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Abstract

Antioxidant proteins perform significant functions in maintaining oxidation/antioxidation bal-
ance and have potential therapies for some diseases. Accurate identification of antioxidant
proteins could contribute to revealing physiological processes of oxidation/antioxidation
balance and developing novel antioxidation-based drugs. In this study, an ensemble
method is presented to predict antioxidant proteins with hybrid features, incorporating SSI
(Secondary Structure Information), PSSM (Position Specific Scoring Matrix), RSA (Rela-
tive Solvent Accessibility), and CTD (Composition, Transition, Distribution). The prediction
results of the ensemble predictor are determined by an average of prediction results of mul-
tiple base classifiers. Based on a classifier selection strategy, we obtain an optimal ensem-
ble classifier composed of RF (Random Forest), SMO (Sequential Minimal Optimization),
NNA (Nearest Neighbor Algorithm), and J48 with an accuracy of 0.925. A Relief combined
with IFS (Incremental Feature Selection) method is adopted to obtain optimal features from
hybrid features. With the optimal features, the ensemble method achieves improved perfor-
mance with a sensitivity of 0.95, a specificity of 0.93, an accuracy of 0.94, and an MCC
(Matthew’s Correlation Coefficient) of 0.880, far better than the existing method. To evalu-
ate the prediction performance objectively, the proposed method is compared with existing
methods on the same independent testing dataset. Encouragingly, our method performs
better than previous studies. In addition, our method achieves more balanced performance
with a sensitivity of 0.878 and a specificity of 0.860. These results suggest that the pro-
posed ensemble method can be a potential candidate for antioxidant protein prediction. For
public access, we develop a user-friendly web server for antioxidant protein identification
that is freely accessible at http://antioxidant.weka.cc.

1 Introduction

ROS (Reactive Oxygen Species) are generated in aerobic metabolic processes as a result of
endogenous and exogenous factors, such as air pollutants and cigarette smoke [1]. Moderate
concentrations of ROS can function in physiological oxidative processes of cells [2, 3],
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including gene expression and signal transduction [4]. However, high concentrations of ROS
are considered to be harmful to cells, which can naturally produce excess oxygen free radicals
beyond the ability of various antioxidants to eliminate or detoxify their harmful effects 5],
thereby giving rise to oxidative stress.

Oxidative stress can damage cell constituents via injury to macro molecules such as carbo-
hydrates, DNA, and proteins [6, 7]. Consequently, it has been recognized that the oxidative
stress is associated with the pathogenesis of many diseases, including cancers, cataractogenesis,
atherosclerosis, neurodegenerative diseases, diabetes, autism spectrum disorder, down syn-
drome, and asthma [8-10]. In addition, oxidative stress is thought to be involved in aging prob-
lems [11]. In the food industry, oxidative stress has been indicated to be closely related with
beer aging [12]. It is well known that oxidative stress cause deteriorations of food quality and
shortening of shelf life [13, 14]. Therefore, to protect against such ROS-induced damages, it is
critical to maintain a balance between oxidative and antioxidative process with help of antioxi-
dative protection, which plays a dominant role in cell viability, activation, proliferation, and
organ function [1].

Antioxidants can quench oxygen free radical reactions by interacting with and neutralizing
free radicals, which is absolutely critical for maintaining the body’s redox balance [15], protect-
ing beer against aging, and avoiding food deteriorations [12]. A variety of artificial antioxidants
exhibit strong antioxidant activity. However, they are restricted in many fields due to their
potential health risks [16]. Therefore, identification of effective natural antioxidants is of great
interest 3, 14].

Antioxidant proteins have a great potential to prevent or slow the progression of some dis-
eases, such as some DNA-induced diseases [17], reperfusion injury, traumatic brain injury
[18], and cancers [19]. Antioxidant proteins are implicated in natural life-span [20] due to the
ability to eliminate aging damage caused by oxidative stress. In addition, they contribute to the
endogenous antioxidant capacity of foods to maintain the food texture and color. In view of
the powerful functions of antioxidant proteins to provide protection against serious diseases
and prevent foods from undergoing deteriorations, accurately identifying antioxidant proteins
could provide useful clues to reveal physiological processes of certain types of diseases, aging
and food deteriorations, thereby providing a rational basis for developing novel antioxidation-
based drugs that can cure or alleviate these types of diseases, slow down the aging process and
extend food shelf-life.

