifying high-confidence TF knockout tar-
gets (see Additional file 8: Table S7 and Additional file 9:
Table S8 for details).

Two issues related to our method are discussed
Two issues related to our method are worthy of discus-
sion. First, there is tradeoff between coverage and preci-
sion for using different underlying network to search the
possible paths from a knocked-out TF to its knockout
targets. We tested two underlying networks. The first
one was the TF binding network whose edges are sup-
ported only by TF binding evidence deposited in the
YEASTRACT database [31]. The other one was the TF
regulatory network whose edges are supported by both
TF binding and TF regulation evidence deposited in the
YEASTRACT database. Our analyses showed that using
the TF binding network as the underlying network, the
coverage (i.e. the percentage of the biologically interpret-
able knockout targets) is 90% but the precision (i.e. the
average confidence score of an identified path) is only
18%. The confidence score of a path is defined as the
ratio of the TF-gene pairs (along the direction of the
identified path) that has literature evidence of TF regula-
tion (see Additional file 2: Table S1 for more details). On
the contrary, using the TF regulatory network as the
underlying network, the coverage reduces to 23% but
the precision increases to 73%.
The low precision (18%) resulting from using the TF

binding network is not surprising since the overlap be-
tween the TF binding data and TF knockout data is
very low. Several possible reasons have been proposed
in the literature [8,32] to explain this low overlap.
First, only a subset of bound TFs may affect a target
gene’s expression, depending on the location and
orientation of binding sites and the presence of other
cofactors [8]. Second, different TFs occupying the same
promoter could compensate for each other’s loss,
masking the deletion effect [8,32]. Third, a TF could
bind a promoter under normal growth conditions but
function under other specific stressful conditions [8].
On the other hand, the low coverage (23%) resulting
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from using the TF regulatory network is also under-
standable. The reason is that TF regulation information
with experimental evidence in the literature now is not
rich enough to construct a biologically meaningful TF
Table 2 Our result is more biologically meaningful than Hu e

Test (with FDR=0.05) Our result vs. Hu et al.’s result

Functional enrichment Our result has an equal or higher enrichment s
Hu et al.’s result in 83% (93/112) of the cases.

Expression coherence Of the 112 TFs, 86% (96/112) show significantly
expression coherence in our result,
compared with only 2% (2/112) in Hu et al.’s re

The prevalence of
protein-protein
interactions

Of the 112 TFs, 82% (92/112) are enriched for m
to a protein-protein interaction module in our
compared with only 38% (43/112) in Hu et al.’s

To show that our result is more biologically meaningful than Hu et al.’s and Jiang e
and the prevalence of protein-protein interactions. Our result outperforms their res
Jiang et al.’s result was performed on 35 TFs since only the TF knockout targets of t
regulatory network. That is, there are too many miss-
ing edges (i.e., false negatives) in the constructed TF
regulatory network. We believe that this problem will
be solved in the near future since the high-throughput
t al.’s and Jiang et al.’s results

Our result vs. Jiang et al.’s result

core than Our result has an equal or higher enrichment score
than Jiang et al.’s result in 83% (29/35) of the cases.

higher

sult.

Of the 35 TFs, 49% (17/35) show significantly
higher expression coherence in our result,
compared with only 31% (11/35) in Jiang et al.’s result.

embership
result,
result.

Of the 35 TFs, 91% (32/35) are enriched for
membership to a protein-protein interaction module
in our result, compared with only 31% (11/35) in
Jiang et al.’s result.

t al.’s results, we assessed the functional enrichment, the expression coherence,
ults across all measures. Note that the comparison between our result and
hese 35 TFs were reported in Jiang et al.’s study.
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experimental technology for systems biology study
evolves rapidly.
The other issue is about the predicted false positives.

Our method regards an original TF knockout target as a
false positive if no path (in the TF binding network) from
the knocked-out TF to this target could be found. How-
ever, the knocked-out TF may regulate some of its
knockout targets through TF-TF interactions at the pro-
tein level but not through transcriptional regulatory
chains. In that case, our method would incorrectly regard
a real TF knockout target as a false positive. We investi-
gated the severity of this problem in details. Among the
false positives defined by our method, only 4% (153/
3492) has independent literature evidence of TF regula-
tion other than Reimand et al.’s study [11] (see Add-
itional file 10: Table S9 for more details). Therefore, we
believe that most of the predicted false positives indeed
represent the noises in the original TF knockout targets.

Conclusions
In this paper, we developed a method that can extract
biologically interpretable TF knockout targets from the
original TF knockout targets inferred solely from the
noisy TFKMs. An original TF knockout target is said to
be biologically interpretable if a path could be identified
from the knocked-out TF to this target in the TF binding
network. Our refined TF knockout targets outperform
the original TF knockout targets across all measures: the
functional enrichment, the expression coherence, and
the prevalence of protein-protein interactions. Moreover,
the identified paths from the knocked-out TF to its
knockout targets in the TF binding network form experi-
mentally testable hypotheses of how a TF may regulate
its knockout targets. About seven hundred hypotheses
generated by our method have been experimentally vali-
dated in the literature. We believe that the other hypoth-
eses provide valuable information for biologists to design
traditional gene-specific experiments for studying the
molecular mechanisms of gene regulation.

