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The lack of control over the usage of antibiotics leads to propagation of the microbial

strains that are resistant to many antimicrobial substances. This situation is an emerging

threat to public health and therefore the development of approaches to infer the presence

of resistant strains is a topic of high importance. The resistome construction of an

isolate microbial species could be considered a solved task with many state-of-the-art

tools available. However, when it comes to the analysis of the resistome of a microbial

community (metagenome), then there exist many challenges that influence the accuracy

and precision of the predictions. For example, the prediction sensitivity of the existing

tools suffer from the fragmented metagenomic assemblies due to interspecies repeats:

usually it is impossible to recover conservative parts of antibiotic resistance genes that

belong to different species that occur due to e.g., horizontal gene transfer or residing on a

plasmid. The recent advances in development of new graph-based methods open a way

to recover gene sequences of interest directly from the assembly graph without relying

on cumbersome and incomplete metagenomic assembly. We present GraphAMR—a

novel computational pipeline for recovery and identification of antibiotic resistance genes

from fragmented metagenomic assemblies. The pipeline involves the alignment of profile

hidden Markov models of target genes directly to the assembly graph of a metagenome

with further dereplication and annotation of the results using state-of-the art tools. We

show significant improvement of the quality of the results obtained (both in terms of

accuracy and completeness) as compared to the analysis of an output of ordinary

metagenomic assembly as well as different read mapping approaches. The pipeline is

freely available from https://github.com/ablab/graphamr.

Keywords: antibiotic resistance, assembly graphs, metagenome, profile hidden Markov model, computational

pipeline

INTRODUCTION

Antimicrobial resistance (AMR) is a global health crisis resulting from widespread and
uncontrolled use of antibiotics (Brown andWright, 2016). Therefore, the use of genome sequencing
as a surveillance tool for AMR molecular epidemiology is growing, and the development of new
computational approaches is an important task (McArthur and Wright, 2015).
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Certainly, there are many tools developed recently for
AMR prediction and analysis from WGS data (Boolchandani
et al., 2019). In general, all these tools could be splitted into
two groups: ones that use raw sequencing reads as input,
such as SRST2 (Inouye et al., 2014) that use paired-end-
aware short read aligner to align reads to reference databases
or first splitting reads into k-mers and then aligning them
to databases such as KmerResistance (Clausen et al., 2016).
Another group of tools that use assembled genome fragments
includes Abricate (https://github.com/tseemann/abricate), RGI
(Jia et al., 2017), Resfinder (Bortolaia et al., 2020) among
the others. ARIBA (Hunt et al., 2017) and RGI (Jia et al.,
2017) could utilize both reads and assembled fragments,
however, this does not change in general their approach for
AMR prediction.

The natural limitation of any read-based approach is the input
read length and therefore the precision of such approach might
suffer from the truncated read-gene mappings (depending on
the target AMR gene length). Figure 1 shows the distribution
of AMR gene lengths in the NCBI AMR database (Feldgarden
et al., 2019) with themajority of genes, namely 93%, that aremore
than 300 base pairs long. Given that typically the reads produced
by short reads technologies are within 100–300 bp length,
the read-based methods would need to cope with incomplete
alignments of reads to AMR databases or additional techniques
(e.g., overlapping paired-end reads) would be required in order
to correctly cover the genes of interest.

Another approach involves the use of sequences obtained
from raw reads after the genome assembly process. Genome
assembly may overcome the difficulties connected with the
lengths of short reads and allows for reconstruction of fuller
gene sequences, however it still has some limitations on its
own. Possible issues include possible assembly artifacts, increased
computational processing time, etc. Nonetheless, all these issues
could certainly be detected, most of them solved in automatic
fashion and therefore AMR prediction on top of microbial isolate
assembly could be considered a mostly solved problem.

FIGURE 1 | Distribution of AMR gene lengths in the NCBI AMR database.

However, the overall situation is much worse when one would
need to analyse a resistome from an environmental sample,
such as water metagenome, or human-associated sample, e.g.,
gut metagenome. Such assemblies are often very fragmented
due to vastly different species abundance, presence of multiple
strains, interspecies repeats that arise from conservative genes
or genes that underwent horizontal transfer, etc. (Lapidus
and Korobeynikov, 2021). Even more, metagenomic assemblers
typically yield a consensus assembly (Nurk et al., 2017) with
collapsed strain variations complicating the necessary prediction.