Identification of antioxidant proteins through traditional experimental methods is time-
consuming and laborious. It is in great need to develop computational methods. Despite its
importance, few computational methods have been proposed. Feng PM et al. [21] carried out a
Naive Bayes-based predictor using amino acid composition and dipeptide composition. Later
on, our group [22] investigated the performance of g-gap dipeptide composition and PSSM
(Position Specific Scoring Matrix) on a RF (Random Forest) classifier. We demonstrated that
g-gap dipeptide composition could be appropriate feature descriptors for this classification
problem. Although the existing methods have their own merits, they still have some shortcom-
ings to address. (1) The method proposed in [21] extracted the correlations between two
adjoining amino acids of protein sequences using dipeptide composition without incorporating
higher tier correlations of residues, which may affect the prediction quality. The method pro-
posedin [22] used g-gap dipeptide composition to search for the important correlations
between two residues. However, the distribution information of protein sequences is missing.
(2) Singularity of feature extraction strategies is an unignorable fact in previous methods. Some
useful features which can reflect the properties of antioxidant proteins may be lost. Generally,
multiple feature extraction strategies can complement each other to extract valuable informa-
tion from various sources, which is critical to improve the performance and robustness of a
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predictor [23, 24]. (3) Previous methods both developed a predictor based on an individual
classifier. An individual classifier usually has its own inherent defects, which would result in
poor prediction performance [25]. Ensemble classifier integrates diversity learning strategies of
multiple individual classifiers, which can perform better than its component individual classifi-
ers in protein attribution prediction [26].

To address the above-mentioned limitations and improve prediction performance with
respect to antioxidant proteins, we propose an ensemble predictor using a classifier selection
strategy with hybrid features, including SSI (Secondary Structure Information), PSSM (Posi-
tion Specific Scoring Matrix), RSA (Relative Solvent Accessibility), and CTD (Composition,
Transition, Distribution). The Relief combined with IFS (Incremental Feature Selection)
method is used to select high discriminative features for reducing the computational complex-
ity and improving prediction capability. The prediction results of the ensemble predictor are
determined by an average of prediction results of multiple base classifiers. The computational
framework of the proposed predictor is illustrated in Fig 1. To evaluate the performance of our
ensemble predictor objectively, the present model is compared with [21, 22] based on the same
independent testing dataset.

2 Materials and Methods
2.1 Data Collection

To facilitate comparisons with previous studies in identifying antioxidant proteins, we use the
benchmark dataset constructed in [22]. Only those protein sequences from the UniProtKB/
Swiss-Prot database [27] reviewed and annotated by antioxidant in the molecular function of
gene ontology, are selected. In order to obtain the reliable dataset, the following criteria are fur-
ther performed. (1) Sequences which are fragments of other proteins are excluded because
their information is redundant and not integrity. (2) Sequences containing nonstandard letters
except 20 standard amino acid alphabets are removed because their meanings are ambiguous.

After the above screening procedures, 482 antioxidant protein sequences are obtained as the
original positive dataset. Due to the number of non-antioxidant protein sequences is extremely
large, 500 non-antioxidant protein sequences are randomly selected as the original negative
dataset. In order to avoid over fitting problem, none of the sequences has >70% sequence iden-
tity to any other in the original dataset by means of CD-HIT program [28]. The final bench-
mark dataset consists of 174 antioxidant proteins and 492 non-antioxidant proteins. In order
to validate the performance of our proposed predictor objectively, 100 antioxidant and 100
non-antioxidant proteins are respectively selected from the final benchmark dataset as the
training dataset and the rest with 74 antioxidant and 392 non-antioxidant proteins as the inde-
pendent testing dataset. The samples in the independent testing dataset are not in the training
dataset. The benchmark dataset is available in S1 Table.

2.2 Feature Extraction

To develop high throughput tools for predicting complicated protein attributes, it is important
to represent a protein sequence with a comprehensive and proper feature vector with a fixed
length [29]. In general, an individual feature extraction strategy can only preserve partial tar-
get’s knowledge, thereby limiting prediction performance. Multiple feature representation
methods from different sources can be complementary in capturing valuable information to
enhance the discrimination power of a hypothesis. In this study, we employ hybrid features
extracted from SSI, PSSM, RSA, and CTD to represent antioxidant proteins.

2.2.1 Secondary Structure Information. Protein secondary structure determines most
protein reactions and reveals the intricate function of protein sequences to a great extent
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Fig 1. The computational framework of the proposed predictor. SSI: Secondary Structure Information; PSSM: Position
Specific Scoring Matrix; RSA: Relative Solvent Accessibility; CTD: Composition, Transition, Distribution; IFS: Incremental
Feature Selection.

doi:10.1371/journal.pone.0163274.9001
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[30, 31]. The contents and spatial arrangements of secondary structure elements are signifi-
cant factors that influence the protein intricate functions or structures [32]. The Porter 4.0
server [33] is used in this study to predict three-state secondary structures. It predicts every
amino acid in a protein sequence into one of the three secondary structure elements, i.e. H
(helix), E (strand), and C (coil). The following related features are extracted from the second-
ary structure elements.

