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Mammalian cells can release different types of extracellular vesicles (EVs),

including exosomes, microvesicles, and apoptotic bodies. Accumulating evi-

dence suggests that EVs play a role in cell-to-cell communication within

the tumor microenvironment. EVs’ components, such as proteins, noncod-

ing RNAs [microRNAs (miRNAs), and long noncoding RNAs

(lncRNAs)], messenger RNAs (mRNAs), DNA, and lipids, can mediate

paracrine signaling in the tumor microenvironment. Recently, miRNAs

encapsulated in secreted EVs have been identified in the extracellular space.

Mature miRNAs that participate in intercellular communication are

released from most cells, often within EVs, and disseminate through the

extracellular fluid to reach remote target cells, including tumor cells, whose

phenotypes they can influence by regulating mRNA and protein expression

either as tumor suppressors or as oncogenes, depending on their targets. In

this review, we discuss the roles of miRNAs in intercellular communica-

tion, the biological function of extracellular miRNAs, and their potential

applications for diagnosis and therapeutics. We will give examples of miR-

NAs that behave as hormones.

1. Introduction

MicroRNAs (miRNAs) are a class of short noncoding

RNAs that play key roles in almost all biological

pathways in mammalian and other organisms

(Ambros, 2004; Bartel, 2004). miRNAs are 19–25
nucleotides in length and can regulate gene expression

both at the transcriptional and at translational level

by repressing target genes (Ambros, 2004; Bartel,

2004). Initially, miRNAs are transcribed as thousand-

base-long primary transcripts by RNA polymerase II

and are called precursor miRNAs (Ambros, 2004;

Bartel, 2004). Precursor miRNAs are exported to the

cytoplasm via exportin 5, where they are integrated

into DICER and RNA-induced silencing complex

(RISC), which includes argonaute proteins. Finally,

mature miRNA strands specifically bind to partially

complementary sequence motifs in the 30 untranslated
region of target mRNA (Ambros, 2004; Bartel, 2004).

In 2002, we demonstrated that a coding gene on a

region of the long arm of chromosome 13, at 13q14,

was frequently deleted in chronic lymphocytic leuke-

mia (CLL) and that this deletion caused the loss of

two miRNAs (miR-15a and miR-16-1) (Bullrich et al.,

2001). Subsequently, we reported that the chromo-

some 13q14 region was deleted in more than 65% of
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CLL patients and that allelic loss in this region corre-

lates with downregulation of both miR-15 and miR-

16 expression (Calin et al., 2002). This finding opened

new opportunities for noncoding RNAs in cancer

research.

Extracellular vesicles (EVs) are small membrane

vesicles, such as ectosomes, microparticles, microvesi-

cles (MVs), tumor-derived MVs (TMVs), exosomes,

and oncosomes that are produced by different mech-

anisms and can be released from almost all cell types

(Cocucci and Meldolesi, 2011; Raposo and Stoorvo-

gel, 2013; Redis et al., 2012; Valadi et al., 2007).

EVs participate in cell–cell communication and can

typically be classified based on their size (from 4 to

10 microns), intracellular origin, and density

(Cocucci and Meldolesi, 2011; Raposo and Stoorvo-

gel, 2013; Valadi et al., 2007). EVs can be found in

all different body fluids, such as blood, serum,

plasma, saliva, urine, and pleural effusions (Fernan-

dez-Mercado et al., 2015; Liu et al., 2017a; Mitchell

et al., 2008; Ortiz-Quintero, 2016; Weber et al.,

2010). In the last decade, several studies have shown

that EVs are enriched for various proteins, such as

cytokines, messenger RNAs, lipids, and noncoding

RNAs, such as miRNAs and long noncoding RNAs

(lncRNAs) (Colombo et al., 2013; Valadi et al.,

2007). The content of EVs, which are shed by

almost all cell types under both physiological and

pathological conditions, can be transported from a

parental cell to neighboring cells (Arita et al., 2008;

Cocucci and Meldolesi, 2011; Thery et al., 2009;

Trajkovic et al., 2008). Through their protein, RNA,

and DNA cargoes, EVs can regulate important bio-

logical functions of recipient cells, such as prolifera-

tion, angiogenesis, and apoptosis, processes that are

deregulated in human cancers (Clayton et al., 2004;

Kanlikilicer et al., 2016; Rashed et al., 2017; Valadi

et al., 2007).

In this review, we summarize the current knowl-

edge regarding the contributions of miRNAs in

secreted EVs, their potential clinical and therapeutic

applications, biological significance, relationship with

tumors, and roles in cell–cell communication.