As a result, AMR prediction from metagenomic assembly can
show quite low specificity with many important AMR genes
unnoticed (Maguire et al., 2020).

To support this claim we analyzed wastewater and urban
surface metagenomes in Singapore from Ng et al. (2017)
that originally used a read-based approach to construct a
resistome. First example deals with blaIMP beta-lactamase gene
that according to Ng et al. (2017) was absent in the sample.
This is not unexpected given the length of blaIMP gene
cassette of 741 bp (encoding 246 amino acid polypeptide)
(Silva et al., 2002) that certainly could escape from read-
based analysis. Furthermore, additional analysis shows that
the complete sequence of blaIMP is absent in assembled
scaffolds as well, however the blaIMP gene sequence is definitely
present in the sample. This phenomenon could be easily
explained by examining the assembly graph. Figure 2 shows
that the gene sequence of blaIMP is contained in 10 edges
of the assembly graph and 2 scaffolds, hindering assembly-
based analysis.

Sometimes, the gene of interest could be found in contigs,
however, when multiple variants are present, not all of them
could be easily identified from the contigs alone. Figure 3 shows
different variants of the blaCTX−M gene in the assembly graph of
the same sample from Ng et al. (2017). We note that CTX-M-15
variant of the gene is residing on the single contig and therefore
could be easily identified. However, CTX-M-9 and CTX-M-14
variants differ only by 2 amino acids and therefore assembler
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FIGURE 2 | blaIMP sequence in the assembly graph. (A) Gene sequence scattered over 10 edges, (B) Gene sequence is splitted across two scaffolds.

is unable to separate them: CTX-M-14 is scattered across 3
contigs that are joined into single scaffold with gaps and CTX-
M-9 is completely unassembled as its variation with respect to
CTX-M-14 is reported as separate short contigs.

The examples shown above suggest the use of the assembly
graph for AMR prediction from complex metagenome sequences
since it is the assembly graph rather than set of contigs that
represents the “complete” metagenomic assembly result. Even
more, metagenomic assemblers provide both so-called strain
assembly graph with strain variants preserved and consensus
assembly graph with strain variants collapsed (Lapidus and
Korobeynikov, 2021), so one could control the tradeoff between
specificity and complexity of the task.

Finally, to show the possible performance gains from
assembly graph-based approaches we used PathRacer (Shlemov
and Korobeynikov, 2019), a tool that performs profile HMM
alignment to assembly graphs, to align NCBI-AMR (Feldgarden
et al., 2019) set of AMR profile HMMs to the assembly graphs of
samples from Ng et al. (2017) and counted the fraction of HMM
hits that are not residing on the single scaffold. Figure 4 shows
the results obtained. Overall, more than 30% of all HMM hits are
not contained in the single scaffold supporting the idea of using
graph-based tools for AMR prediction.

Motivated by the data shown above we are presenting
GraphAMR—a novel computational pipeline that utilizes
assembly graph of a metagenome for AMR prediction.
GraphAMR uses state-of-art tools to align profile HMMs
representing AMR gene families, extract the sequences
of graph edges that contain HMM hits and uses well-
known AMR-prediction tools to further annotate the
obtained sequences.

PIPELINE ARCHITECTURE

GraphAMR is a pipeline specifically designed for recovery and
identification of antibiotic resistance genes from fragmented
metagenomic assemblies. Briefly, it uses state-of-the-art assembly
graph analysis methods to extract putative AMR gene sequences
from the graph, dereplicates them and delegates the task of actual
prediction to the well-known AMR analysis tools in the field.

The pipeline is implemented using the Nextflow framework
(Di Tommaso et al., 2017; Ewels et al., 2020) that enables scalable,

FIGURE 3 | blaCTX−M paths and their neighborhood. Green path corresponds

to CTX-M-15 variant; blue and red corresponds to CTX-M-9 and CTX-M-14,

respectively.

reproducible and efficient computational workflow. As a result,
the pipeline supports e.g., job submissions on computational
clusters and cloud systems, resume, and notification straight out
of the box.