(i) Content information is one of the most widely used secondary structure features [32],
which is defined as (3 features)

N .
F]—:f,]:{H,E,Ch (1)
where N; is the number of helix/strand/coil element and L is the length of the protein sequence.

(i) Transition information of helix/strand/coil along a protein sequence is calculated by the
following equation. (9 features)

Ni,j .. 2
TiJ:L_lvla]:{HaE7C}7 ()

where N; ; denotes the number of secondary structure element combinations from the second-
ary structure type of helix/strand/coil.

(iii) The average length and the normalized maximal length of the segments with each sec-
ondary structure type are calculated as (6 features)

>~ Len(Seg,) .
AvgSeg. = =——=>> i={H,E,C 3
vg8eg = =g {H,E,C}, (3)
Max(Seg,
NMaxSeg, = w, i={H,E,C}, (4)

where Seg; denotes the segment composed of secondary structure element helix/strand/coil.
Len(Seg;) is the length of Seg;. Max is the maximal function of segment length.

(iv) Order-related features from secondary structure elements are introduced to reflect the
special arrangements of the secondary structure elements, which are formulated as (3 features)

F = ipivj/L(L —1),i={H,E,C}, (5)

where N; is the number of helix/strand/coil element. p; ; denotes the position of the jth order of
the corresponding secondary structure element.

2.2.2 Position Specific Scoring Matrix. With the avalanche of genome sequences gener-
ated in the post-genomic age, the completed human genome provides a large number of novel
proteins containing conserved domains [34]. The conserved domains serve as evidence for
structural and functional conservations [35]. Evolutionary conservations can determine impor-
tant biological functions and are important in biological sequence analysis [36]. The PSSM
(Position Specific Score Matrix) is adopted here to obtain the evolutionary conservations and
some essential signatures of protein sequences, which has been widely employed in protein
attribute prediction problems [37, 38]. The PSSM is a matrix of score values, which is derived
from the PSI-BLAST (Position-Specific Iterative Basic Local Alignment Search Tool) [39] with
3 iterations and the E-value cutoff of 0.0001.
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For a given protein sequence with L amino acids, the corresponding PSSM has L20 ele-
ments, and is defined as

E_, E_, ElHj E s
EQﬂ E2H2 E%j T E2H2o
Ppsow = ) (6)
Eiﬂl Ei%2 T Eiﬂj T Eiﬂ20
LBy B, oo EL~>/' o By |

where the rows and columns of the PSSM are indexed by the protein residues and 20 native
amino acids, respectively. The values in the ith row denote the probabilities of the ith residue of
the given protein sequence mutating to 20 native amino acids during the evolution process.

To formulate protein sequences into the feature vectors with the same dimension, all the
rows in the PSSM corresponding to the same amino acids in a protein sequence are summed
up. Then the PSSM is transformed into a 20 x 20 dimensional matrix. These 400 elements are
extracted from the PSSM to encode protein sequences.

2.2.3 Relative Solvent Accessibility. Solvent accessibility is a key property of amino acid
residues and plays an important part in a protein’s function [40]. The accessible surface area of
a protein is closely related with its overall antioxidant activity. More solvent accessibility of
amino acid residues represents high antioxidant activity of a protein, due to the fact that free
radicals and chelate prooxidative metals can be scavenged [13]. Therefore, it is reasonable to
extract features from RSA (Relative Solvent Accessibility).

The RSA is defined as the solvent ASA (Accessible Surface Area) of a given residue normal-
ized by the ASA of this residue in an extended tripeptide, Ala-X-Ala, conformation [41]. The
RSA values are predicted by PaleAle 4.0 [33]. Using the software, each residue of the query
sequence is assigned a buried or exposed state.

The following 28 features are designed to encode each protein sequence. (i) Mean/standard
deviation of all residues’ RSA scores (2 features). (ii) Number of buried/exposed segments (2
features). (iii) Minimum/maximum length of buried/exposed segments (4 features). (iv) Aver-
age RSA score of each native amino acid (20 features).

2.2.4 Composition, Transition, Distribution. We analyze amino acid composition of the
residues in positive samples and negative samples. As shown in Fig 2, there is a big difference
in terms of amino acid compositions between positive samples and negative samples. To fur-
ther extract information on composition, order, and distribution from protein sequences, a
global feature extraction strategy called CTD (Composition, Transition, Distribution), intro-
duced by Dubchak et al. [42], is adopted to encode protein sequences.

Using CTD, three global descriptors, composition (C), transition (T) and distribution (D)
are employed in this study to describe the properties of protein sequences. For a given protein
sequence, composition (C) describes the global percent composition of 20 native amino acids
(20 features). Transition (T) characterizes the percent frequency with amino acids of one type
of native amino acids followed by another type (190 features). Distribution (D) measures the
respective locations of the first, 25%, 50%, 75% and 100% of each type of 20 native amino acids
(100 features). For detailed description about the CTD method, please refer to [42].

