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Abstract

Background: Much of the developing world, particularly sub-Saharan Africa, exhibits high levels of morbidity and mortality
associated with infectious diseases. The incidence of Schistosoma sp.—which are neglected tropical diseases exposing and
infecting more than 500 and 200 million individuals in 77 countries, respectively—is rising because of 1) numerous
irrigation and hydro-electric projects, 2) steady shifts from nomadic to sedentary existence, and 3) ineffective control
programs. Notwithstanding the colossal scope of these parasitic infections, less than 0.5% of Schistosoma sp. investigations
have attempted to predict their spatial and or temporal distributions. Undoubtedly, public health programs in developing
countries could benefit from parsimonious forecasting and early warning systems to enhance management of these
parasitic diseases.

Methodology/Principal Findings: In this longitudinal retrospective (01/1996–06/2004) investigation, the Schistosoma
haematobium time-series for the district of Niono, Mali, was fitted with general-purpose exponential smoothing methods to
generate contemporaneous on-line forecasts. These methods, which are encapsulated within a state–space framework,
accommodate seasonal and inter-annual time-series fluctuations. Mean absolute percentage error values were circa 25% for
1- to 5-month horizon forecasts.

Conclusions/Significance: The exponential smoothing state–space framework employed herein produced reasonably
accurate forecasts for this time-series, which reflects the incidence of S. haematobium–induced terminal hematuria. It
obliquely captured prior non-linear interactions between disease dynamics and exogenous covariates (e.g., climate,
irrigation, and public health interventions), thus obviating the need for more complex forecasting methods in the district of
Niono, Mali. Therefore, this framework could assist with managing and assessing S. haematobium transmission and
intervention impact, respectively, in this district and potentially elsewhere in the Sahel.
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Introduction

Prevalent parasitic infectious diseases frequently evade the

public health radar because infected individuals present with a

clinical history that is characterized by a highly heterogeneous

symptomatology. Schistosoma sp., also known as bilharzias, expose

and infect more than 500 and 200 million individuals in 77

countries, respectively [1,2]; however, only those with severe

symptoms seek available treatment. Though sub-clinical Schistoso-

ma sp. infection detrimentally impacts the health of infected

individuals, the enormous impact of seemingly asymptomatic and

mildly symptomatic infection remains difficult to quantify.

Furthermore, Schistosoma sp. incidence continues to rise because

of 1) numerous irrigation and hydro-electric projects, 2) steady

shifts from nomadic to sedentary existence, and 3) ineffective

control programs unable to cope with population growth. With the

mounting evidence that Schistosoma sp. impose an enormous

burden on, as well as their control have paramount importance to

improve public health in, developing countries, intervention

programs therein could benefit from parsimonious forecasting

and early warning systems to enhance management and hazard

mitigation of these parasitic infections [1–8].

Most individuals at risk of Schistosoma sp. infection reside

between latitudes 36u N and 34u S where average fresh water

temperatures range from 25 to 30u C [1], placing African states

among the most affected countries. Schistosoma mansoni and

Schistosoma haematobium account for most Schistosoma sp. infection

in Africa [1,2]. S. mansoni and S. haematobium cercarias enter the

human circulation trans-cutaneously. Subsequently, adult forms

mate, migrate, and lay eggs, which eventually lodge in the intestine

(S. mansoni) or bladder (S. haematobium). Excreted eggs hatch under

favorable aquatic conditions, releasing miracidia, which penetrate

the intermediate snail host—in Africa, S. mansoni and S.

haematobium infect Biomphalaria sp. and Bulinus sp. snails [8,9].

Finally, mature cercarias emerge from their intermediate host to

seek human reservoirs thus, perpetuating their life cycle [1].

Individuals infected with S. mansoni are usually asymptomatic or

mildly symptomatic (rash, fever, aching, cough, diarrhea, and or
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gland enlargement). In serious infection, lodged S. mansoni eggs

trigger a granulomatous immune response that may cause colonic

obstruction, hemorrhages, portal hypertension, ascites, and life-

threatening esophageal varicose. S. haematobium produces similar

unspecific symptoms whereas its fully symptomatic form manifests

primarily as terminal hematuria.

Moreau et al. [10] reported the pervasive endemicity of S.

haematobium in West Africa, particularly in the Sahel (Figure 1)—i.e.

the sub-Saharan region that spans the entire east-west African axis,

bordering the Sahara desert to the north and the Savanna to the

south [11]. Conversely, his collaboration demonstrated that the

prevalence of S. mansoni is greater in Sudanese and Guinean savannas

[10]. Along this line of investigation, several epidemiological studies

have evaluated the Schistosoma sp. prevalence in Mali [12–15], which

ranks among the poorest countries in the world, and which is

transected by savannas, the Sahel, and the Sahara desert.

Traore et al. [12] reported a 55% overall S. haematobium prevalence,

with a case distribution orbiting the 7–14 age-category, in the district

of Niono (Segou Region) and Dogon Plateau, Mali; circa 50 and 30%

of infected individuals presented with clinical symptoms and

pathologic lesions, respectively. The surveys conducted by Keita et

al. [13] demonstrated that the Schistosoma sp. prevalence (7–14 age-

category) in the community health center (CSCOM) service area of

Molodo, in the district of Niono, was 72, 68, and 51% for S.

haematobium, S. mansoni, and co-infection, respectively. Finally,

Medina et al. [11] reported that S. haematobium is the 5th most

frequently diagnosed infectious disease, accounting for 2.5% of total

CSCOM consultations in the district of Niono. The high prevalence

of Schistosoma sp. in this district may be attributed to an extensive

irrigation system that supports predominantly rice monoculture.

Unfortunately, district communities not only ingest water from the

irrigation scheme but also wash their belongings, bathe, excrete, and

amuse themselves in the canals (Figure 2), considerably increasing

exposure to Schistosoma sp. infection.

Notwithstanding the colossal scope of these parasitic infections in

developing countries, only circa 0.5% of Schistosoma sp. investigations

have attempted to predict their spatial and or temporal transmission

distributions e.g. [1,2,16–18]—meriting special attention, Yang et al.

[18] modeled both the spatial and temporal S. japonicum transmission

dimensions in Jiangsu province, China. [The number of reports

investigating Schistosoma sp. spatial and or temporal distributions

roughly obtain via keyword-searching ‘‘schistosomiasis’’, ‘‘Schistoso-

ma’’, ‘‘bilharzias’’, ‘‘forecast’’, ‘‘forecasting’’, ‘‘prediction’’, and

keyword combinations at www.pubmed.com (09/25/2007). A

meta-analysis is beyond the scope of this manuscript.] Regrettably,

S. haematobium time-series (TS) forecasts are practically inexistent for

Sahelian locations, such as Mali, where this neglected tropical

disease tremendously deteriorate public health. Thus, the quest for

robust S. haematobium TS forecasting methods to assist with

preventing transmission, rapidly treating patients, as well as

monitoring intervention impact must not be ignored.

