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Abstract

The authors present a method for extracting polygon data of endocranial surfaces from CT

images of human crania. Based on the fact that the endocast is the largest empty space in

the crania, we automate a procedure for endocast extraction by integrating several image

processing techniques. Given CT images of human crania, the proposed method extracts

endocranial surfaces by the following three steps. The first step is binarization in order to fill

void structures, such as diploic space and cracks in the skull. We use a void detection

method based on mathematical morphology. The second step is watershed-based segmen-

tation of the endocranial part from the binary image of the CT image. Here, we introduce an

automatic initial seed assignment method for the endocranial region using the distance field

of the binary image. The final step is partial polygonization of the CT images using the seg-

mentation results as mask images. The resulting polygons represent only the endocranial

part, and the closed manifold surfaces are computed even though the endocast is not iso-

lated in the cranium. Since only the isovalue threshold and the size of void structures are

required, the procedure is not dependent on the experience of the user. The present paper

also demonstrates that the proposed method can extract polygon data of endocasts from

CT images of various crania.

Introduction

Understanding the causes and process of brain evolution in human lineage is a central prob-

lem in the field of physical anthropology. However, since soft tissues such as brain are not fos-

silized, endocasts must be analyzed in order to infer brain morphology enclosed in fossil

crania. Although manually-replicated endocasts have long been used for the materials [1],

recent developments in virtual anthropology have allowed to handle 3D CT images directly

[2]. The primary objective of the present research is to extract endocasts as polygons.
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The use of CT scanning technology is a promising approach for acquiring geometric data

of crania. X-ray CT scanners can obtain cross-sectional images of the target objects, and 3D

images of the target objects can be obtained by stacking the 3D images. The surface structure

of the cranium obtained from CT images can be computed by isosurface extraction methods

such as the Marching cubes algorithm [3].

Once the endocranial polygons are extracted, they can be used for various anthropological

applications. The primary advantage of CT scanning of fossil crania is that the method pro-

vides non-destructive measurement. Thus, researchers can analyze crania in virtual space

without the need for physical models. Virtual assembly of crania have been reported by several

researchers [4–9]. Moreover, Amano et al. [10] reported decomposition and reassembly of the

Neanderthal Amud 1 cranium in virtual space. Endocranial surfaces may also be used to iden-

tify cortical features from sulcus patterns imprinted on the surfaces [1, 11–13]. Endocranial

models can also be used for variation analysis of brain morphology (e.g., [9, 14, 15]). More-

over, attempts have recently been made to reconstruct the brain morphology of Neanderthals

by warping brains of modern humans based on endocranial morphology [16].

One of the primary issues in endocranial polygon extraction from CT images of crania is

the requirement of manual operation. Since the endocranial surfaces exist inside the crania,

other surfaces, such as exocranial surfaces, must be manually removed from their isosurfaces.

This is a tremendous task because these surfaces are close to each other and manually remov-

ing exocranial surfaces sometimes results in the inadvertent removal of endocranial surfaces.

An alternative approach is slice-by-slice contouring, which is relatively easy. However, tremen-

dous tasks still exist, since the number of slices is usually large. Thus, endocast extraction

becomes a bottleneck in digital anthropological research.

Extracting a meaningful region from the geometric data is known as segmentation. This is a

classic problem in image processing and geometric modeling, and a number of segmentation

methods have been investigated. Commonly used segmentation methods find a discontinuity

in the intensity values or geometric features (e.g., curvature) using energy minimization prob-

lems such as active contours [17], the level set method [18], graph cut algorithms [19], and var-

iants thereof. These methods work well for scanned images when proper parameter settings or

energy functions are designed. However, the parameter settings used in these methods are

complicated. For example, Liu et al. introduced a method for extracting human bones based

on level set functions [20]. However, this method is designed only for extracting pole-like

bones and is not efficient for extracting endocranial polygons. Michikawa et al. introduced a

method for extracting vocal tracts based on mathematical morphology [21]. However, this

method assumes that the extracted region is almost closed and extracting endocranial spaces

that are largely open is difficult.