PLOS ONE | DOI:10.1371/journal.pone.0163274 September 23, 2016 6/21



@° PLOS | ONE

An Effective Antioxidant Protein Predictor

T 7171 T I
) AU U S UV U U SUUU U U [ Negative samples| - . - |
I Fositive samples
8 ol s s ssabmsir canmstesnaclil o v sersanec s S 5 55 L s ¢ Y v 5 auEE B E AR Y e R S PR BREE §E s R s SR e L S e o
7 .. .- --..- - ... K- ... R - BB iAW L
6 .. d---.-.-...... K. ........ NN ...... BB -BBR- - BN - - - - . .. ... .........H . . ....HEE . .. .. ... .. —

Frequency
(&}
I

Ala Cys Asp Glu Phe Gly His lle Lys Leu Met Asn Pro GIn Arg Ser Thr Val Trp Tyr

Amino acid

Fig 2. Amino acid composition analysis of the residues in antioxidant proteins and non-antioxidant proteins. We analyze amino
acid composition of the residues in positive samples and negative samples. There is a big difference in terms of amino acid compositions

between positive samples and negative samples.
doi:10.1371/journal.pone.0163274.9002

2.3 Feature Selection

After carrying out feature extraction strategies mentioned above, protein sequences are formu-
lated by numerical feature vectors with the same dimension. However, they may not contribute
equally to identifying antioxidant proteins on account of redundant and irrelevant features.
These additional features may deteriorate performance of a classifier, slow down the learning

process and decrease the generalization power of the learned classifiers [43]. Feature selection
is an effective way to overcome these disadvantages, which can contribute to improving the
classification accuracy of a classifier, simplifying a classifier, and thereby better understanding
the potential physical meaning in data [44]. In this study, Relief-IFS is adopted to search the

optimal features.

PLOS ONE | DOI:10.1371/journal.pone.0163274 September 23, 2016
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Relief. The Relief algorithm, originally proposed by Kira [45], is a feature-weighting algo-
rithm, which is considered one of the most successful algorithms for depicting the relevance
between the features and class labels. It is noise-tolerant and requires only linear time. Based
on the ability of the feature to distinguish the near samples, the Relief algorithm can be used to
estimate the quality of each feature [46]. The feature with a larger weight indicates a more
highly relevant one for the target prediction. The Relief algorithm is executed iteratively. Dur-
ing each iteration process, the Relief algorithm endows each feature with a weight as formu-
lated by

W;+l — W;] o diﬁF(Y, :la H(xi)) + diﬁ(&’;‘;M(xi))’ (7)
lx=yll » x#y

dlff(*axvy) - { ) (8)
0, xX=y

where W, and W' denote the current and next weights, respectively. p represents a given fea-
ture. x; stands for the ith sample sequence. H(x;), termed as the nearest hit, represents the near-
est neighbor samples from the same class label against x;. M(x;), referred to as the nearest miss,
strands for the nearest neighbor samples from the different class labels against x;. Yand S
denote the sample sets with the same and different class labels against x;, respectively. m is the
number of random samples. The function of diff(, x, y) is used for calculating the distance
between the random samples to find the nearest neighbor.

The ranked feature list can be obtained based on weights, represented as

{flaf%"'vaL (9)

where f; represents the feature with the highest weight, f, with the second highest, - -, and fy
with the lowest.

Incremental Feature Selection. Based on the ranked feature list evaluated by Relief, IFS
(Incremental Feature Selection), one of the well-known searching strategies of feature selection,
is employed to determine the optimal feature subset. During the IFS procedure, the feature sub-
set starts with one feature with the highest Relief weigh. Then, features in the ranked feature
list are added one by one from higher to lower rank into the feature subset [47]. A new feature
subset is generated when a new feature from the feature list is added. In this study, individual
predictors for all feature subsets are constructed using our ensemble classifier and evaluated by
10-fold cross validation on the training dataset. The feature subset that has the highest accuracy
is selected as the final input of the optimal ensemble classifier.

The WEKA (Waikato Environment for Knowledge Analysis) software package [48] is used
for the feature selection algorithm Relief, where default parameters are employed. The software
package can be downloaded at http://www.cs.waikato.ac.nz/ml/weka/downloading.html.