Figure 1. Satellite image of West Africa. Panel A: the Sahara desert and the savannah occupy the northern and southern West African
landscapes, respectively, while the Sahel spans the intermediate fringe zone—Mali is transected by all three landscapes. Panel B corresponds
approximately to an enlargement of the red demarcation in Panel A. The black line on the top of this panel delineates the southeastern Mauritanian
border; the depicted segment of the Niger River flows in the southwest-northeast direction; the district of Niono, which is located 330 km northwest
of Bamako and 100 km north of the Niger River along the Canal du Sahel (Segou Region), is situated within the red rectangle. This satellite image
places the district of Niono in the Sahelian zone: poverty is extensive in the northern (semi-desert) and central (irrigated) regions; contrarily, poverty
diminishes southward (near savannah areas) where mixed crops prevail. Image source: adapted with permission from Globalis, http://globalis.gvu.unu.
edu (08/2007) [11].
doi:10.1371/journal.pntd.0000276.g001

Author Summary

Adequate forecasting and early warning systems are based
upon observations of human behavior, population, disease
time-series, climate, environment, and/or a combination
thereof, whichever option best compromises among
realism, feasibility, robustness, and parsimony. Fully
automatic and user-friendly state–space forecasting frame-
works, incorporating myriad options (e.g., expert opinion,
univariate, multivariate, and spatial-temporal), could con-
siderably enhance disease control and hazard mitigation
efforts in regions where vulnerability to neglected tropical
diseases is pervasive and statistical expertise is scarce. The
operational simplicity, generality, and flexibility of state–
space frameworks, encapsulating multiple methods, could
conveniently allow for 1) unsupervised model selection
without disease-specific methodological tailoring, 2) on-
line adaptation to disease time-series fluctuations, and 3)
automatic switches between distinct forecasting methods
as new time-series perturbations dictate. In this investiga-
tion, a univariate state–space framework with the afore-
mentioned properties was successfully applied to the
Schistosoma haematobium time-series for the district of
Niono, Mali, to automatically generate contemporaneous
on-line forecasts and hence, providing a basis for local re-
organization and strengthening public health programs in
this and potentially other Sahelian districts.

Schistosomiasis Time-Series Forecast
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In this longitudinal retrospective (01/1996–06/2004) investiga-

tion, the S. haematobium consultation rate TS for the district of

Niono, Mali (Fig. 1), was fitted with general-purpose exponential

smoothing (ES) methods—encapsulated within a state-space

framework—to produce contemporaneous on-line forecasts. On-line

forecasts imply that historical records are continuously supplied to

the execution program, which automatically revises external

predictions. Although this state-space framework ignores direct

effects from climate, public health intervention, and irrigation on

S. haematobium TS evolution, it accommodates seasonal as well as

inter-annual TS fluctuations. The ES methods within this

framework may capture prior non-linear interactions between

disease dynamics and the aforementioned covariates, potentially

obviating the need for more complex predictive approaches in the

district of Niono, Mali. [An intuitive overview of this ES state-

space framework is conveyed by Figure 3.] Therefore, not only

does this analysis address the paucity of reported S. haematobium TS

investigations but it also demonstrates that this state-space

framework could assist with managing S. haematobium infection in

this district and possibly elsewhere in the Sahel.

Methods

Study setting
This longitudinal retrospective (01/1996–06/2004) S. haemato-

bium TS investigation was conducted in the district of Niono, Mali

(Fig. 1). Panel A in Fig. 1 is a satellite image that portrays Mali,

with a projected population of 12 million in 2004 [19], along with

its neighboring West African countries. Panel B—which corresponds

approximately to an enlargement of the red demarcation in panel

A—depicts the district of Niono (red rectangle), 330 km northwest of

Bamako, 100 km north of the Niger River, in the Segou region. This

district is a model location to test S. haematobium TS forecasting and

early warning systems feasibility because its extensive irrigation

network pervasively exposes communities to this neglected parasitic

infection. Furthermore, the district of Niono shares epidemiological

similarities with other regions in the Sahel where poverty- and

disease-induced morbidity and mortality are rampant.

Data pre-processing
The review of monthly clinical consultation records from the

district of Niono, Mali, is part of a larger study on climate and

health (‘‘Putting climate in the service of public health’’) that was

approved by the ‘‘Columbia University Medical Center Institu-

tional Review Board’’ (New York, U.S.A.) and the ‘‘Ethics

Committee of the Mali National Medical School’’ (Bamako,

Mali). Patient privacy was protected from inadvertent (or

deliberate) violations because consultation records reflect monthly

summaries that lack information with which individuals may be

identified [11]. The assembled monthly data set (01/1996–06/

2004) comprises consultation records for 20 diseases, which were

tabulated by gender and age categories, from 17 CSCOM service

areas within the district of Niono [11,19,20]. However, only the S.

haematobium TS was analyzed here—diarrhea, acute respiratory

Figure 2. Irrigation system and stagnant water reservoirs in the district of Niono, Mali. This composite panel depicts irrigation canals
(which support mainly rice monoculture) and stagnant water reservoirs where Schistosoma haematobium transmission may occur. District
communities not only ingest water from the irrigation system but also wash their belongings, bathe, excrete, and amuse themselves in the canals,
considerably increasing exposure to S. haematobium. Furthermore, rainfall precipitation fluctuations prompt the local authority (Office du Niger) to
adjust irrigation management accordingly; for example, the Office du Niger may relax water control amid increased precipitation to better irrigate
drier areas whilst collaterally enhancing water-flow through typically well-served agricultural fields—S. haematobium transmission suitability might
then simultaneously increase and decrease in the former and latter scenarios, respectively.
doi:10.1371/journal.pntd.0000276.g002

Schistosomiasis Time-Series Forecast

www.plosntds.org 3 August 2008 | Volume 2 | Issue 8 | e276



infection of the lower tract (ARI), and malaria TS forecasts, as well

as preliminary frequency description of all 20 diseases, have

already been reported [11]. Of note, Schistosoma sp. consultation

records reported by Medina et al. [11] and analyzed herein reflect

cases of S. haematobium–induced terminal hematuria in over 99% of

consultations, as discussed later, for which a single dose of 40 mg/

kg of prazinquatel was prescribed in most cases.

Monthly S. haematobium consultation records for the 17 CSCOM

service areas, both genders, and all ages were amalgamated.

Rather than interpolating missing observations with imputed

CSCOM-specific monthly median values and excluding ineligible

CSCOM service area TS [11], this amalgamated consultation rate

TS, {yt}, was estimated by simultaneous adjustment of time-

dependent nominator (cases) and denominator (population)

observations, according to Equation 1

ytf g~ 1000.