2. How cells communicate

The best-known mechanisms of cell–cell communica-

tion are chemical receptor-mediated events, direct

cell–cell interaction, and cell–cell synapses (Valadi

et al., 2007). In recent years, an additional mecha-

nism has been identified via extracellular vesicles

(Fig. 1), which will be described in the following sec-

tions.

2.1. EVs: an alternative type of cell–cell
communication

Exosomes are the best characterized class of EVs; they

are secreted by almost all cell types, are 40 to 100 nm

in diameter, and are enriched in a 1.13–1.19 g�mL�1

fraction in a sucrose density gradient (Kanada et al.,

2015; Turturici et al., 2014). The protein and lipid

composition of exosomes reflects their cellular sources

(Staubach et al., 2009; Yim et al., 2016). The most

common exosomal proteins are annexins, tetraspanins

(CD63, CD81, CD82, and CD9), and heat-shock pro-

teins (Hsp60, Hsp70, and Hsp90). In 2007, Valadi

et al. showed a new mechanism of cell–cell communi-

cation: delivery of RNA by transfer through exosomes.

They demonstrated that exosomes carry both mRNAs

and miRNAs when released from mouse and human

mast cells and that many of these RNAs seem to be

packaged exclusively into exosomes. Zhang et al.

(2010) have been reported that cells can selectively

package miRNAs into MVs and secreted miRNAs can

act as signaling molecules mediating intercellular com-

munication. In their study, it has been demonstrated

that miR-150 (a leukocyte and lymphocyte-specific

miRNA) was selectively packaged into MVs and exo-

somal miR-150 entered the recipient cells (Zhang

et al., 2010). Exosomal miR-150 derived from THP1

cells can enter and deliver into human microvascular

endothelial HMEC-1 cells, and delivered miR-150 dra-

matically reduced c-Myb expression level and pro-

moted cell migration (Zhang et al., 2010).

2.2. High-density lipoproteins as carriers of

extracellular miRNAs

Circulating miRNAs can be transported from donor

cells to recipient cells by exosomes, microvesicles,

apoptotic bodies, lipoproteins, and ribonucleoproteins

(such as nucleophosmin 1 and argonaute 2) (Boon

and Vickers, 2013; Vickers and Remaley, 2012). New

studies have revealed that high-density lipoproteins

(HDL) and low-density lipoproteins (LDL) can trans-

port miRNAs into cells as well (Vickers et al., 2011).

In 2011, Vickers et al. demonstrated that several types

of RNAs, such as miRNAs and tRNAs, could be

detected in HDL and LDL particles. They profiled

approximately 700 miRNAs in pure human HDL par-

ticles using real-time PCR-based TaqMan Low-Den-

sity Arrays (TLDA) (Vickers et al., 2011) and found

that miR-135a*, miR-188-5p, and miR-877 were

upregulated in healthy control HDL particles, while

miR-223, miR-105, and miR-106a were upregulated in

HDL particles from patients with familial
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hypercholesterolemia. In addition, they showed that

HDL-mediated miRNA-223 transport represses

cholesterol uptake by direct binding to the 30-UTR of

the scavenger receptor BI (SR-BI) mRNA and con-

trols its expression and function (Vickers et al., 2011).

Tabet et al. (2014) demonstrated that miR-223 is

transferred from native HDL to endothelial cells and

HDL inhibits expression of intercellular adhesion

molecule 1 (ICAM-1) through the transfer of miR-223

to endothelial cells. All these findings support that

HDL-miRNA delivery is a new mechanism of miRNA

transport.

Fig. 1. MicroRNAs release and uptake mechanism between donor and recipient cells. Biogenesis of exosomes. Early endosomes originate

from the cell membrane via endocytosis. Multivesicular bodies originate by invagination of the plasma membrane. Multivesicular bodies

fuse with the plasma membrane and exosomes are released into the extracellular space. Some types of miRNAs are generally localized in

membrane-derived vesicles (exosomes, microvesicles, apoptotic bodies), while some miRNAs are found mainly in miRNA-binding protein

complexes, such as Ago-2, or high-density lipoproteins (HDL). Finally, miRNAs enter into recipient cells and interact with specific target

genes.
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3. Transfer of biological information
between tumor microenvironment and
malignant cells via miRNAs

It has long been known that small molecules, cytoki-

nes, and growth factors mediate functional interactions

between cancer cells and the tumor microenvironment

(Schoepp et al., 2017). However, recent studies have

revealed that cancer cells also transfer functional infor-

mation at the paracrine level using EVs. In fact, it

appears that the cargo of EVs can influence the stroma

by activating molecular pathways, which are at least

partially different from those modulated by soluble

factors. The tumor microenvironment (TME) plays

critical roles in the initiation, development, and pro-

gression of cancer. The TME includes extracellular

matrix as well as different types of cells, including can-

cer-associated fibroblasts (CAFs), tumor-associated

macrophages (TAMs), endothelial cells, pericytes, and

immune cells (Berindan-Neagoe and Calin, 2014;

Friedl and Alexander, 2011; Laberge et al., 2012).