2.4 Ensemble Learning Method

Every single classifier usually has its own inherent defects, and it could not always perform well
on all datasets [49]. Generally, a well-defined ensemble classifier is able to address statistical,
computational, and representational issues better than its component individual classifiers [50]
due to the fact that ensemble classifier is able to make use of the different decision boundaries
generated from the individual classifiers to strategically combine the classification results [51,
52]. The prediction performance of an ensemble classifier is affected by diversity and individual
accuracy of its component base classifiers [53, 54].
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Fig 3. Diagram of the classifier selection method. Classifier subset starts with one classifier with the highest accuracy.
Then, classifiers in the ranked classifier list are added one by one from higher to lower rank into the classifier subset. We
evaluate prediction performance of each classifier subset. The classifier subset with the highest accuracy is selected to
construct the ensemble predictor.

doi:10.1371/journal.pone.0163274.9003

To achieve satisfactory prediction results, we use an ensemble of different individual classifi-
ers for antioxidant protein prediction. Firstly, we choose 10 different base classifiers, including
RF (Random Forest), SMO (Sequential Minimal Optimization), NNA (Nearest Neighbor Algo-
rithm), J48, BN (BayesNet), RBFNetwork, DT (Decision Table), Adaboost, VFI, and NB
(Naive Bayes).

These 10 base classifiers are trained and ranked according to the accuracy. A ranked classi-
fier list is obtained and represented as

{C17C2v"'7civ"'vclo}a (10)

where C; represents a classifier with the highest accuracy, C, with the second highest,- - -, and
C, with the lowest.

Based on the ranked classifier list, the idea of IFS is employed to determine the optimal clas-
sifier subset. Classifier subset starts with one classifier with the highest accuracy. Then, classifi-
ers in the ranked classifier list are added one by one from higher to lower rank into the
classifier subset. A new classifier subset is generated when a new classifier is added. We evaluate
prediction performance of each classifier subset. The classifier subset with the highest accuracy
is selected to construct the ensemble predictor. The prediction results of each base classifier in
the selected classifier subset are combined using average probability. Fig 3 shows the diagram
of the classifier selection method.

2.5 Performance Measures

In statistical prediction, there are 3 cross-validation methods often used to examine the accu-
racy, i.e. independent dataset test, sub-sampling test (e.g. 5-fold or 10-fold cross validation),
and jackknife test [55]. Among these three methods, the jackknife test is deemed the most
objective and rigorous one that can exclude the memory effects during the entire testing pro-
cess and can always yield a unique result for a given benchmark dataset, as elucidated in [56]
and demonstrated by Eq 50 of Chou and Shen [57]. Therefore, the jackknife test has been
increasingly and widely adopted by investigators to test the power of various predictors

PLOS ONE | DOI:10.1371/journal.pone.0163274 September 23, 2016 9/21
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[58, 59]. To reduce the computational complexity, 10-fold cross validation test is employed in
this paper. During the procedure, the training dataset is randomly separated into 10 equally-
sized parts. Each time, 9 parts are merged as training dataset to train a model, and then the
other one part is for testing the model. This process is repeated ten times to test each part. The
ultimate result is the average of the 10 prediction results. To assess performance of the predic-
tor intuitively, 4 most common used indexes are employed.

Sensitivity (Sn) is the percentage of correctly identified antioxidant proteins and given by

TP
S =—— 11
" TP+ EN’ (11)

Specificity (Sp) is the percentage of correctly identified non-antioxidant proteins and defined
as

s TN
» " TN + FP’

(12)

Accuracy (Acc) is the percentage of correctly identified antioxidant proteins and non-antioxi-
dant proteins and expressed as

TP+ TN

= : (13)
TP + FP+ TN + FN

Acc

MCC (Matthew’s Correlation Coefficient) is a more stringent measure of prediction accuracy
accounting for both under and over-predictions [60], which is given by
TP x TN — FP x FN

Mee= /(TP + FN)(TP + FP)(TN + FP)(TN + FN) (14)

where TP, FP, TN, and FN represent true positive, false positive, true negative, and false nega-
tive, respectively.

To further evaluate performance of a predictor, the ROC (Receiver Operating Characteris-
tic) curve is also employed [61]. The ROC curve is plotted with the Sn as the y-axisand 1 — Sp
as the x-axis by varying the thresholds. The AUC (Area Under the ROC Curve) is a valid mea-
sure used for model evaluation obtained from the ROC curve. The higher AUC value corre-
sponds to better performance of a predictor.

3 Results and Discussion
3.1 Performance Comparisons of Various Individual Classifiers

We select 10 base classifiers and test prediction performance of these individual classifiers.
Table 1 shows performance comparisons of these individual classifiers on the training dataset
by 10-fold cross validation. From Table 1, the accuracy values of various classifiers are in the
range of 0.755 to 0.895, much better than random guess (i.e., an accuracy of 0.500), indicating
acceptable performance in antioxidant protein prediction. Among the various individual classi-
fiers, RF achieves the best performance with an accuracy of 0.895, an MCC of 0.790, and an
AUC of 0.957, followed by SMO, NNA, J48, BN, RBFNetwork, DT, Adaboost, VFI, and NB. In
addition, RF obtains balanced performance with an Sn of 0.9 and an Sp of 0.89. These results
demonstrate that RF is relatively effective in antioxidant protein identification.