PN
g~1 at,g.Ct,gPN
g~1 at,g.Pt,g

( )
ð1Þ

where Ct,g is the monthly number of CSCOM-specific S.

haematobium-induced terminal hematuria consultations for both

genders and all ages; Pt,g is the time-dependent population of each

CSCOM service area, which was adjusted for a national annual

population growth rate of 3.2% [11,19,20]; at,g = 0 if Ct,g is missing

for month t and CSCOM service area g, otherwise at,g = 1; last,

N = 17 is the total number of CSCOM service areas. The

approximately random distribution of missing observations

(,17%) across months, years, and CSCOM service areas [11]

ensures approximately unbiased {yt} estimation with Eq. 1, which

holds as long as the denominator summation is positive. In simpler

words, Eq. 1 estimates the monthly consultation rate for S.

haematobium-induced terminal hematuria from CSCOM service

areas for which records are available. Consultation rates and their

forecasts are expressed as the monthly number of newly diagnosed

S. haematobium–induced terminal hematuria cases per 1000

individuals in the district of Niono. Additional record details

appear in Table 1, which was adapted from Medina et al. [11].

Time-series forecasts
The amalgamated TS was fitted with ES methods, which are

encapsulated within a state-space framework hereafter referred to as

ETS for error (E), trend (T), and seasonal (S) components. The E

component is either additive (A) or multiplicative (M); T and S

components may be A, M, or inexistent (N); last, T may also be

dampened additively (Ad) or multiplicatively (Md). For example, the

ETS method MMN has E(M), T(M), and S(N) structures. Therefore,

there are 30 possible ES combinations within this forecasting

framework, comprising linear and non-linear ones. However, only

the 15 ES methods with multiplicative error structures (hetero-

skedastic) were herein considered for TS analysis [21–32]. Not only

do multiplicative error structures are conservative but they also yield

more realistic 95% prediction interval (PI) values. Furthermore, a

reduction in the number of ES methods evaluated also diminishes

the expensive computational time.

The versatile and fully automatic ETS framework requires

neither stationarity nor ‘‘strict’’ linearity to produce contempora-

neous TS forecasts for variable time horizons (h) [21–32].

Consequently, it is extensively employed in, e.g., econometrics

and inventory control where automatic forecasts are required for a

large number of diverse TS. This forecasting framework, whose

performance was recently and favorably compared to those of

several forecasting techniques across thousands of TS [32], adapts

to underlying alterations in disease dynamics and automatically

revises forecasts on-line as new observations accumulate (Fig. 3).

This adaptability is essential for epidemiological forecasting

methods because interventions (e.g. medical and prophylactic

treatment) almost ubiquitously perturb disease TS dynamics. An

intuitive description of the ETS framework appears in Fig. 3; it is

only succinctly described below because it has been meticulously

derived elsewhere [21–31].

In the ETS framework, the expected mean of a forecasted

observation, E[F(yt+h|It)], is conditioned on the information set (It)

available at time t—i.e. these are external predictions. The

information set It contains unobserved level (lt), trend (rt), and or

seasonal (sm|t: month, m = [1, 12]) components, whichever

pertinent, depending on the underlying ES method. Possible

lower-frequency ‘‘harmonics’’, i.e. inter-annual fluctuations, are

handled by lt and rt components in the ETS framework because

the limited temporal window (01/1996–06/2004) considered in

this investigation precludes stable estimation of periodicity much

longer than 12 months. The observed amalgamated TS is

symbolized by {yt}, as previously defined, whereas unobserved

TS components enter the vector xt, according to the general state

Figure 3. On-line forecast flow-chart. (1) Prior time-series (TS)
observations initialize (2) the program that selects the best-performing
exponential smoothing (ES) method within the state-space forecasting
(ETS) framework, according to Equations 2 & 3 (Methods) as well as the
Akaike’s Information Criterion (AIC). Then, (3) Equations 2 & 3 simulate
h-month horizon forecast path distributions with the best-performing
ES method via B = 1000 ordinary residual bootstraps. (4) Mean forecast
and 95% prediction interval (PI) values obtain as described in the
Methods section. Subsequently, (5) the 1-month horizon forecast plus
(6) the available TS (including the most contemporaneous observation)
is supplied to (2, 3) the execution program to (4) revise forecasts and
their 95% PI values. The automatic supply of contemporaneous TS
observations into (2–6) yields revised on-line forecasts, i.e. external
predictions. Basically, contemporaneous forecasts obtain via TS
extrapolation whereby previous deviations between forecasts and their
corresponding observations are exponentially adjusted with smoothing
control values. For example, (1) the Schistosoma haematobium TS
observations from January 1996 to December 1998 for the district of
Niono, Mali, initialize (2–4) the ETS execution program that predicts
consultation rates for January 1999 to May 1999 (assuming a 5-month
horizon forecast). Once (5) the January 1999 forecast plus (6) the
available TS (including the most contemporaneous observation of
January 1999) become available to the on-line system, (2–4) the
execution program cycles again and optimizes all considered ES
methods, selecting the best-performing one (which may or may not be
the same one employed prior to the arrival of this new observation). As
a result, revised consultation rate predictions for February 1999 to June
1999 become available. This process repeats ceaselessly. This diagram
was adapted from Medina et al. [11].
doi:10.1371/journal.pntd.0000276.g003
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and transition Equations 2 & 3, respectively:

F yt It{1jð Þ~w xt{1ð Þzr xt{1ð Þet ð2Þ

xt~f xt{1ð Þzg xt{1ð Þet ð3Þ

where,

etf g*N 0,s2
� �

:

For ES methods with multiplicative error structures, w(xt-1) and

r(xt-1) have both the form of the expected mean of a forecasted

observation, E[F(yt|It-1)]. Otherwise, w(xt-1) = E[F(yt|It-1)] and r(xt-

1) = 1 for ES methods with additive error structures (not discussed

hereafter). All ES methods rely on the adjustment of lt, rt, and or sm|t

TS components with their corresponding smoothing control a, b,

and c values; furthermore, Q controls smoothing of rt-dampening if

present. Basically, contemporaneous forecasts obtain via TS

extrapolations whereby previous deviations between forecasts and

their corresponding observations are exponentially adjusted with a,

b, c, and or Q. Large smoothing control values confer greater weights

to recent information and effectively shorten the smoothing

‘‘memory’’, i.e. the recent-past has a more pronounced influence

on estimated components than does the distant-past [11,21–31].

Three important remarks: 1) a single or multiple smoothing control

values may be required depending on which TS components are

present in the selected ES method; 2) although smoothing controls

are symbolized with the same notation across distinct ES methods,

their function may vary from one ES method to another because the

relationship between TS components may also differ (e.g. multipli-

cative vs. additive rt); last, 3) the function of smoothing control values

approximately parallels that of the bandwidth in a one-side

Nadaraya-Watson exponential kernel.

Smoothing controls plus unobserved components are estimated

for all ES methods within the ETS state-space framework using a

maximum likelihood function analog [31]. Here, the general ETS

constraints are: 0,a, Q,1; 0,b,a; and, 0,c,12a; strictly

multiplicative error structures; multiplicative sm|t values add

annually to 12 because m = [1, 12]; and, 36 months [;3p] for

initial training, the possible specification of longer intervals

notwithstanding. Defaulted ETS constraints are specified for

several reasons [21–31] among them to prevent the forecast

execution program from producing unrealistic results.