3.1. miRNAs and cancer-associated fibroblasts

Fibroblasts are the most common constituent in

human tissues and tumors, and they regulate tissue

repair and inflammation during wound healing (Kal-

luri and Zeisberg, 2006). Previous studies have

reported that activated tumor fibroblasts or cancer-

associated fibroblasts are phenotypically and function-

ally different from normal fibroblasts (Zhang et al.,

2017). CAFs have been shown to stimulate cancer pro-

gression and proliferation through helping create the

extracellular matrix (ECM) and through the secretion

of a variety of cytokines, chemokines, and growth fac-

tors, such as vascular endothelial growth factor

(VEGF), transforming growth factor-b (TGF-b), and

fibroblast growth factor 2 (FGF2) (Kalluri, 2016; Kal-

luri and Zeisberg, 2006; Orimo et al., 2005; Shen et al.,

2016). Accumulating evidence suggests that miRNAs

play key roles in the activation and transition of

fibroblasts (Aprelikova et al., 2013; Mitra et al., 2012).

Recent studies have shown deregulated miRNA

expression in CAFs from clinical specimens. For

instance, in 2012, Mitra et al. demonstrated that miR-

155 was upregulated, while miR-31 and miR-214 were

downregulated, in ovarian CAFs when compared with

primary human normal omental fibroblasts or primary

human CAFs. They found that triple transfection of

these miRNAs with mimics activated tumor-promoting

functions, such as migration, invasion, and colony for-

mation, in primary human normal omental fibroblasts

(Mitra et al., 2012). In 2014, Yeung et al. used next-

generation sequencing to show that miR-21 expression

is upregulated in exosomes and tissue isolated from

cancer-associated adipocytes (CAAs) and CAFs (Au

Yeung et al., 2016). Moreover, it has been shown that

exosomes can be secreted by CAFs and taken up by

cancer cells, as isolated exosomes from primary CAFs

transfected with labeled miR-21 successfully entered

ovarian cancer cells (Au Yeung et al., 2016). They

confirmed transfer of miR-21 from primary CAFs to

ovarian cancer cells by co-culturing CAFs transfected

with labeled miR-21 with ovarian cancer cells (Au

Yeung et al., 2016). In addition, miR-21 was fre-

quently upregulated in CAFs from both human pan-

creatic ductal adenocarcinoma samples and primary

cell cultures, and higher expression of miR-21 was sig-

nificantly correlated with decreased overall survival in

pancreatic ductal adenocarcinoma patients (Donahue

et al., 2014; Kadera et al., 2013). In esophageal squa-

mous cell carcinoma, miR-21 expression in tumor tis-

sues was found to be primarily localized in the stroma

adjacent to the cancer cells (Nouraee et al., 2013). We

further showed that miR-21 could be secreted by

fibroblasts in the microenvironment and taken up by

cancer cells, resulting in increased migration and inva-

sion potential of esophageal tumor cells (Nouraee

et al., 2013). However, the exact mechanism of miR-21

secretion and transportation was not explored. Finally,

miR-21 was found to induce the expression of CAF

markers, suggesting its involvement in the ‘activation’

of fibroblasts to CAFs (Nouraee et al., 2013).

Yang et al. (2014) investigated the miRNA signa-

tures of CAFs and normal fibroblasts isolated from

human gastric cancer tissue, and they reported that

miR-34b, miR-93, miR-301a, and miR-106b were sig-

nificantly upregulated, while miR-483-3p, miR-26a, let-

7g, miR-148a, miR-145, miR-424, and miR-214 were

significantly downregulated in CAFs compared with

corresponding normal fibroblasts. To understand the

clinical significance of miR-106b expression, they ana-

lyzed a subset of patients with gastric cancer and

found that overall survival was dramatically higher in

patients with low miR-106b expression than in patients

with high miR-106b expression (Yang et al., 2014).