The present paper describes an automatic method for computing endocast shapes as polyg-

onal data from CT images of human skulls. The proposed method is based on the observation

that the endocranial region is the largest space in the skull. Based on this observation, the algo-

rithm used in the proposed method is designed so that the background voxels are classified

into the primary endocranial space and other smaller spaces. The proposed method consists of

three major steps: binarization, segmentation, and polygonization. We first classify the CT

images into the skull (foreground) and the background. Next, we extract the endocranial

region from the input data based on watershed segmentation [22]. In this step, we first com-

pute Euclidean distance fields from the binary images of the input data. The initial seed voxels

of the endocranial region and other regions are assigned to the voxels with larger distance val-

ues. Segmentation is then performed by expanding the initial seed voxels based on the distance

fields. Polygonization of the endocranial region is achieved by commonly used isosurface

extraction methods [3] for the extracted region only.
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One of the primary advantages of the proposed method is the automation of endocast

extraction from human crania. The user needs only two parameters: the size of void structures

(e.g. diploic space and cracks) and the isovalue threshold for binarization. This means that the

extracted results are not dependent on the user’s experience. In addition, the proposed method

can extract closed and manifold surfaces of endocranial polygons. This is efficient for various

applications, including volume estimation and 3D printing, whereas manual operation

requires time-consuming tasks such as hole filling and topological cleaning for generating

completely closed manifold surfaces.

In the present study, we implemented the proposed method and applied the method to CT

images of various types of crania, including fossil crania. The results demonstrate that the pro-

posed method can automatically extract endocranial polygons from CT images.

Method

Given CT images of crania, the proposed method computes endocranial polygons of crania.

Fig 1 shows an overview of the proposed method. The proposed method consists of three major

steps: binarization (Fig 1A–1C), segmentation(Fig 1C–1F), and polygonization (Fig 1F–1H).

Fig 1. Overview of the proposed method. Note that the 2D images shown herein are cross-sections of 3D images.

https://doi.org/10.1371/journal.pone.0168516.g001
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The binarization step classifies the input CT image into voxels representing the cranium

(foreground) and background voxels. We use a simple binarization with an appropriate

threshold t, although other methods (e.g., automatic estimation by Otsu [23]) can also be used.

Next, we apply the cavity detection method proposed in [24] based on a black (bottom) hat

operator in mathematical morphology [25, 26] in order to remove small cavities in the

cranium.

The segmentation step classifies background voxels in the binary image into endocast voxels

and voxels of other types. The proposed method uses the watershed-based method [22] using

distance field [27] of the binary images computed in the previous step. Given the binary image

and its distance field, we first assign the initial seeds for the endocast voxels and other voxels

(Fig 1E). Since the endocranial region is the largest empty space in the cranium, the center vox-

els of the endocast must have larger distance values. However, since the voxels with the largest

distance values usually exist outside of the cranium, we first assign the “other” label to the edge

voxels bi (orange lines in Fig 1E) so that the center point of the endocast will be the voxel with

maximum distance value. In addition, for each boundary voxel bi, we also assign the “other”

label to its neighboring voxel vj that satisfies ||bi − vj||� sd(bi), where d(bi) denotes the distance

at bi and s denotes a scaling factor (s< 1) for assigning the label to the voxels with larger dis-

tance values. Since the voxel with the greatest distance from the rest of the voxels must be the

center of the endocast voxels, we assign the “endocast” label to this voxel e and nearby voxels vj

that satisfy ||e − vj||� sd(e). Watershed segmentation is then applied to the binary images by

expanding the initial seed voxels based on the distance field. When the expansion is stopped,

background voxels are decomposed into the endocast voxels and other voxels.

The final step is polygonization of endocranial surfaces from CT images using an extended

version of the partial polygonization method using mask images introduced in [21]. Prior to

polygonization, We fill voxels with “other” label by the threshold value t used in the binariza-

tion step. This manipulation results in closed isosurfaces being obtained by the original

Marching cubes algorithm.

Results and discussion

Results

We implemented the above algorithm as a Windows binary in C++. We used Eigen library [28]

for linear algebra computation in our implementation, and other parts are developed from

scratch. We also applied the algorithm to various types of crania, as summarized in Table 1.

Figs 2 through 7 show the results of the endocast extraction. Although imprints of sulci and

gyri are not usually identifiable on the endocasts extracted from adult human crania, they are

known to be more pronounced in macaques [13]. Our results demonstrated that identification

of cortical features from the endocast morphology may be possible for macaques (Figs 5 and 6)

but not for adult humans (Figs 3 and 4).

Table 1. Data sets.