3.2 Performance Comparisons of Ensemble Classifiers

To obtain the optimal ensemble classifier for antioxidant protein identification, we evaluate the
accuracy of multiple individual classifiers and get a classifier list ranked by accuracy. In the
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Table 1. Performance comparisons of multiple individual classifiers on the training dataset by 10-fold cross validation.

Classifier Sn Sp Acc McC AUC
RF 0.9 0.89 0.895 0.790 0.957
SMO 0.92 0.85 0.885 0.772 0.885
NNA 0.94 0.79 0.865 0.738 0.865
J48 0.87 0.85 0.86 0.720 0.852
BN 0.92 0.77 0.845 0.698 0.933
RBFNetwork 0.91 0.78 0.845 0.696 0.861
DT 0.84 0.83 0.835 0.670 0.858
Adaboost 0.88 0.78 0.83 0.6635 0.901
VFI 0.74 0.79 0.765 0.531 0.763
NB 0.92 0.59 0.755 0.540 0.888

doi:10.1371/journal.pone.0163274.t001

classifier list, a classifier with a smaller index represents a more important one for antioxidant pro-
tein identification. The classifier list is used to select the optimal classifier subset according to the
idea of IFS procedure. Add the ranked classifiers one by one from the top of the classifier list to
the bottom, then, the predictor is accordingly built for each classifier subset and evaluated on the
training dataset by 10-fold cross validation. Prediction performance of classifier subsets is shown
in Table 2 and the prediction accuracy values against classifier subsets are depicted in Fig 4.

From Table 2 and Fig 4, as the number of classifiers increases, accuracy shows an upward
trend in the initial phase. Afterwards, accuracy shows a downward trend with the increase of
number of classifiers. The best accuracy reaches 0.925 when 4 classifiers are selected, including
RE, SMO, NNA, and J48. These 4 classifiers are used to construct the optimal ensemble classi-
tier for predicting antioxidant proteins. The default parameters of these four base classification
algorithms in WEKA are used in this paper. This ensemble classifier also achieves the best sen-
sitivity of 0.94, specificity of 0.91, and MCC of 0.850. These results indicate that the ensemble
classifier is effective in predicting antioxidant proteins. We should also note that the combina-
tion of more base classifiers don’t always achieve better performance due to the fact that these
base classifiers may share similar learning strategies more or less.

3.3 Performance Comparisons of Ensemble Learning Method and
Individual Base Classifiers

To verify the strength of the proposed ensemble method, prediction results of our ensemble
method and its component base classifiers, including RF, SMO, NNA, and J48, are compared.

Table 2. Prediction performance of different classifier subsets on the training dataset by 10-fold cross validation.

Ensemble Classifier Sn Sp Acc MCC AUC

RF 0.9 0.89 0.895 0.790 0.957

RF+SMO 0.92 0.85 0.885 0.772 0.963

RF+SMO+NNA 0.94 0.89 0.915 0.831 0.963

RF+SMO+NNA+J48 0.94 0.91 0.925 0.850 0.961
RF+SMO+NNA+J48+BN 0.93 0.89 0.91 0.821 0.961
RF+SMO+NNA+J48+BN+RBFNetwork 0.93 0.88 0.905 0.811 0.957
RF+SMO+NNA+J48+BN+RBFNetwork+DT 0.93 0.89 0.91 0.821 0.954
RF+SMO+NNA+J48+BN+RBFNetwork+DT+Adaboost 0.92 0.89 0.905 0.810 0.958
RF+SMO+NNA+J48+BN+RBFNetwork+DT+Adaboost+VFI 0.92 0.88 0.9 0.801 0.953
RF+SMO+NNA+J48+BN+RBFNetwork+DT+Adaboost+VFI+NB 0.92 0.86 0.89 0.781 0.951

doi:10.1371/journal.pone.0163274.t1002

PLOS ONE | DOI:10.1371/journal.pone.0163274 September 23, 2016 11/21



@° PLOS | ONE

An Effective Antioxidant Protein Predictor

0.935

0.93

0.925

0.92

0.915

0.91

Accuracy

0.905

0.9

Number of classifiers

Fig 4. Prediction accuracy against different classifier subsets. Classifier subset starts with one classifier with the highest
accuracy. Then, classifiers in the ranked classifier list are added one by one from higher to lower rank into the classifier
subset. A new classifier subset is generated when a new classifier is added. We evaluate prediction performance of each

classifier subset.

doi:10.1371/journal.pone.0163274.9004

From Tables 1 and 2, although NNA obtains an identical sensitivity of 0.94 as the ensemble
classifier, it yields the lowest specificity of 0.79. The ensemble classifier achieves much better
prediction performance than these 4 base classifiers, indicating that a well-established ensem-
ble classifier can deal with protein function prediction better than its component base classifi-
ers. Except an ensemble classifier composed of 2 classifiers and another one composed of 10
classifiers, the accuracy values of the other 8 ensemble classifiers are all better than those of the
corresponding component base classifiers. These results are in accordance with the statement
in Subsection ‘Ensemble Learning Method’ that a well-defined ensemble classifier with diver-
sity base classifiers and the reasonable accuracy can address classification issues better than its
component individual classifiers.