Methods
Data sources
Two data sources were used in this study. First, the ori-
ginal TF knockout targets of 112 TFs under study were
downloaded from Reimand et al.’s study [11]. The
knockout targets of each TF (in Reimand et al.’s study)
were those differentially expressed genes identified by
applying the moderated eBayes t-test [12] to Hu et al.’s
TFKMs [8]. Second, the ChIP-chip data used to con-
struct the TF binding network were downloaded from
the YEASTRACT database [31]. This is the most com-
prehensive ChIP-chip dataset since almost all the ChIP-
chip data available in the public domain are collected in
the YEASTRACT database.
Finding a shortest path from the knocked-out TF to its
knockout targets in the TF binding network
In our method, an original TF knockout target (inferred
solely from the noisy TFKMs) is said to be biologically
interpretable if a path from the knocked-out TF to this
target could be identified in the TF binding network. A
famous graph search algorithm, called the breadth-first
search (BFS) algorithm [33], in the graph theory was
modified to search paths in a network. Our modified
version can handle loops in the graph which cannot be
done in the original BFS algorithm. For each original TF
knockout target, our modified BFS (mBFS) algorithm
was applied to find a shortest path from the knocked-
out TF to this target in the TF binding network. The
pseudocode of our mBFS algorithm is as follows.
mBFS (Directed graph =TF binding network, Start

node =Knocked-out TF, Destination node =TF knockout
target being tested):

INITIAL STAGE:

Set Visited_list and Waiting_list be two empty sets.
Add Start node into Waiting_list.
Set Path[Start node] = Start node.
Set Path[i] be an empty set for each node i (except for
Start node) in Directed graph.

LOOPING STAGE:

while (Waiting_list is not empty)
{
Remove the first node v in Waiting_list.
Add v to the end of Visited_list.
for (each direct successor u of v in Direct graph)
{
if (u is the Destination node)
{
Add u to the end of Visited_list.
Append u to path[v] and set it path[u].
TERMINATE while loop.

}
else if (u is not in Visited_list)
{
Add u to the end of Waiting_list.
Append u to path[v] and set it path[u].

}
}

}

OUTPUT STAGE:

if (path[Destination node] is empty)
return “No Path Exists!”

else
return path[Destination node]
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Calculating statistical significance using the
hypergeometric distribution
The hypergeometric distribution [34] was used to calcu-
late the statistical significance of the TF knockout targets
for being in a protein-protein interaction module. The
details are as follows. Let S be the set of the TF knock-
out targets, T be the constructed protein-protein inter-
action module according to Reimand et al.’s definition
[11], V = S \ T be the set of the TF knockout targets
that are also in the constructed protein-protein inter-
action module, and G be the set of all genes in the yeast
genome. Then the p-value for rejecting the null hypoth-
esis (H0: the TF knockout targets are not enriched for
the membership to a protein-protein interaction mod-
ule) is calculated by

p ¼ P x≥ Vj jð Þ ¼
Xmin Sj j; Tj jð Þ

x≥ Vj j

Sj j
x

� �
Gj j � Sj j
Gj j � x

� �

Gj j
Tj j

� � ;

where |G| means the number of genes in set G.
Additional files

Additional file 1: Figure S1. Provides the detailed explanation of why
we only reported the analyses results of 112 TFs.

Additional file 2: Table S1. Provides the numbers and the detailed
gene lists of our refined (i.e., biologically interpretable) and the original TF
knockout targets identified by Reimand et al. for the 112 TFs under study.
Moreover, the identified path for each biologically interpretable TF
knockout target can also be found in this table. The identified paths form
experimentally testable hypotheses regarding the molecular mechanisms
of how a TF may regulate its knockout targets.

Additional file 3: Table S2. Provides the detailed information about
the functional enrichment test of the refined and the original datasets.

Additional file 4: Table S3. Provides the detailed information about
the expression coherence test of the refined and the original datasets.

Additional file 5: Table S4. Provides the detailed information about
the protein-protein interaction enrichment test of the refined and the
original datasets.

Additional file 6: Table S5. Provides the detailed information about
the 692 hypotheses (generated by our method) that have been
experimentally validated in the literature [35].

Additional file 7: Table S6. Provides the detailed information about
the tests of the functional enrichment, expression coherence, and the
prevalence of protein-protein interactions of the signals and the noises.

Additional file 8: Table S7. Provides the detailed information about
the tests of the functional enrichment, the expression coherence, and the
prevalence of protein-protein interactions of our result and Hu et al.’s
result.

Additional file 9: Table S8. Provides the detailed information about
the tests of the functional enrichment, the expression coherence, and the
prevalence of protein-protein interactions of our result and Jiang et al.’s
result.

Additional file 10: Table S9. Provides the detailed information of
those TF knockout targets that were predicted (by our method) as false
positives but have independent TF regulation evidence in the literature
[35] other than Reimand et al.’s study.
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