Specimen ID Description Size Voxel size[mm] Data courtesy

Mladec1 Fossil human 512x512x360 0.47x0.47x0.47 Univ. of Vienna

KUMA3008 Modern Japanese 512x512x299 0.47x0.47x0.5 Laboratory of Physical Anthropology, Kyoto Univ. [15]

KUMA3147 Modern Japanese 512x512x301 0.47x0.47x0.5 Laboratory of Physical Anthropology, Kyoto Univ. [15]

M15 Crab-eating monkey 512x512x253 0.35x0.35x0.5 Kyorin Univ./National Defense Medical College [13]

M16 Crab-eating monkey 512x512x257 0.35x0.35x0.5 Kyorin Univ./National Defense Medical College [13]

CT Head Human cadaver 512x512x113 1 x 1 x 2 Univ. of North Carolina

https://doi.org/10.1371/journal.pone.0168516.t001
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Fig 2. Results of endocast extraction (Mladec1).

https://doi.org/10.1371/journal.pone.0168516.g002

Fig 3. Results of endocast extraction (KUMA3008).

https://doi.org/10.1371/journal.pone.0168516.g003
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Discussion

In the present study, we developed an automatic method for extracting the endocranial sur-

faces from CT images, in order to facilitate morphological analyses of fossil endocasts. As

shown in Figs 2 through 7, the proposed method can extract only the endocranial surfaces

Fig 4. Results of endocast extraction (KUMA3147).

https://doi.org/10.1371/journal.pone.0168516.g004

Fig 5. Results of endocast extraction (M15).

https://doi.org/10.1371/journal.pone.0168516.g005
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Fig 6. Results of endocast extraction (M16).

https://doi.org/10.1371/journal.pone.0168516.g006

Fig 7. Results of endocast extraction (CT Head).

https://doi.org/10.1371/journal.pone.0168516.g007
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from the CT images of human crania while other parts are not polygonized. In particular, sur-

face bumps on the endocranial surfaces are well preserved for all examples. This is because the

polygonization method used in the present study inherits sub-voxel accuracy from the march-

ing cubes algorithm. Since other reconstruction methods also use this for polygonization, the

result surfaces by other methods must be same, if the same threshold is given. In addition, the

surface is guaranteed to be a closed two-manifold surface. These properties enable very effi-

cient quantitative analysis and post-processing, because commonly used geometry processing

tools assume that the input shape is manifold. Due to these two properties, the proposed

method is easily combined with other geometry processing (e.g., mesh simplification [29]).

Note also that the proposed method can also handle tilted models. For example, the M15

model (Fig 5) is largely tilted. Although conventional slice-by-slice contouring is difficult, the

proposed method can extract the endocast of such a tilted model because the computations are

done in 3D.

We compared the results obtained using the proposed method with those obtained by man-

ual operations. Fig 8 shows the results for KUMA3147 obtained by manual operations [15]

(Fig 8A) and by the proposed method (Fig 8B). According to [15], the results shown in Fig 8A

was created using medical imaging software (Analyze 9.0; Mayo Clinic, Biomedical Imaging

Resource, Rochester, MN, USA) and reverse engineering software (RapidForm 2006; INUS

Technology, Seoul, Korea). The total working time for polygonization was two hours. Note

that the polygonal models by [15] are pose-normalized, and we applied a shape registration

Fig 8. Manually obtained mesh and mesh obtained using the proposed method. The color maps in C

and D show the differences between the manually obtained mesh A and the mesh obtained using the

proposed method B (Blue: 0 [mm], Green: 0.5 [mm], Red:� 1.0 [mm]).

https://doi.org/10.1371/journal.pone.0168516.g008
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method to them for evaluation of geometric difference. We confirmed that no significant dif-

ference could be found in either of the models. except for the filled regions such as foramen

magnum (Fig 8C and 8D). The quantitative difference is very small (0.14 [mm] on average),

and the maximum difference appears foramen magnum because these holes are filled in differ-

ent criteria. Fig 9 shows cross-sections of the CT image and the polygon models. These images

show that our segmentation method sometimes expands outside around larger holes. This

depends on distance field used in watershed computation. On the other hand, expansion can

also be observed in the polygonal models by manual operation as shown in Fig 9D. These dif-

ferences show that clear criterion for filling these holes do not exist. However, our method pro-

vides consistent criterion for segmentation, hence any operators can automatically compute

equivalent results from CT images.

We also compared the present results with those obtained by a level set method using itk-

SNAP [30], a popular segmentation tool in medical imaging. Fig 10 shows a result for KUMA

3008 model. As the figure shows, the extracted region protruded from the foramen magnum

(yellow dotted circles) because the CT values of the background and the endocast region are

(C) KUMA3147(z = 159) (D) KUMA3147(z = 197)

(A) KUMA3008(z = 121) (B) KUMA3008(z = 137)

Fig 9. 2D comparison of cross-section of CT images, polygonal models by manual operation (green)

and our result (yellow). Yellow arrows show significant differences of polygons.

https://doi.org/10.1371/journal.pone.0168516.g009
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similar. In order to overcome this problem, initial seed points must be carefully determined,

but appropriate determination of the seeds is not easy and usually time-consuming.