Baroni et al. (2016) revealed that in patients with dif-

ferent breast cancer subtypes (luminal-A, luminal-B,

HER2, and triple negative), miR-9 was upregulated in

primary triple-negative breast CAFs when compared

to normal fibroblasts (NFs). They also demonstrated

that miR-9 secreted from tumors can be transferred to

recipient normal fibroblasts via exosomes and that

miR-9 uptake leads to increased cell motility in normal

fibroblast cells that overexpress this miRNA (Baroni

et al., 2016). They co-injected MDA-MB-468 triple-
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negative breast cancer cells with either normal fibrob-

lasts or normal fibroblasts that overexpressed miR-9

into the mammary fat pad of 8-week-old female SCID

mice, and found that tumor volume was significantly

increased in mice co-injected with MDA-MB-468

breast cancer cells and normal fibroblasts overexpress-

ing miR-9, compared with the control group (Baroni

et al., 2016). These findings showed that higher expres-

sion levels of miR-9 in fibroblasts affect breast cancer

progression and provide new insights into the role of

miR-9 in the crosstalk between cancer cells and stroma

(Baroni et al., 2016). (Donnarumma et al. (2017)

showed that the release of specific miRNAs from CAF

exosomes can promote oncogenic signaling in breast

cancer. Their results demonstrated that three miRNAs

(miR-21, miR-143, and miR-378e) were significantly

upregulated in CAF exosomes in respect to NF exo-

somes (Donnarumma et al., 2017). When T47D lumi-

nal-A breast cancer cells were treated with exosomes

isolated from NFs and CAFs and labeled with

PKH26, they found that T47D cells are able to take

up exosomes derived from CAFs and NFs (Don-

narumma et al., 2017). Furthermore, they observed

that CAF exosomes treatment significantly promoted

stemness, EMT, invasiveness capacity, and anchorage-

independent cell growth (Donnarumma et al., 2017).

Pang et al. (2015) showed that miR-155 was upregu-

lated in exosomes derived from pancreatic cancer cells.

They co-cultured primary mouse pancreatic fibroblast

cells with BxPC-3 and SW1990 pancreatic cancer cells

and showed that normal fibroblasts could convert into

CAFs after miR-155 had been taken up (Pang et al.,

2015). They demonstrated that miR-155 targets the

TP53INP1 protein, leading to increased alpha-SMA

protein expression in normal fibroblasts (Pang et al.,

2015). Altogether, their results indicated that miR-155

in exosomes secreted from pancreatic cancer cells

might activate normal fibroblasts by targeting

TP53INP1 (Pang et al., 2015). In conclusion, CAFs

regulate tumorigenesis in many cancer types through

exosome-mediated delivery of specific miRNAs

(Fig. 2).

3.2. miRNAs and tumor-associated macrophages

Macrophages originate from precursor blood mono-

cytes and play key roles in the immune system.

Depending on their polarization state, they can per-

form distinct functions in different biological pro-

cesses. Traditionally, macrophages can be categorized

as either classically activated (M1) macrophages or

alternatively activated (M2) macrophages (Biswas and

Mantovani, 2010; Lawrence and Natoli, 2011; Mosser

and Edwards, 2008). M1 macrophages play key roles

in the pro-inflammatory and antitumor responses and

are induced by toll-like receptors (TLRs), IFN-c, and
lipopolysaccharide (LPS), while M2 macrophages are

activated by IL-4 and IL-13 and are responsible for

angiogenesis, tissue remodeling, and tumor progression

(Mantovani et al., 2007; Zhang et al., 2012).

Tumor-associated macrophages (TAMs) are gener-

ally composed of M2-polarized macrophages and asso-

ciated with poor clinical outcomes in patient with

various cancer types (Noy and Pollard, 2014; Steidl

et al., 2010). TAMs share many similarities with the

M2-polarized macrophages population and can affect

different protumoral functions, such as promotion of

angiogenesis, matrix remodeling, secretion of growth

factors, and suppression of inflammation and adaptive

immunity (Binnemars-Postma et al., 2017; Sica et al.,

2006). Recent studies showed that new molecular play-

ers, miRNAs, have an important role in the polariza-

tion of TAMs and on monocyte/macrophage lineage

development (Baer et al., 2016; Li et al., 2015; Wang

et al., 2015). (Baer et al. (2016) showed that deletion

of the miRNA-processing enzyme DICER regulates

TAM programming. They generated Dicer1-knockout

mice and employed orthotropic mammary carcinoma,

subcutaneous lung and colorectal carcinoma models.

Macrophage-specific Dicer1 deletion significantly

delayed tumor progression. They demonstrate that let-

7-5p family members were upregulated in Dicer-knock-

out and wild-type TAMs (Baer et al., 2016). These

findings suggest that Dicer1 deletion can regulate the

antitumor phenotype of M2 TAMs to M1-like TAMs

in different types of tumor models (Baer et al., 2016).

Squadrito et al. (2012) described that the human and

mouse mannose receptor MRC1 gene encodes miR-

511-3p, an intronic miRNA, and showed that miR-

511-3p and MRC1 are transcriptionally co-regulated.

They overexpressed miR-511-3p in BM-derived

hematopoietic cells and injected Lewis lung carcinoma

(LLC) cells in mice and were able to show that overex-

pression of miR-511-3p inhibited tumor growth in the

LLC model (Squadrito et al., 2012). (Sonda et al.