3.4 Feature Selection Results

The hybrid features are ranked based on the Relief method. Within the feature list (see S2
Table), a feature with a smaller index represents a more important one for antioxidant protein
prediction. Then, the IFS method combined with our ensemble classifier is employed to search
the optimal features. In the IFS procedures, adding the ranked features one by one, individual
predictors for all the feature subsets are constructed using our ensemble classifier and evaluated
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Fig 5. The IFS curve: the values of accuracy against the dimension of features. By adding features one by one from
higher to lower rank, 759 different feature subsets are obtained. The individual predictor is then accordingly built for each
feature subset and evaluated by 10-fold cross validation. The IFS curve reveals the relation between the accuracy and the
feature subsets.

doi:10.1371/journal.pone.0163274.9005

by 10-fold cross validation. The IFS results are given in S3 Table. The IFS curve is plotted in Fig
5, which shows the relationship of feature indices and accuracy. From Fig 5, the curve reaches
its peak with an accuracy of 0.94, when the first 152 features in the S2 Table are selected. These
features are regarded as the optimal features for antioxidant protein prediction.

3.5 Contribution of Feature Selection to Our Ensemble Classifier

To investigate the influence of feature selection on the performance of the ensemble classifier,
the prediction results of the ensemble method with and without feature selection are shown in
Table 3. Fig 6 depicts the ROC curves obtained with and without feature selection. From

Table 3 and Fig 6, the ensemble method with feature selection achieves a sensitivity of 0.95, a
specificity of 0.93, an accuracy of 0.94, an MCC of 0.880, and an AUC of 0.978, which are all
superior to those of the ensemble method without feature selection. These results demonstrate
that many redundant or uninformative features are present in the original feature sets and the
Relief-IFS method can significantly remove these useless features to greatly improve the
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Table 3. Prediction performance of our ensemble classifier with feature selection or not.

Method Sn Sp Acc MCC AUC
Without feature selection 0.94 0.91 0.925 0.850 0.961
With feature selection 0.95 0.93 0.94 0.880 0.978

doi:10.1371/journal.pone.0163274.t003

performance of the ensemble model. The ensemble classifier with feature selection is deter-
mined as the final predictor for antioxidant protein prediction.

3.6 Analysis of the Optimal Features

The feature type distributions of the original features and the optimal features are investigated
and shown in Fig 7. From Fig 7, among the 152 optimal features, there are 16 SSI features, 9
RSA features, 92 DCT features, and 35 PSSM features, indicating that all kinds of features con-
tribute to the prediction of antioxidant proteins.

To evaluate which feature types make more contributions to prediction performance of
antioxidant proteins, the percentages of the optimal features accounting for the corresponding

I _

—With feature selection (AUC: 0.978)
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o
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Fig 6. ROC curves of the ensemble classifier with and without feature selection. The ROC curve is plotted with the

Sn as the y-axis and 1 — Sp as the x-axis by varying the thresholds. The AUC is a valid measure used for model evaluation
obtained from the ROC curve. The higher AUC value corresponds to better performance of a predictor.

doi:10.1371/journal.pone.0163274.9006
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Fig 7. Distribution of each type of features in the optimal features and original features. The optimal prediction
model uses the first 152 features in the Relief feature list to encode protein sequences. These 152 features are deemed to
be the optimal features for identifying antioxidant proteins. To discover the different contributions of various types of
features, the distribution of each type of features in the optimal features and original features is investigated.

doi:10.1371/journal.pone.0163274.9007

feature types are also investigated. The ratios of selected/total features in each feature type are
16/21 =76.19% (SSI), 9/28 = 32.14% (RSA), 92/310 = 29.68% (CTD), and 35/400 = 8.75%
(PSSM), indicating that SSI features play a crucial role in predicting antioxidant proteins. Pro-
tein secondary structure reveals the intricate function of protein sequences to a great extent
[30, 31]. This is the first attempt to employ SSI based features for antioxidant protein predic-
tion, which may help provide new annotations for the properties of antioxidant proteins.
32.14% of RSA features are selected as the optimal features, indicating that RSA based features
play an irreplaceable role in predicting antioxidant proteins. Solvent accessibility plays an
important part in a protein’s function [40]. The accessible surface area of a protein is closely
related with its overall antioxidant activity. More solvent accessibility of amino acid residues
represents high antioxidant activity of a protein, due to the fact that free radicals and chelate
prooxidative metals can be scavenged [13]. We analyze amino acid composition of the residues
in positive samples and negative samples. There is a big difference in terms of amino acid com-
positions between positive samples and negative samples. CTD based features account for rea-
sonable proportions of the optimal feature set. This implies that information on composition,
transition and distribution plays some roles in predicting antioxidant proteins. It is noted that
the ratio of PSSM based features is slightly smaller compared to that of other feature types, due
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Table 4. Performance comparisons of our ensemble classifier with an existing method on the same
training dataset.