The pipeline has four steps: (optional) metagenomic de novo
assembly, alignment of AMR profile HMM to the resulting
assembly graph, detection, and clustering of putative AMR ORFs
and annotation of representative AMR sequences (Figure 5). The
first step (assembly) can be skipped, should the assembly graph
in the GFA (https://github.com/GFA-spec/GFA-spec) format
be provided as an input. Such assembly graphs are readily
produced by genome and metagenome assemblers including
SPAdes (Prjibelski et al., 2020), metaSPAdes, and MEGAHIT (Li
et al., 2015).

De novo Assembly
If reads are provided as input, the first step will be quality control
and metagenomic assembly. Sequences QC is performed via
FastQC (https://www.bioinformatics.babraham.ac.uk/projects/
fastqc/). The resulting HTML report shows summary graphs
with main characteristics for quality assessment. Metagenome
assembly is done via metaSPAdes (Nurk et al., 2017) and the
resulting assembly graph is used for further analysis.

Profile HMM or AA Sequence Alignment to
Assembly Graph
This is the key step of the pipeline as putative AMR gene
sequences are extracted directly from the assembly graph. For
this the pipeline utilizes Pathracer (Shlemov and Korobeynikov,
2019), a state-of-the-art tool for alignment of HMMs and
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FIGURE 4 | Number of total HMM alignments to graph. The orange section

shows the number of HMM hits residing on the scaffolds, and the green

section shows the number of HMM hits possibly scattered over multiple

scaffolds.

FIGURE 5 | General GraphAMR pipeline scheme.

AA sequences to assembly graph. By default, the NCBI AMR
(Feldgarden et al., 2019) profile HMMs are used, but they could
be replaced by the custom HMMs or gene AA sequences if
necessary. Pathracer produces the set of most probable paths
traversed by a HMM through the whole assembly graph (by
default, up to top 100 by score non-redundant paths, e.g.,
those that are not proper suffixes or prefixes of each other,
are reported). This effectively solves the problem of fragmented

metagenome assemblies as all possible HMM paths (spanned
over multiple contigs) are reported including possible variations
due to multiple strains present, interspecies repeats, etc.

The major caveat here is that HMM alignment does not yield
the complete gene sequence, since, for example, HMM could
be built from the truncated seed alignment, or the alignment
itself could be clipped on the ends. To solve this problem,
instead of alignment itself, we extract the sequence of graph edges
that contain the alignment of interest, effectively extending the
alignment until the edge boundaries.

The output of this stage is the set of unique edge sequences of
the assembly graph containing the alignments of profile HMMs
of AMR genes.

In addition to HMMs, the pipeline also allows alignment of
amino-acid sequences to the graph enabling the use of such AMR
databases as CARD (Jia et al., 2017) or ResFinder (Bortolaia et al.,
2020) directly. To enable the use of such databases, PathRacer
internally builds a “proxy” HMM, so that the alignment of this
HMM would be equivalent to the alignment of the original
sequence using BLOSUM62 scoring matrix.

Dereplication
The output of the previous step might be redundant due to strain
variations, but more because different edge sequences through
the assembly graph might yield the same set of genes in the
case when alignment ends in the node of the graph (recall
that assembly graph is a de Bruijn graph, where subsequent
edges overlap by a k-mer) or if there are multiple paths due
to synonymous substitutions. To dereplicate the results, the
complete ORFs are extracted and further clustered at 90% AA
IDY using MMseqs2 (Steinegger and Söding, 2017). The output
of this step is the set of representative sequences of the resulting
clusters. The dereplication and clustering could be skipped via
setting the IDY clustering threshold as 100%.

Annotation
There is no need to design a completely new AMR prediction
approach given that the major challenges of obtaining putative
AMR sequences from fragmented metagenome assemblies are
solved via the proper utilization of the assembly graph. Therefore,
this step delegates the task of final AMR prediction, annotation,
and result generation to state of the art tools that are well-
known and respected by the bioinformatics community. The
pipeline passes the output of the dereplication stage to abricate
(https://github.com/tseemann/abricate), sraX (Panunzi, 2020),
and rgi (Jia et al., 2017). The results are further combined and
summarized by hAMRonize tools (https://github.com/pha4ge/
hAMRonization).