(2013) identified 79 differentially expressed miRNAs in

either tumor-infiltrating versus normal CD11b+ cells

purified from the spleen of healthy mice. They found

that miR-142-3p and miR-150 were the most downreg-

ulated miRNAs in tumor-infiltrating CD11b+ cells

and computationally determined genes that are

involved in monocyte–macrophage commitment, as

well as potential target genes of miR-142-3p (Sonda

et al., 2013). They further showed that miR-142-3p

directly regulates gp130, which is a common subunit

of the interleukin-6 cytokine receptor family that
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regulates macrophage generation (Sonda et al., 2013).

A comprehensive list of extracellular miRNAs shut-

tling between cancer cells and their neighboring cells

can be found in Table 1.

4. miRNAs function as toll-like
receptors ligands

Toll-like receptors (TLRs) are highly conserved patho-

gen recognition receptors that play a key role in the

active innate immune system of all multicellular organ-

isms (Takeda et al., 2003). TLRs are widely expressed

in different cell types, including macrophages, dendritic

cells (DCs), neutrophils, natural killer cells, and fibrob-

lasts (Batool et al., 2016; Visintin et al., 2001). TLRs

recognize conserved structural motifs of pathogens

(pathogen-associated molecular patterns, PAMPs)

including flagellins, nucleic acids, lipoproteins, saccha-

rides, and peptidoglycans (Akira, 2009). In addition,

TLRs induce chronic inflammation and regulate the

maintenance of tissue homeostasis. Despite their

structural and functional similarities, each member of

the TLR family recognizes specific ligands and has a

different cellular localization. TLR1, 2, 4, 5, 6, and 10

are expressed on cell surfaces that are involved in the

recognition of cell surface molecules, while TLR3, 7,

8, and 9 are located intracellularly and recognize

nucleic acids.

Previous studies showed that TLRs, especially

TLR7 and TLR8, recognize GU-rich single-stranded

RNA (ssRNA) derived from human immunodeficiency

virus-1 (HIV-1) in certain cell types, such as dendritic

cells and B lymphocytes, which leads to cell activation

and IFN-a release (Heil et al., 2004; Lund et al.,

2004). In 2012, Fabbri et al. showed that tumor-

secreted miRNAs are involved in intercellular commu-

nication in the tumor microenvironment as they can

bind and activate TLR7 and TLR8 (Fabbri et al.,

2012). They found that miR-16, miR-21, miR-27b, and

miR-29a were highly expressed in exosomes (Fabbri

et al., 2012). Interestingly, miR-16 was upregulated in

exosomes from derived HEK cells, while miR-21 and

Fig. 2. Schematic illustration of the interaction between primary tumor cells and tumor microenvironment through miRNAs. miRNAs can

play a key role in cell–cell communication in several physiological and pathophysiological processes associated with many human diseases,

including cancer. Selected examples of paracrine miRNA signaling between primary tumor cells, immune cells, and endothelial cells are

shown.
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miR-29a were upregulated in exosomes from derived

non-small-cell lung cancer cells (Fabbri et al., 2012).

They observed that lung cancer-specific miR-21 and

miR-29a bind to TLR7 and TLR8 and activate

TLR-mediated NF-jB signaling, as well as increase

secretion of the prometastatic and pro-inflammatory

cytokines TNF-a and IL-6 (Fabbri et al., 2012). Leh-

mann and colleagues showed that extracellular let-7 is

a potential activator of TLR7 signaling in both

immune cells and neurons (Lehmann et al., 2012).

They found that extracellular let-7 interacts with

TLR7, which is expressed on central nervous system

(CNS) neurons, and they detected TLR7 mRNA in

the mouse brain cortex (Lehmann et al., 2012). These

findings suggest that in addition to cancer-specific exo-

somal miRNAs, let-7 can bind to TLR7 and plays a

Table 1. MicroRNAs as hormones: extracellular miRNAs shuttling between cancer cells and their neighboring cells.