Once each ES method within the ETS framework is optimized

at time t, that which minimizes the Akaike’s Information Criterion

(AIC) is selected to generate the h-month horizon forecast path

distribution. The h-month horizon forecast path distribution,

F(yt+h|It), obtains via recursive iterations (Eqs. 2 & 3) of B = 1000

ordinary {et} bootstrap-generated pseudo-TS [11,31,33]. With the

accumulation of each new observation, ES methods within the

ETS framework are re-optimized and the best-performing ES

method is re-selected based on the AIC. Subsequently, F(yt+h|It) is

again recursively generated from B = 1000 ordinary {et} boot-

strap-generated pseudo-TS. For example, observations from

January 1996 to December 1998 initialize the ETS execution

Table 1. Demographic and consultation record descriptions for the district of Niono, Mali.

CSCOM Population (2004) Time-series period Missing dates Missing months % missing

Boh 7105 01/1996–06/2004 - 0 0.00

Bolibana 18321 01/1996–06/2004 1997 12 0.76

Cocody 6021 01/1996–06/2004 - 0 0.00

Debougou 25603 01/1996–06/2004 1997, 1998 (3) 15 0.94

Diabaly 16974 01/1996–06/2004 1997 12 0.76

Diakiwere 12269 01/1996–06/2004 1999 (3), 2003 (3) 6 0.38

Dogofry 24172 01/1996–06/2004 1997, 1998 (1) 13 0.82

Fassoun 5837 01/1996–12/1999 1997, 1999 (9) 21 1.33

Kourouma 8186 01/1996–06/2004 1997, 2001 24 1.52

Molodo 18379 01/1996–06/2004 1997, 2003 (6) 18 1.14

Nampala 7972 01/1996–06/2004 1996 (4), 1997, 1999 (9) 25 1.58

Nara 24161 01/2000–06/2004 2000, 2001, 2002, 2003 (6) 42 2.65

Pogo 11893 01/1996–06/2004 1997, 2003 (3) 15 0.94

Siribala 22745 01/1996–06/2004 1997, 2001 (3) 15 0.94

Sokolo 14672 01/1996–06/2004 1997, 1999 (3) 15 0.94

Werekela 14431 01/1996–06/2004 1996, 1997 24 1.52

Niono 40000 01/2000–06/2004 2000, 2001 (2), 2002 (1) 16 1.01

Total 278741 1584 months - 272 17.2

The total projected (2004) population in the district of Niono, Mali, is 278 741 individuals, inhabiting approximately 20 000 km2. The projected number of individuals
served by each community health center (CSCOM) service area within this district is tabulated under the Population heading. The population from each CSCOM service
area was adjusted with the national annual population growth rate (3.2%) before the Schistosoma haematobium consultation rate time-series (TS) was calculated with
Equation 1 (Methods) [19,20]. Potential records are listed under Time-series period. Unavailable CSCOM service area records appear under Missing dates—the number of
missing monthly records for each year is listed in parenthesis otherwise records for the whole year are missing. These are totaled under Missing months and expressed as
percentages from the total number of possible records (across all CSCOM service areas and years) under the % missing heading. Of note, the Niono CSCOM service area,
which includes the district center and immediate periphery, is one of the 17 CSCOM service areas within the district of Niono, Mali. This table was adapted from Medina
et al. [11].
doi:10.1371/journal.pntd.0000276.t001
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program (Fig. 3) that predicts consultation rates for January 1999

to May 1999, assuming h = [1, 5]. Once the January 1999 forecast

plus the available TS (including the most contemporaneous

observation of January 1999) become available to the on-line system

(Fig. 3), the execution program cycles again and optimizes all

considered ES methods, re-selecting the best-performing one (which

may or may not be the same one employed prior to the arrival of the

new observation). As a result, revised consultation rate predictions

for February 1999 to June 1999 ensue. This process repeats ad

infinitum (Fig. 3). The 95% PI values for the simulated F(yt+h|It) paths

are estimated from distribution percentiles.

Although a full portrayal of the ETS framework (Eqs. 2 & 3)

encapsulating the 15 considered ES methods [21–31] is beyond the

scope of this investigation, those ES methods which have been

selected at least once during this TS analysis are described in terms of

E[F(yt|It-1)] and xt recursions (Table 2). [Table 2 caption also

provides an ES method example explicitly written in matrix

notation.] As discussed afterwards in the Results section, none of

the selected ES methods (Table 2) is seasonal, reflecting the

endemicity of the TS analyzed herein. For further details concerning

the ETS framework, refer to, e.g., Hyndman et al. [27,29,31].

Forecasting accuracy and dispersion
Standard accuracy and dispersion measures were employed in

this analysis. Accuracy—which measures the forecasting compe-

tence—is defined here as the mean absolute percentage error

(MAPE) between observed and forecasted TS values whilst

infrequently reported PI values reflect the dispersion of forecast

distributions; the dispersion of simulated F(yt+h|It) probability

density functions were also summarized as the average coefficient

of variance (CV ). MAPE and CV values are calculated with

Equations 4 & 5, respectively:

MAPE~
100%

T{f z1
.
XT

t~f

yt{E F yt It{hjð Þ½ �
yt

����
���� ð4Þ

CV~
100%

T{f z1
.
XT

t~f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var F ytzh Itjð Þ½ �

p
E F ytzh Itjð Þ½ � ð5Þ

CV and MAPE (external) values are expressed in percentage (%) as

a function of the h-month horizon forecast. In Eqs. 4 & 5, T is the

TS length and f = 3p21+h reflects the actual time when the h-

month horizon forecast begins. Large MAPE and CV values imply

low accuracy and large dispersion, respectively, and vice-versa. The

distinction between MAPE and PI (or CV ) values is an important

one. The first assesses the competence, i.e. the skill, of the h-month

horizon forecast; the latter only measures the dispersion of the h-

month horizon forecast path distribution. Thus, PI (or CV ) values

have paramount importance for calculating, e.g., the probability

that a future observation will be smaller or greater than the

expected forecast distribution mean by a certain margin. Likewise,

the number of individuals at risk may be calculated for a specified

probability.

This TS has not undergone Box-Cox transformations. Notice

however, that TS frequently undergo such transformations prior to

the forecasting analysis. Regardless, contemporaneous forecasts and

standard accuracy measures (e.g. MAPE) must be (and were)

superimposed onto and computed for, respectively, the originally

observed TS because accuracy may be severely distorted in the

transformed dimension—i.e. occasionally, forecasts may be simul-

taneously accurate and inaccurate in the transformed and original

dimensions, respectively. All calculations were performed in R: A

language and environment for statistical computing [30,31].

Results

This longitudinal retrospective (01/1996–06/2004) investigation

analyzed the S. haematobium consultation rate TS for the district of

Niono, Mali. In Figure 4, the observed amalgamated S. haematobium

consultation rate TS is symbolized by black lines. The TS is

excessively noisy from 1996 to 1999 when a sharp rise in consultation

rates clearly ensues. From 2001 onwards, consultation rates decline

because of large-scale prophylactic de-parasitation programs.