RESULTS

Usage
The pipeline is implemented in Nextflow and therefore requires
Nextflow to be installed in order to be used. For the full
reproducibility, the use of Nextflow-supported package manager
such as Conda is advised. GraphAMR will automatically pull the
necessary versions of the tools used in the pipeline when using
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TABLE 1 | Abricate predicted AMR gene sequence counts in the URBAN dataset.

Sample ID 40 41 42 43 44 45 46 47 48 49 50 51 52

Contigs 92 93 2 0 4 9 57 0 91 3 11 78 66

HMM Paths 169 163 2 0 4 8 100 0 131 3 22 122 142

Clustered ORFs (90%) 103 98 2 0 4 8 60 0 96 3 11 91 80

Clustered ORFs (95%) 105 105 2 0 4 8 61 0 100 3 11 92 81

Clustered ORFs (100%) 135 126 2 0 4 8 75 0 112 3 14 107 116

Compared are assembled contigs, unclustered HMM paths, and clustered ORFs at different levels of IDY’s. Columns are named by the last two digits of SRA accession number.

one of the supported container engines. The typical steps to run
the pipeline for the first time are as follows:

1. Install nextflow (https://nf-co.re/usage/installation)
2. Install any Nextflow-supported container engines, such as

conda (https://conda.io/miniconda.html)
3. Download the pipeline and test it on a minimal dataset

with a single command: nextflow run ablab/graphamr -profile
test, conda

4. Start running your own analysis:

a. Typical command for analysis starting from reads (NCBI
AMR database is used by default):
nextflow run ablab/graphamr -profile conda
--reads ‘∗_R{1,2}.fastq.gz’

b. Typical command for analysis starting from assembly
graph (NCBI AMR database is used by default):
nextflow run ablab/graphamr -profile
conda --graph ‘assembly_graph_with_
scaffolds.gfa’

c. Typical command for analysis starting from assembly graph
with one of pre-defined AMR databases:
nextflow run ablab/graphamr -profile
conda --graph ‘assembly_graph_with_
scaffolds.gfa’ --db [‘ncbi_AMR_HMM’,
‘card_AA’]

More examples, description of other command line options and
produced results are available from the “Usage/Results” section of
documentation in GraphAMR github repository.

Example Results
To demonstrate the performance of graph-based approach for
AMR discovery we benchmarked GraphAMR pipeline on two
different environmental datasets using two different databases:
NCBI AMR HMMs and amino acid sequences from CARD.

URBAN is a collection of urban wastewater datasets from
Ng et al. (2017). Raw sequence reads were downloaded from
the NCBI short read archive (SRA) under accession numbers
SRR5997540–SRR5997552 and analyzed using the pipeline. For
the sake of simplicity only AMR predictions by Abricate
are shown. Table 1 contains the predicted AMR gene counts
predicted from metagenomic assembly scaffolds, unclustered
HMM paths and HMM paths dereplicated, and clustered at
different IDY’s %. The results of the pipeline using amino acids
are presented in Table 2.

TABLE 2 | Abricate predicted unique AMR gene sequence counts in the URBAN

dataset using amino-acid sequences from CARD v3.1.2 or HMMs from NCBI

AMR to align to a graph.

Sample ID 40 41 42 43 44 45 46 47 48 49 50 51 52

AA 96 89 2 0 4 8 59 0 89 3 11 84 74

HMM 94 89 2 0 4 8 59 0 89 3 10 82 74

Columns are named by the last two digits of SRA accession number.

The resulting AMR presence heatmap as produced by
RGI is available as Supplementary Figure 1. The running
time, physical memory usage and CPU usage and graph
size information presented in the Supplementary Figure 1 and
Table 1, respectively.

We note that HMM paths represent unique path sequences
over the assembly graph and might be redundant: two different
paths in the graph may yield the same amino acid gene sequence,
for example, due to synonymous mutations or if the alignment
ends in the node of the graph since edges have overlapping
k-mers. This explains the higher number of predicted AMR
gene sequences obtained from bare HMM paths as compared to
dereplicated or clustered ORFs.