miRNA

Donor

cells Accepting cells Target/Pathway Function/impact References

miR-21,-143,-378 CAFs Breast cancer cells EMT Promotes the stemness and

EMT

Donnarumma et al. (2017)

miR-21 CAFs Ovarian cancer cells APAF1 Stimulates cancer cell

motility and invasion

Au Yeung et al. (2016)

miR-146a CAFs Pancreatic cells Snail Increases proliferation Richards et al. (2017)

miR-9 CAFs Normal fibroblasts CDH1 Enhances cell motility Baroni et al. (2016)

miR-29b CAFs Breast cancer cells CCL11 and CXCL14 Inhibits breast cancer

cellular viability and

metastasis

Liu et al. (2017b)

miR-409 CAFs Prostate cancer cells RSU1 and STAG2 Induces cell growth and

EMT

Josson et al. (2015)

miR-133b CAFs Normal fibroblasts IL6 and TGF-b Promotes fibroblast

activation

Doldi et al. (2015)

miR-320a CAFs Hepatocellular

carcinoma cells

PBX3 Inhibits tumor progression Zhang et al. (2017)

miR-221 CAFs Breast cancer cells IL6/Stat3 Promotes hormonal therapy

resistance

Sansone et al. (2017)

miR-124 CAFs Oral cancer cells CCL2 and IL-8 Promotes cell growth and

migration

Li et al. (2017)

miR-7 CAFs Head and neck

cancer cells

RASSF2 Enhances cell proliferation

and migration

Shen et al. (2017)

miR-101 CAFs Hepatocellular

cancer cells

TGF-bR1, Smad2,

and VE-cadherin

Inhibits vascular mimicry

formation

Yang et al. (2016)

miR-141,-146b-5p CAFs Breast cancer cells p16 Represses the migration

and invasiveness

Al-Khalaf and

Aboussekhra (2017)

miR-1, -206, -31 CAFs Lung cancer cells FOXO3a/VEGFA/CCL2 Promotes migration and

tumor growth

Shen et al. (2016)

miR-214 CAFs Ovarian cancer cells CCL5 Activate tumor-promoting

functions

Mitra et al. (2012)

miR-940 TAMs Ovarian cancer cells CD206 and CD163 Tumor-promoting function Chen et al. (2017)

miR-21 TAMs Gastric cancer cells PTEN Suppresses cell apoptosis

and enhances activation of

PI3K/AKT

Zheng et al. (2017)

miR-720 TAMs Breast cancer cells GATA3 M2 polarization Zhong and Yi (2016)

miR-155 TAMs Hepatocellular

cancer cells

C/EBPbeta Suppresses cytokine

production

He et al. (2009)

miR-511-3p TAMs Macrophage

expressing MRC1 cells

ROCK2 Inhibits tumor growth and

alters tumor blood vessel

morphology

Squadrito et al. (2012)

let-7b TAMs Prostate cancer TAMs IL-12, IL-23, IL-10

TNF-a, and CXCL12

Inhibits macrophage

migration and tumor

growth

Li et al. (2015)

miR-125a TAMs Epithelial cells FIH1 and IRF4 Enhances M1 and

attenuates M2 polarization

Zhao et al. (2016)
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key role in neurodegenerative diseases such as Alzhei-

mer disease.

5. Circulating miRNAs as biomarkers

Several types of malignancies require early and sensi-

tive detection in order to ensure effective treatment

and management of the patients. Abnormal expression

of specific miRNAs was observed during the progres-

sion of several types of cancer (Fabbri et al., 2008).

Accumulating evidence demonstrates that specific miR-

NAs hold great promise as novel biomarkers for clini-

cal diagnosis of many types of diseases, including

cancer (Berindan-Neagoe et al., 2014). Especially, cir-

culating miRNAs are remarkably stable in the blood.

Therefore, they can be extracted from blood and mea-

sured in blood or other bodily fluids for each patient

(Cheng, 2015; Larrea et al., 2016). To measure circu-

lating miRNAs, methods such as qRT-PCR (LNA-

based, TaqMan, or other proprietary technologies),

digital PCR (dPCR), microarrays, and next-generation

sequencing (NGS) are used (Larrea et al., 2016; Van

Roosbroeck et al., 2013).

5.1. Hematological cancers

As circulating miRNAs represent a class of ideal

biomarkers for hematological cancer diagnosis, many

studies have been performed to determine their poten-

tial and are reviewed elsewhere (Chen et al., 2014a;

Lawrie, 2013). In this section, we give a few examples

of specific circulating miRNAs that have been shown

to be altered in the plasma of hematological cancer

patients. The oncogenic role of especially miR-21,

miR-155, miR-150, and miR-210 are well established

in hematological malignancies (Fabbri et al., 2008;