Regardless, 2- to 5-month horizon forecasts clearly captured these

inter-annual tendencies (Fig. 4)—red traces correspond to contem-

poraneous on-line 2-, 3-, 4-, and 5-month horizon forecasts (panels A,

B, C, and D, respectively) whilst their 95% PI values are depicted in

dots of the same color. Abscissa TS projections span 102 months

(01/1996–06/2004) while ordinate scales represent the number of

newly diagnosed (or forecasted) S. haematobium–induced terminal

hematuria cases per 1000 individuals.

TS observations were continuously submitted to a family of

general-purpose ES methods—encapsulated within the ETS state-

space framework—to produce contemporaneous on-line forecasts

(i.e. external predictions). Predictions were superimposed onto the

original TS to allow visual evaluation of prediction accuracy.

While this superimposition is absolutely essential, it might convey

the false impression that forecasts represent internal predictions—

this is not the case. Fig. 4 should be considered dynamically. As

observations and forecasts become available to and from the on-line

forecast execution program (Fig. 3), respectively, the actual

graphing of forecasts (red traces) precede that of observations

(black lines) by exactly h-month horizon.

Table 2. Selected exponential smoothing methods within the
state-space forecasting framework.

ETS E[F(yt|It-1)] xt

MNN E[F(yt|It-1)] = lt-1 lt = lt-1(1+aet)

MAdN E[F(yt|It-1)] = lt-1+Qbt-1 lt = (lt-1+Qbt-1)(1+aet)

bt-1 = Qbt-1+b(lt-1+Qbt-1)et

MMdN E F yt It{1jð Þ½ �~lt{1.b
Q
t{1 lt~ lt{1.b

Q
t{1

� �
1zaetð Þ

bt{1~b
Q
t{1 lt{1zbetð Þ

All exponential smoothing (ES) methods within the state-space forecasting
(ETS) framework (Equations 2 & 3) were optimized with a likelihood function
analog as new Schistosoma haematobium time-series (TS) observations for the
district of Niono, Mali, became available; the best-performing method was
continuously re-selected with the Akaike’s Information Criterion (AIC) to
generate optimum forecasts (Methods). Throughout the investigational period,
only 3 from a total of 15 ES methods considered within the ETS framework were
re-selected; they are: the multiplicative error/ trendless/ aseasonal (MNN);
multiplicative error/ damped additive trend/ aseasonal (MAdN); and,
multiplicative error/ damped multiplicative trend/ aseasonal (MMdN) ES
methods. Notice that none of them are seasonal. Although a full portrayal of
the ETS state-space framework (Equations 2 & 3) encapsulating all 30 ES
methods [11,21–31] is beyond the scope of this investigation, those ES methods
which have been selected at least once during the TS analysis are described
herein in terms of E[F(yt|It-1)] and xt recursions—a, b , and Q control smoothing
of level (lt), trend (rt), and rt-dampening, respectively. Large a, b, and Q values
confer greater weights to recent information and effectively shorten the
smoothing ‘‘memory’’, i.e. the recent-past has a more pronounced influence on
estimated components than does the distant-past [11,21–31]. For example,
MAdN state-space Eqs. 2 & 3 may be written in explicit matrix form as:
F(yt|It-1) = ANxt-1N(1+et) & xt = BNxt-1+ANxtNCNet where A = (1, Q)9, xt-1 = (lt-1, rt-1), C =
(a, b), and B is a 262 matrix whose entries b1,1, b1,2, b2,1, b2,2 are 1, Q, 0, Q,
respectively.
doi:10.1371/journal.pntd.0000276.t002
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Generally, the ETS framework accommodates seasonal and inter-

annual fluctuations, producing reasonably accurate TS forecasts.

Here, inter-annual fluctuations dominate the S. haematobium TS while

seasonal oscillations are practically inexistent (Fig. 4). These

fluctuations are intuited from the observed consultation rate TS

(black lines), as well as implied by the absence of {st|m} vis-à-vis the

presence of {lt} and or {rt} components in automatically selected ES

methods (Table 2). Only 3 ES methods were automatically selected

with the AIC during this S. haematobium TS forecasting analysis. These

selected ES methods, which have been described in terms of

E[F(yt|It-1)] and xt recursions (Table 2), are: the multiplicative error/

trendless/ aseasonal (MNN), multiplicative error/ damped additive

trend/ aseasonal (MAdN), and multiplicative error/ damped

multiplicative trend/ aseasonal (MMdN) ES methods. None of them

are seasonal and hence exogenous forcing (e.g. climate covariates)

was not invoked to improve predictions.

Figure 4. State-space forecasts of Schistosoma haematobium consultation rate time-series for the district of Niono, Mali. Observed
Schistosoma haematobium consultation rate time-series (TS) in the district of Niono, Mali, are depicted as black lines in this composite panel while red
traces correspond to contemporaneous h-month horizon forecasts; 95% prediction interval (PI) bounds are symbolized by red dots of the same color.
Abscissa projections span 102 months (01/1996–06/2004) while ordinate scales represent the number of newly diagnosed (or forecasted) S.
haematobium–induced terminal hematuria cases per 1000 individuals. Forecasts were generated with exponential smoothing (ES) methods, which are
encapsulated within the state-space forecasting (ETS) framework (Methods). Panels A, B, C, and D correspond to 2-, 3-, 4-, and 5-month horizon
forecasts, respectively. These forecasts are, by definition, external predictions. Predictions were superimposed onto the original TS to allow visual
prediction accuracy evaluation. This figure should be considered dynamically. As observations and forecasts became available to and from the on-line
execution program, the actual graphing of forecasts (red traces) preceded that of observations (black lines) by exactly h-month horizon.
doi:10.1371/journal.pntd.0000276.g004
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Table 3 lists the frequency (n) with which these ES methods

were re-selected during the forecasted investigational period plus

the method-specific median (and IQR: inter-quartile range) of

pertinent smoothing control values. Smoothing control values are

time-dependent because they are continuously re-estimated as new

observations accumulate. Yet, their magnitude drifts little in this

investigation. Hence, they were reported as median and IQR

values. The MNN smoothing control a is obviously large since this

method only has a level {lt} component, i.e. the MNN ES method

lacks {rt} and {st|m} components as well as their corresponding

smoothing control b, Q and c values. For MAdN and MMdN

methods, b#a%Q due to large dampening of minute rt
components. As new observations accumulated, the automatic

and criterial re-selection of ES methods conferred an additional

layer of flexibility to the ETS framework and consequent TS

forecasts. [Smoothing control values may differ in functional form

across ES methods despite the retained notation (Methods).]

MAPE and CV values for 1- to 5-month horizon forecasts were

circa 25 and 45%, respectively (Figure 5). CV values reflect the

average dispersion of simulated F(yt+h|It) probability density

functions whilst MAPE values measure the mean absolute

percentage error between TS observations and their forecasts.

Accuracy (MAPE; panel A) becomes approximately asymptotic as

the h-month horizon forecast increases beyond 6 months because

of a minute {rt} component irrespectively of the selected ES

method, significant inter-annual {lt} fluctuations notwithstanding.

As expected, dispersion (CV ; panel B) increases as innovations

propagate through longer stochastic h-month horizon forecast

paths.