The proposed method requires two major parameters in order to extract endocast models.

The first parameter is the structural element size, or the radius of the sphere, used in the mor-

phological closing in the binarization step. This is required for filling the small cavities in the

cranium and the extent of the bottleneck will be a guide for parameter tuning. We used r = 6

[voxels] for all experiments. The other parameter is the isovalue for the endocranial surface.

The isovalue is a common parameter for creating polygon data from CT images. The best

threshold can be easily estimated by volume rendering software.

In addition, the endocranial surface is robust to the variation of isovalues. Fig 11 shows the

results for KUMA3008 and KUMA3147 obtained using different CT values, namely, -400, 0,

and 400. No clear geometrical differences were observed between these results. The geometric

differences between these models are approximately 1 voxel pitch of the CT images

(0.28 ± 0.37 [mm] (KUMA3008) and 0.23 ± 0.43 [mm] (KUMA3147)).

The proposed method can also be applied to non-human primates. Figs 5 and 6 showed the

results for the crab-eating monkey (Macaca fascicularis) models. These models have smaller

endocasts, and automatic initial seed assignment failed in both experiments. Thus, the endo-

cast is not always the largest empty space in the crania of non-human primates. For these

examples, we provide an alternative approach to the initial seed assignment. Given the binary

image and its distance field, we binarize the distance field by the threshold t̂ . The objective of

binarization is to obtain two connected components used for “other” and “endocast” labels.

The guideline for t̂ is to fill all the bottlenecks connecting to the endocast space. We used t̂ ¼
10 [mm] for the M15 data and t̂ ¼ 15 [mm] for the M16 data. Note that this is not necessary

for the extraction of human crania because the endocranial region is the largest empty space in

the cranium.

The computation times of the experiments are summarized in Table 2. The experiments

were conducted using a Windows PC with an Intel Corei7-3930K (3.2 GHz) processor, 64 GB

of RAM, and an NVIDIA Quadro 4000 graphics processing unit. Although our

 Right   Bottom Composite
Fig 10. Result of endocast extraction using a level set method. The cranium and extracted endocasts are drawn in gray and green,

respectively.

https://doi.org/10.1371/journal.pone.0168516.g010
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implementation has not been yet fully optimized, the computation time was less than ten min-

utes for all examples. We expect the computation time will be improved by, for example, opti-

mizing the graphics processing unit. Although the computation time directly depends on the

resolution of the CT images, we believe that the computation time for other samples will not

exceed those in the experiments because the cranium models are usually scanned using medi-

cal CT scanners and the sizes of the CT images must be similar.

Fig 11. Results for KUMA3008 and KUMA3147 obtained using different thresholds.

https://doi.org/10.1371/journal.pone.0168516.g011

Table 2. Computation time of the experiments.

Specimen ID Time[s] Num. Polygon

Bin. Seg. Pol. Total

Mladec1 182.8 146.2 41.2 370.3 1,137,492

KUMA3008 160.8 123.0 34.2 318.0 954,464

KUMA3147 150.5 99.0 34.9 284.4 985,560

M15 92.0 105.6 23.3 220.9 186,640

M16 95.7 106.2 24.1 225.9 193,428

CT Head 8.9 7.1 3.7 19.7 143,504

Bin.: Binarization, Seg.: Segmentation, Pol: Polygonization

https://doi.org/10.1371/journal.pone.0168516.t002
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The proposed method has three major limitations. First, the quality of the polygons largely

depend on the results of binarization. Since the CT values of the thin part of the skull will be

smaller than expected, it is hard to determine a good threshold and the binarization results

may create unexpected voids. Although the proposed polygonization scheme may fill such

defects as it is, the scheme should be improved in the future. The second limitation is how to

define the boundary surfaces of canal structure. The last limitation is that the proposed method

may fail when the assumption that the endocast is the largest empty space in the CT images

does not hold. In such cases, other empty regions may be extracted.

Conclusion

We have presented a method for computing endocranial surfaces from CT images of crania.

One of the primary contributions of the present study is to automate endocast extraction using

volumetric image analysis technology. The experimental results revealed that the proposed

method could extract endocranial polygons from CT images of human crania within ten min-

utes using a common desktop PC. We expect that the proposed method will accelerate mor-

phological analyses of fossil crania, such as the analysis of individual differences and inference

of brain shapes.

The proposed method has the potential to extract other cavity structures in the human

body (e.g., sinuses). In the future, we would like to extend the proposed method so that other

anatomical features can be extracted. As such, we need to introduce other criteria in order to

extract target features. In addition, we would like to address some limitations discussed in the

previous section in order to allow accurate extraction of cranial surfaces.
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