Fernandez-Mercado et al., 2015; Munker and Calin,

2011). In 2008, Lawrie et al. compared miR-155, miR-

21, and miR-210 expression levels in serum samples

from diffuse large B-cell lymphoma (DLBCL) patients

with those of healthy controls, and found that circulat-

ing miR-155, miR-21, and miR-210 levels were signifi-

cantly upregulated in DLBCL patients and that serum

levels of miR-21 are associated with relapse-free sur-

vival in DLBCL. Additionally, levels of miR-21 were

upregulated in DLBCL cell lines and clinical specimens

of DLBCL (Chen et al., 2014b). These findings suggest

that miR-21 might function as a biomarker for the

diagnosis of DLBCL. Our previous studies showed

that miR-155 was significantly overexpressed in mono-

clonal B-cell lymphocytosis (MBL) when compared

with normal B cells and that miR-155 overexpression

in plasma is a predictor of poor response to therapy

(Ferrajoli et al., 2013). Similar studies have reported

that miR-150 and miR-342 were significantly downreg-

ulated in the plasma of acute myeloid leukemia

(AML) patients at diagnosis compared to healthy con-

trols and that these microRNAs are candidate

biomarkers and potential predictors of relapse in

AML (Fayyad-Kazan et al., 2013). In addition, circu-

lating miR-192 has been found to be significantly

downregulated in patients with chronic lymphocytic

leukemia (CLL) compared with healthy individuals

(Fathullahzadeh et al., 2016). Finally, Filip et al.

(2017) showed that miR-34a-5p, miR31-5p, miR-155-

5p, miR-150-5p, miR-15a-3p, and miR-29a-3p were

upregulated in serum samples of CLL patients com-

pared with healthy individuals.

5.2. Solid cancers

Several studies using microarray platforms to investi-

gate miRNA biomarker potential in solid tumors were

published, among them the study of Volinia and

coworkers, who described a large-scale detailed analy-

sis of the miRNA profiles in 540 samples from six

solid tumors: breast, colon, lung, pancreas, prostate,

and stomach (Volinia et al., 2006). This screening

showed that miR-21, miR-191, and miR-17-5p are sig-

nificantly upregulated in all of the tumor types and

that miR-29b-2, miR-223, miR-128b, miR-199a-1,

miR-24-1, miR-24-2, miR-146, miR-155, miR-181b-1,

miR-20a, miR-107, miR-32, miR-92, miR-214, miR-

30c, miR-25, miR-221, and miR-106a were overex-

pressed in three or more types of solid cancers (Volinia

et al., 2006). After identifying the presence of miRNAs

in solid tumors, circulating miRNA signatures have

been widely described in many cancer types (Chen

et al., 2008; Lawrie et al., 2008; Mitchell et al., 2008).

For instance, Hannafon et al. showed that miR-1246

was upregulated in exosomes from breast cancer cells

compared to normal mammary epithelial cells and

mouse plasma. When they analyzed human plasma

samples, miR-1246 and miR-21 were detected at signif-

icantly higher levels in the plasma exosomes of 16

breast cancer patients as compared to the plasma exo-

somes of healthy control samples (Hannafon et al.,

2016). In another example, Zhang et al. (2015) identi-

fied 66 circulating miRNAs that were upregulated,

while 32 circulating miRNAs were downregulated in

serum samples of ovarian cancer patients compared

with serum samples from healthy controls. More

specifically, miR-497, miR-16-2*, miR-195, and miR-

2861 were expressed at significantly higher levels in

serum samples of ovarian cancer patients compared to

cervical intraepithelial neoplasia patients and healthy
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control subjects (Zhang et al., 2015). Xu et al. (2016)

identified 13 miRNAs deregulated in plasma in

patients with PDAC: miR-106b-3p, miR-126-3p,

miR-1271, miR-1285, miR-19b-3p, miR-26b-3p, miR-

296-5p, miR-486-5p, miR-663B, miR-7–5p, miR-938,

miR-942, and miR-181c-5p. Of particular interest was

miR-486-5p, which showed diagnostic value in pancre-

atic cancer patients when compared with healthy con-

trols and patients with chronic pancreatitis (Xu et al.,

2016). In addition, Zhang et al. (2016) report that

miR-1246 and miR-1290 were overexpressed in serum

samples of patients with non-small-cell lung cancer

(NSCLC) when compared to healthy individuals. After

overexpression of these miRNAs in lung epithelial

cells, ectopic overexpression of miR-1246 repressed

PRL36A, GLIPR1, HAS2, NCKAP5, MT1G, and

CYP4F11, whereas overexpression of miR-1290

repressed MT1G, MT1H, GLIPR1, CYP4F11, and

NCKAP5 (Zhang et al., 2016). Furthermore, they

identified the putative tumor suppressor MT1G as a

direct target of miR-1246 and miR-1290 [76]. Their

observations indicate that miR-1246 and miR-1290

can behave as noninvasive biomarkers that may be

used for the early detection of lung cancer (Zhang

et al., 2016). Finally, Zhu et al. (2016) showed that the

serum levels of miR-182, miR-183, and miR-210 were

significantly upregulated and that miR-126 levels were

significantly downregulated in NSCLC patients com-

pared with healthy controls.