Discussion

Schistosoma sp. expose and infect more than 500 and 200 million

individuals in 77 countries, respectively. In the Sahel, S. haematobium

is endemic and highly prevalent [2,10–15]. The few reports

evaluating S. haematobium transmission in Mali [10–15], particularly

in the district of Niono (Fig. 1), suggest that forecasting S. haematobium

consultation rate TS may locally assist with reducing morbidity. For

instance, S. haematobium is the 5th most frequently diagnosed infection

(the 6th commonest consultation etiology); it accounts for 2.5% of

total CSCOM service area consultations [11,20] with 50 to 75%

community prevalence [12,13] in the district of Niono. Paradoxi-

cally, temporal S. haematobium analyses are scarcely reported in the

parasitic literature e.g. [16–18] probably because 1) this neglected

tropical disease is endemic whereas most infectious disease TS

forecasts usually attempt to detect epidemics, i.e. unexpected rises in

consultation rate first moments, assisting with tailoring control

measures; 2) S. haematobium TS tend to be excessively noisy, hindering

analyses; finally, 3) long delays between S. haematobium infection and

diagnosis challenge efforts to relate predicted high consultation rates

to their potentially preventable sources. Notice that, though

endemic, S. haematobium TS does fluctuate.

The ETS framework employed herein reasonably forecasted long

horizons (Fig. 4), partially circumventing the limitations imposed by

the S. haematobium TS noisy level and long delays between infection

and diagnosis. Thus, this report addresses challenges in, and the

scarcity of, S. haematobium TS forecasting reports with the flexible

ETS framework (Fig. 3), which may locally assist with managing

endemic S. haematobium transmission in the district of Niono, Mali.

Here, accuracy (i.e. MAPE) and dispersion (CV ) for contemporane-

ous (‘‘out-of-fit’’) 1- to 5-month horizon S. haematobium consultation

rate TS forecasts were circa 25 and 45%, respectively (Figs. 5). MAPE

values assess the competence, i.e. the skill, of h-month horizon

forecasts; CV (or PI) values measure the dispersion of h-month

horizon forecast path distributions. The later has paramount

importance for calculating, e.g., the probability that a future

observation will be smaller or greater than the expected forecast

distribution mean by a certain margin. Likewise, the number of

individuals at risk may be calculated for a specified probability. The

rarely considered 2nd moment forecasts (PI) may significantly assist

authorities with risk and scenario analyses.

A comprehensive S. haematobium intervention strategy depends

not only on prevalence, which has already been discussed in the

Introduction section [10–15], but also on incidence measures. For

instance, an abnormal rise in incidence should alarm authorities

who are charged with investigating and containing hazard,

ensuring that CSCOM service areas are able to handle patient

demand, sensitize communities, control transmission, and monitor

intervention impact. Thus, it is important to delineate some

parallels between the S. haematobium consultation rate TS plus their

forecasts analyzed herein (Fig. 4) and the unobserved incidence.

The monthly S. haematobium consultation rate is proportional to

the unobserved monthly incidence TS—i.e. an increase in the

monthly S. haematobium consultation rate most likely stems from a

rise in the monthly incidence TS since the former is a fraction of

the latter. The observed and forecasted consultation rate TS

(Fig. 4) approximately reflect the monthly S. haematobium-induced

terminal hematuria incidence because ,95% of the Niono district

population lives within 15 km of CSCOM facilities and hematuria

alarmingly prompts patients to access available treatment.

Although these records [19,20] are unsuitable for estimating the

exact S. haematobium incidence, it may be approximated to at least

an order of magnitude higher than the observed consultation rate

TS under mean-field, steady-state, stable age structure, constant

Table 3. ETS framework smoothing controls.

ETS n a b Q

Median (IQR) Median (IQR) Median (IQR)

MNN 45 0.35 (0.04) - -

MAdN 6 0.05 (0.03) 0.05 (,0.01) 0.80 (0.01)

MMdN 16 0.08 (0.03) 0.03 (0.03) 0.82 (0.01)

Three exponential smoothing (ES) methods within the state-space forecasting
(ETS) framework employed herein were automatically selected n times each,
according to the Akaike’s Information Criterion (AIC), to forecast Schistosoma
haematobium–induced terminal hematuria consultation rate time-series (TS) for
the district of Niono, Mali (1996–2004). The multiplicative error/ trendless/
aseasonal (MNN), multiplicative error/ damped additive trend/ aseasonal
(MAdN), and multiplicative error/ damped multiplicative trend/ aseasonal
(MMdN) ES methods were selected 45, 6, and 16 times, respectively. Though the
estimated smoothing controls for each of these ES method are time-dependent,
they fluctuate only slightly (Results). Thus, they are reported above as median
and inter-quartile range (IQR) values. These three methods are remarkably
similar. The MNN was the most frequently selected ES method (n = 45). Only the
a value was listed for this method because it only has a level (lt) TS component;
b and Q, are reserved for methods that have trend (rt) and rt-dampening TS
components (i.e. MAdN and MMdN). For MAdN and MMdN methods, b#a%Q
due to large dampening of minute rt TS components. Of note, smoothing
controls differ in function across ES methods, their retained notation
notwithstanding. In sum, only aseasonal methods with minute or inexistent rt

plus significant lt TS components were automatically selected during the
investigational period, suggesting that: 1) TS forcing by seasonal covariates is
not limiting; and, 2) public health intervention, population behavior, migration,
and irrigation management may govern S. haematobium–induced terminal
hematuria consultation rate TS fluctuations in this district. The strength of the
forecasting approach employed herein relies on the automatic and systematic
AIC-directed switches between ES methods within the ETS framework as new
observations accumulate, conferring an additional layer of flexibility to TS
predictions.
doi:10.1371/journal.pntd.0000276.t003
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population growth (3.2%), and overall prevalence (,60%)

assumptions. Consequently, the difference between the observed

consultation rate (Fig. 4) and the estimated incidence TS described

above (not shown) approximately reflects the S. haematobium

incidence of asymptomatic and mildly symptomatic cases. The

effective S. haematobium incidence depends on age as recurrent

cercarial exposure induces partial-immunity [1]. S. haematobium-

induced terminal hematuria consultations emanate primarily from

the 7–14 age-category, which comprises 20 to 30% of the district

population [11,19,20]. Thus, a rough population structure TS

adjustment suggests that the actual and forecasted S. haematobium-

induced terminal hematuria incidence is roughly 3 to 5 times

higher in the aforementioned age-category.

The dependency of S. haematobium transmission on the

environment is extremely important and cannot be understated.

S. haematobium transmission depends on climate [1,18], as well as

natural (e.g. lakes) and artificial (e.g. irrigation schemes) water

reservoirs [1,2]. Despite these dependencies, covariates such as

climate were not invoked to forecast the S. haematobium TS because

it is endemic [10–13] and aseasonal (Fig. 4 and Tables 2 & 3) in

the district of Niono, Mali. In this district, temperature and rainfall

TS values guarantee S. haematobium transmission suitability

throughout the year—i.e. transmission is not limited here by

climate thresholds beyond which the S. haematobium life-cycle

becomes unstable.