The sample SRR5997545 looks like an outlier in Table 1, as
the number of predicted AMR genes out of contigs is higher
than from the assembly graph. The difference is caused by the
short hit that resides on the isolated edge of the assembly graph.
The hit itself covers only 73% of the HMM. By default Pathracer
uses the strict threshold and does not report hits that are shorter
than 90% of HMM length (we expect fuller HMM matches from
the assembly graph as compared to contig sequences). To allow
inclusion of such sequences should they be necessary we added a
special flag to the pipeline that allows a user to choose the desired
HMM coverage threshold.

To further compare the assembly graph-based approach with
the read-based one we run SRST2 on the same collection of
datasets.Table 3 contains the predicted unique AMR gene counts
from raw reads as detected by SRST2 and clustered HMM paths
from GraphAMR. SRST2 uses a custom AMR database that was
derived from CARD v3.0.8. To ensure fair comparison we run
GraphAMR pipeline and Abricate using the database that was
used by SRST2.

Table 3 clearly shows the advantage of the graph-based
approach since more AMR gene sequences were predicted in
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TABLE 3 | Predicted unique AMR gene sequence counts in raw reads of URBAN as detected by SRST2 vs. GraphAMR predictions from the assembly graph.

Sample ID 40 41 42 43 44 45 46 47 48 49 50 51 52

SRST2 59 55 6 0 2 6 36 0 59 2 8 54 44

GraphAMR 90 83 1 0 3 7 52 0 82 3 10 79 68

AMR annotation was done via Abricate. All tools used the CARD_v3.0.8_SRST2 database. Columns are named by the last two digits of SRA accession number.

almost all samples as compared to the read-based approach.
Still, there is one notable outlier: in SRR5997542 sample SRST2
predicted 5 more AMR genes. Further detailed analysis revealed
that these hits are likely spurious: the sequences themselves are
fragmented on the assembled graph and the graph edges are
isolated (see Supplementary Figure 2).

SOIL is groundwater metagenome sample SRR8931193 from
Smith et al. (2019). Abricate predicted 12 AMR genes from
clustered HMM paths and 13 from assembled scaffolds. Two
gene sequences [vanR-O and ant(6)-Ib] genes were found only on
scaffolds and tet(X) was detected by GraphAMR only. Assembly
graph analysis revealed that ant(6)-Ib gene sequence is split into
two parts located on two isolated edges. vanR-O hit covered only
30% of the corresponding sequence and is likely spurious.

DISCUSSION

As Tables 1–3 and Figure 4 show, the results of AMR gene
prediction even on moderately-complex metagenomes could
be significantly affected by fragmented assemblies. The use of
assembly graph-based approaches is far superior in terms of
recovery of fuller AMR gene sequences even from fragmented
metagenomes. Not only could it result in more putative
AMR sequences detected, but as comparison with read-based
approaches shows, the results are more reliable. Graph-based
approach allows to filter out the spurious alignments using both
hit length (the fraction of the gene sequence length covered by
a hit) and graph topology (short hits located on isolated edges
are likely spurious) that results in AMR gene sequences that
are both longer (hit could span multiple edges and interspecies
repeats) and trustworthy (located on the edges of the graph that
are connected to the rest of the assembly).

Another important task that could be solved using the
assembly-graph based approach is AMR host association:
sometimes it is not enough simply to detect the gene sequences,
but also associate them with the particular species. This task
is quite complex in case of metagenomic assemblies as a
dedicated procedure called “binning” is required. However,
typically binners ignore short contigs (shorter than 2–5 kbp)

and therefore further detection of AMR gene sequences
from MAGs could be quite limited (Maguire et al., 2020).
Graph-based approach allows to circumvent this problem as
one could trace the detected AMR sequences back to the
edges of the assembly graph and then to the corresponding
MAGs performing the required species identification. The
challenge here certainly is dealing with interspecies repeats
and/or plasmids or otherwise transferred genes, however,
the assembly graph provides a solid foundation for such
downstream analysis.

GraphAMR could be used to improve the present results of
AMR prediction of a metagenomic assembly if the assembly
graph output was preserved, otherwise the pipeline allows for
seamless reassembly and AMR prediction starting from the input
sequencing reads.
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