6. Novel miRNA-based therapeutic
approaches

As cancer-specific miRNAs are master regulators of

many critical oncogenic pathways, their utilization for

cancer diagnosis and as promising potential therapeu-

tic target for clinical treatment strategies or personal-

ized medicine is becoming more and more clear (Ling

et al., 2013). After discovering the role of miRNAs in

cell–cell signaling and TME, targeting miRNAs as

anticancer therapeutic strategy is becoming more real-

istic and promising. Several groups designed miRNA

overexpression or inhibition systems as a therapeutic

strategy, and this approach led to promising outcomes

in vivo (Bayraktar et al., 2017; Hydbring et al., 2017;

Mangala et al., 2016). For instance, Mangala et al.

showed that miR-106b-5p, miR-30c-5p, and miR-141-

3p were significantly upregulated in ovarian cancer-

associated endothelial cells compared to normal

endothelial cells. Silencing of these miRNAs leads to

restoration of tight junction function and in turn

decreases angiogenesis. To evaluate the in vivo biologi-

cal effects of miR-106b-5p and miR-30c-5p silencing,

they established an ovarian cancer orthotopic mouse

model and found that miR-106b-5p inhibitor treat-

ment resulted in 50% reduction in tumor growth,

while miR-30c-5p inhibitor treatment resulted in ~25%
reduction in tumor growth in ovarian cancer ortho-

topic mouse model (Mangala et al., 2016). The combi-

nation of miRNA mimic or inhibitor delivery with

chemotherapeutic drugs has recently been used to

enhance the efficiency of treatment in several types of

tumor. Recently, we showed that overexpression of

miR-155 induces chemoresistance in lung cancer cells

and acute lymphoblastic leukemia cells (Van Roos-

broeck et al., 2017). Additionally, miR-155-overexpres-

sing tumors became resistant to cisplatin treatment in

an orthotopic lung cancer mouse model (Van Roos-

broeck et al., 2017). Administration of miR-155 inhibi-

tor alone significantly reduced number of tumors,

tumor size, and aggregate mass of metastasis, but

when we combined miR-155 inhibitor with cisplatin

treatment, the chemotherapy resistance was almost

completely reversed (Van Roosbroeck et al., 2017).

Another novel approach is the combination of small

interfering RNA (siRNA) and miRNA-based treat-

ment that can allow a ‘boosting’ effect for targeting

oncogenic pathways and repressing cancer growth

(Nishimura et al., 2013). We proved that combined

inhibition of EphA2, an ovarian cancer oncogene, with

EphA2 siRNA and miR-520d-3p mimic exhibits syner-

gistic effects (Nishimura et al., 2013). We identified

miR-520d-3p as a tumor suppressor upstream of

EphA2, which is associated with longer overall and

relapse-free survival time in ovarian cancer patients

(Nishimura et al., 2013). In this study, miR-520d-3p

was shown to directly target EphA2 and EphB2 and

inhibit their protein expression in ovarian cancer cells.

Treatment with the combination of miR-520d-3p

mimic and EphA2 siRNA resulted in less invasion/mi-

gration by HeyA8 and SKOV3ip1 cells than either

miR-520d-3p or EphA2 siRNA alone or the controls.

Moreover, in vivo therapeutic delivery of miR-520d-3p

mimic and EphA2 siRNA induced potent synergy,

resulting in substantial inhibition of tumor growth

when compared with individual treatments in ovarian

cancer tumor xenograft models (Nishimura et al.,

2013).

Currently, some miRNA-associated therapies are

being evaluated in ongoing Phase I clinical trials in

cancer (Van Roosbroeck and Calin, 2017). The first

miRNA-based cancer therapy was a liposome-formu-

lated synthetic miR-34a mimic (MRX34) (ClinicalTri-

als.gov, ID: NCT01829971). Because of multiple

immune-related severe adverse events observed in can-

cer patients receiving MRX34, this study has been
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terminated early (Van Roosbroeck and Calin, 2017).

miRNAs can target multiple genes simultaneously and

lead to unexpected side effects and unwanted toxicities.

However, combination therapies of miRNAs with

siRNA and/or chemotherapy can reduce the risks of

adverse events and increase therapeutic synergy as

compared with monotherapy.

7. Conclusion

Since the discovery of the first miRNA, several thou-

sands of miRNAs have been identified in humans, and

studies on miRNAs have increased, remarkably during

the last decade. Furthermore, miRNAs are frequently

deregulated in human diseases including cancer, which

offers many opportunities for diagnosis, prognosis,

and treatment of human diseases. Recently, it was

found that miRNAs are released by donor cells, play a

key role in the process of cell-to-cell communication,

influence the phenotype of recipient cells, and likely

reach many distant tissues. Taken together, these miR-

NAs can serve as valuable biomarkers for various

pathological conditions.
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