Unlike temperature, rainfall TS values exhibit large (inter-

tropical convergence zone-mediated) inter-annual oscillations in

the Sahel. These fluctuations prompt the local authority (Office du

Niger) to accordingly adjust irrigation management, which

inevitably and transiently alters S. haematobium transmission

suitability in this district. In other words, rainfall precipitation

only indirectly affects S. haematobium transmission in this district.

For example, an augment in rainfall precipitation increases water

availability. Consequently, the Office du Niger may relax water

control to better irrigate drier areas while collaterally enhancing

water-flow through typically well-served agricultural fields—S.

haematobium transmission suitability could then simultaneously

increase and decrease in the former and latter scenarios,

respectively. Another major source of TS fluctuations stems from

the constant exposure to, and behavioral risks associated with, the

irrigation system (Fig. 2). These TS fluctuations are further

aggravated by the influx of migrant workers from non-endemic

areas. The variable clinical course of S. haematobium-induced

terminal hematuria may also introduce stochastic fluctuations into

this TS. Finally, the impact of large-scale prophylactic de-

parasitation programs perturbs S. haematobium transmission as

evidenced by sustained consultation rate declines from 2001

onwards (Fig. 4). Consequently, S. haematobium TS fluctuations in

this district require forecasts, the endemecity of this neglected

tropical disease notwithstanding.

Figure 5. Schistosoma haematobium consultation rate time-series forecasting accuracy and dispersion for the district of Niono, Mali.
Panel A: Mean absolute percentage error (MAPE) values between Schistosoma haematobium time-series (TS) observations for the district of Niono,
Mali, and their corresponding h-month horizon forecasts measure external accuracy. The average coefficient of variance (CV ) for h-month horizon
forecast probability density functions reflect prediction dispersion. MAPE and CV values are displayed as a function of h-month horizon forecasts.
MAPE and CV values for 1–5 month horizon forecasts were circa 25 and 45%, respectively. Therefore, panels A and B demonstrate that forecast
accuracy and dispersion are reasonable for short horizons. Of note, MAPE, unlike CV , values assess the skill of h-month horizon forecasts. CV and PI
values are rarely reported outside the econometric literature; yet, they have paramount importance for calculating, e.g., the probability that a future
observation will be smaller or greater than the expected forecast distribution mean by a certain margin. Alternatively, the number of individuals at
risk may be calculated for a specified probability.
doi:10.1371/journal.pntd.0000276.g005
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Future studies should dedicatedly investigate the intricate roles of

geography, climate, irrigation management, and human behavior

(including migration) in the context of S. haematobium transmission

ecology to improve forecasts and interventions in this district.

Unfortunately, addressing the multidimensionality of this disease

remains difficult owing to poor documentation. Until this informa-

tion becomes available, the employment of univariate methods (e.g.

ETS framework) to forecast S. haematobium-induced terminal

hematuria incidence in the district of Niono seems adequate. This

is consistent, for example, with the successful employment of

univariate methods to forecast schistosomiasis TS in Dongting Lake,

China [16], albeit with the admonition that these results cannot be

indiscriminately generalized to any location.

Furthermore, this S. haematobium-induced terminal hematuria

TS is aseasonal (Fig. 4 and Tables 2 & 3), which intuitively argues

against the incorporation of seasonal climate covariates and

corroborates the employment of univariate prediction methods.

[The automatically selected MNN, MAdN, and MMdN forecast-

ing methods (Tables 2 & 3) are very similar; they reflect the fact

that the S. haematobium-induced terminal hematuria TS is

aseasonal, quasi-trendless, with significant inter-annual fluctua-

tions in the district of Niono, Mali.] S. haematobium transmission

generally drifts slowly in response to also slow climate and or other

environmental changes. As a result, the ETS framework has the

benefit of time to adapt to perturbations in and revise forecasts for

this fully-stable (endemic) S. haematobium TS. In other words,

current observations mirror past disease dynamics and environ-

mental interactions. Forecasting methods that capture these

relationships through historical TS analysis often reflect prior

and present interactions on post-sample (external) predictions.

This is clearly not the case when the chaotic weather or a newly

erected dam, for example, suddenly inundate large areas triggering

outbreaks and epidemics (i.e. under unstable transmission

conditions). While it is difficult to predict weather, environmental

impact may be investigated with satellite technology; for example,

Beck-Wörner et al. [34] successfully employed a hybrid of

remotely-sensed and surveyed data from western Côte d’Ivoire

to spatially predict S. mansoni infection risk. [Although the

consultation records analyzed herein are resolved by 17 CSCOM

service areas, spatial considerations were dismissed because the

district of Niono occupies only ,20 000 km2 (Fig. 1).]

Conversely, lagged weather- and or climate-based models are

particularly powerful whenever disease transmission is unstable

and epidemics are suddenly-triggered. For example, a weather-

based Poisson regression (4th-degree polynomial distributed lag)

was employed to model malaria TS in highly unstable regions of

Ethiopia [35]. However, lagged weather- and or climate-based

models not only demand extensive programming and expertise to

reasonably specify the number of lags but they also require caution

to avoid multicollinearity, problematic optimization, and lengthy

TS requirements. Furthermore, lagged models, unlike ES

methods, must be tailored to each disease because the optimum

functional form of climate covariates is not obvious [35–38].

Weather events must be measured because predicting its chaotic

nature with several weeks in advance is usually impossible.

Predicting climate is not trivial and such predictions are typically

too global to substantially add local forecasting accuracy.

Otherwise, weather- and or climate-based models are crucial to:

elucidate complex disease transmission behavior [37], forecast

long horizons [38], and model infectious disease transmission in

the spatial dimension [18,36]. If the optimum functional form of

climate covariates is unveiled [37] then reasonable forecasts yield

[38]. While some form of lagged weather- and or climate-based

model may be indispensable in certain cases [35–38], simpler ES

alternatives may locally forecast fully- and or partially-stable

disease TS, e.g. meso-endemic malaria [11] and endemic S.

haematobium transmission in the district of Niono, Mali.

Like other forecasting approaches, ES methods perform

reasonably well whenever disease transmission comprises relatively

large event-probabilities during long investigational periods.

Forecasting methods surrender when disease transmission depends

on rare stochastic events (in highly-structured populations), each

associated with minute (albeit finite) probabilities, governing

unstable and transient disease dynamics. These highly-stochastic

structured disease dynamics feature sudden epidemic resurgence

and ample epidemic volume variability that are not easily

investigated with univariate and most multivariate methods, often

requiring more sophisticated approaches e.g. [39,40].

The generality, reasonable performance, and operational

simplicity of the ETS forecasting framework employed herein

may appeal to those working towards infectious disease hazard

mitigation. Computationally, recursive ES methods (Table 2),

encapsulated within this framework, may be easily and automat-

ically optimized, as well as operated, by non-statisticians in the

public health sector [21–32]. They are often available as software

procedures (e.g. SPSS and EViews), pre-written functions for

programming environments (e.g. S-plus and the freely-available R

language and environment for statistical computing), and scripts in

classical programming languages (e.g. FORTRAN and C). This

has been previously discussed in Medina et al. [11].

Moreover, ES methods adapt with an on-line training (Fig. 3)

that exponentially discounts prior information, i.e. information

from the recent-past is more relevant to forecasts than those from

the distant-past. Its versatility reflects ‘‘density-estimation’’ of

unobserved TS components (Methods) [41]. Owing to both

adaptability and versatility, ES methods tend to accommodate

intervention-induced perturbations (e.g., medical and prophylactic

treatment) that inherently plague longitudinal retrospective disease

TS investigations (Fig. 4) e.g. [3–7] as well as disease TS with

distinct transmission modes [11], respectively. This is illustrated

here by the S. haematobium monthly consultation rate declines from

2001 onwards (owing to large-scale prophylactic de-parasitation

programs) and corresponding 2- to 5-month horizon TS forecasts,

which captured these inter-annual tendencies (Fig. 4).

Forecasting and early warning systems for managing infectious

diseases depend on human behavior, population, disease TS,

climate, environment and or a combination thereof, whichever

alternative best compromises among realism, feasibility, robustness,

and parsimony. Nevertheless, forecasts do not obligatorily require

exogenous covariates. Medina et al. [11] demonstrated how a robust

univariate general-purpose ES method may produce contempora-

neous (‘‘out-of-fit’’) forecasts for dissimilar diseases without disease-

specific tailoring of the forecasting method. More recently, Chaves &

Pascual demonstrated the importance of assessing the performance

of several forecasting methods, including climate-based ones, in a

systematic fashion [38]. Finally, the aforementioned ideas were

successfully combined here to allow AIC-directed switches (as new

TS observations accumulated and perturbations evolved) among 15

general-purpose ES methods within the ETS framework, further

improving forecasts (Fig. 4 & 5 and Tables 2 & 3).

Sudden TS perturbations transiently limit the performance of this

and other forecasting approaches. Like most forecasting approaches,

particularly univariate ones, ES methods react only after initial TS

fluctuations ensue. Thus, this limitation is not unique to ES methods

employed herein. Introducing covariates may lessen this limitation if,

and only if, the underlying covariate fluctuation is either measurable

or predictable—this is often, but not always, the case. Furthermore,

the deleterious effects of sudden, even if small, TS perturbations
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propagate through h-month horizon forecast paths. This phenom-

enon clearly surfaced in Fig. 4 (panels A, B, C, and D). As the

horizon increased from 2- to 5-month, forecasts became progres-

sively worse (Fig. 5) for sudden consultation rate TS fluctuations in

2001 (Fig. 4) as previously discussed.

A major limitation of all TS analyses, and this investigation is

not exempt from it, consists of information unavailability. The

intricate role of geography, rainfall, irrigation management, and

human behavior (including migration) in the S. haematobium

transmission ecology has not been extensively documented for

this district. Thus, general, adaptable, and versatile univariate ES

methods were employed herein to generate forecasts. Second,

missing monthly consultation records could have potentially

introduced bias in this monthly S. haematobium consultation rate

TS. However, this is unlikely owing to the random distribution of

missing records across CSCOM service areas, months, and years.

As listed in Table 1, missing records distribute approximately

normally across CSCOM service areas and approximately

uniformly through the investigational period [11]. The percentage

of missing monthly records in the amalgamated TS is circa 17%,

generally less than 2% per year. The only exception manifests in

the practically reconstructed year of 1997 that was employed for

program initialization—nevertheless, this is minimally consequen-

tial because program initialization would otherwise reflect the

customary (and arbitrary) ‘‘opinion of an expert’’ [11].

Conclusion
Changes in multiple dimensions (e.g. human behavior,

population, disease TS, climate, and environment) will confer an

ever-increasing role to infectious diseases forecasting and early

warning systems. These predictive systems are based upon a single

dimension or a combination thereof, whichever alternative best

compromises among realism, feasibility, robustness, and parsimo-

ny. With the mounting evidence that S. haematobium—a neglected

tropical disease—imposes an enormous burden on developing

countries, public health programs therein could benefit from

parsimonious forecasting and early warning systems to enhance

management and control of this parasitic infection. Not only does

this report address the paucity of S. haematobium TS forecasting

investigations but it also advocates the usage of parsimonious state-

space frameworks to forecast neglected tropical diseases. The ETS

state-space forecasting framework employed herein generated

reasonable 1- to 5-month horizon S. haematobium TS forecasts,

obliquely capturing prior non-linear interactions between disease

dynamics and exogenous covariates (e.g. climate) and hence,

obviating the need for more complex predictive methods in the

district of Niono, Mali. Thus, this and other e.g. [11,21–32] results

suggest that the remarkable performance of state-space forecasting

methods since the 1960s may be capitalized by the public health

sector, providing a basis for local re-organization and strengthen-

ing of intervention programs in this and potentially other Sahelian

districts. The operational simplicity, generality, and flexibility of

state-space frameworks, such as the one employed here,

conveniently allow for: 1) unsupervised model selection without

disease-specific methodological tailoring; 2) on-line adaptation to

fluctuations in partially- and fully-stable disease TS; and, 3)

automatic switches between distinct forecasting methods as new

TS perturbations dictate. Generally, state-space approaches are

malleable to the dynamic incorporation of covariates (e.g. climate),

expert opinion, and even a spatial dimension as needed. Therefore,

fully automatic and user-friendly state-space forecasting frameworks,

incorporating myriad (e.g. univariate, multivariate, and spatial-

temporal) options, could considerably enhance disease control and

hazard mitigation in regions where vulnerability to neglected tropical

diseases is pervasive and statistical expertise is scarce.
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pathologie exotique 95(4): 292–294.

16. Sai XY, Zhang ZY, Xu DZ, Yan YP, Li LS, et al. (2004) Application of ‘‘time
series analysis’’ in the prediction of schistosomiasis prevalence in areas of

‘‘breaking dikes or opening sluice for waterstore’’ in Dongting Lake areas,
China. Zhonghua Liu Xing Bing Xue Za Zhi 25(10): 863–866.

17. Hammad TA, Abdel-Wahab MF, DeClaris N, El-Sahly A, El-Kady N, et al.

(1996) Comparative evaluation of the use of artificial neural networks for
modelling the epidemiology of schistosomiasis mansoni. Transactions of the

Royal Society of Tropical Medicine and Hygiene 90(4): 372–376.
18. Yang GJ, Gemperli A, Vounatsou P, Tanner M, Zhou XN, et al. (2006) A

growing degree-days based time-series analysis for prediction of Schistosoma
japonicum transmission in Jiangsu province, China. American Journal of

Tropical Medicine and Hygiene 75(3): 549–555.

19. USAID (2004) Country health report: Mali.
20. Division des Services Socio-Sanitaires (1996–2004) Disease statistics for the

district of Niono, Mali. These data were retrieved at the district hospital of
Niono. These data may also obtain at individual CSCOM facilities and or in the

Segou Region. In recent years, these data began appearing in electronic format

at the Direction Nationale de Santé (DNS) in Bamako, Mali.
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