Method Sn Sp Acc MCC AUC
[22] 0.91 0.89 0.90 0.80 0.94
This study 0.95 0.93 0.94 0.880 0.978

doi:10.1371/journal.pone.0163274.1004

to the fact that the number of this feature type in the original feature set is the most of all those
of other feature types. Evolutionary conservations can determine important biological func-
tions [36]. PSSM based features are also necessary in predicting antioxidant proteins.

The proposed predictor is designed through analyzing the sequence characteristics and
other characteristics about antioxidant functions of antioxidant proteins to distinguish between
antioxidant proteins and non-antioxidant proteins, which can provide theory guidance for
experiments on antioxidant proteins. However, this predictor cannot be used to design antioxi-
dant proteins through multiple pathways including inactivation of reactive oxygen species,
scavenging free radicals, chelation of prooxidative transition metals, reduction of hydroperox-
ides, and alteration of the physical properties.

3.7 Performance Comparisons with the Existing Methods

To evaluate the prediction performance objectively, we compare our method with reference
[22] on the same training dataset. Table 4 reports the detailed prediction results obtained by
our ensemble classifier and [22] using 10-fold cross validation. From Table 4, our ensemble
classifier obtains satisfactory performance and outperforms the method in reference [22]. The
sensitivity, specificity, accuracy, MCC, and AUC obtained by the proposed method are about
4%, 4%, 4%, 8% and 3.8% higher than those achieved by the method in reference [22],
respectively.

To further assess the prediction performance of the proposed method, we make compari-
sons with [21, 22] on the same independent testing dataset. The performance comparison
based on the same dataset is much more reliable, which can reflect the performance of a pre-
dictor more objectively. As listed in Table 5, the prediction results of our ensemble classifier
are significantly better than those of the method in reference [21]. Although the sensitivity
yielded by the method in reference [22] is a little higher than that obtained by our predictor,
the specificity, accuracy, and MCC of our method are significantly higher than those achieved
by the method in reference [22], which indicates that an unreasonable balance between sensi-
tivity and specificity exists in the method in reference [22]. Our method achieves a balanced
performance with a sensitivity of 0.878 and a specificity of 0.860, which is also reflected by an
MCC of 0.617. It also gives a satisfactory discrimination power expressed by an accuracy of
0.863 and an AUC of 0.948. From Tables 4 and 5, the predictions deteriorate significantly in
the independent testing dataset. This phenomenon may be due to the fact that the indepen-
dent test set is not used in the learning process of our proposed predictor. The parameters of
our proposed predictor are determined in the learning process based on the training dataset.

Table 5. Performance comparisons of our ensemble classifier with existing methods on the same independent testing dataset.

Method
[21]
[22]
This study
doi:10.1371/journal.pone.0163274.t005

Sn
0.77
0.91
0.878

Sp Acc McC AUC
0.77 0.77 0.43 0.83
0.79 0.81 0.54 0.94
0.860 0.863 0.617 0.948
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Therefore, the proposed ensemble classifier has fairly good performance in predicting antioxi-
dant proteins, superior to previous methods, which may be conducive to better understanding
physiological processes of certain types of diseases and developing novel antioxidation-based
drugs.

3.8 Online Web Server

Since user-friendly and publicly accessible web-servers represent the future direction for devel-
oping more practically predictors, we have established a free web-server at http://antioxidant.
weka.cc for the method presented in this paper. Users can enter query protein sequences in
FASTA format or input the UniProtKB ID of the query protein sequences in the text box area
for prediction. When protein sequences are submitted to the server, a job ID is presented to
users. The predicted result page will return the input information and predicted result.

4 Conclusions

In this study, we have proposed an ensemble predictor using hybrid features extracted from
SSI, PSSM, RSA, and CTD to predict antioxidant proteins. We investigate prediction capabili-
ties of various base classifiers and obtain a classifier list based on the accuracy. Based on the
ranked classifier list, the idea of IFS is employed to determine an optimal classifier subset.
Compared with its component base classifiers, the optimal ensemble classifier achieves much
better prediction performance. To improve prediction capability of the model and economize
computational time, the Relief-IFS method is adopted to obtain the optimal features. The
ensemble method with feature selection is determined as the final predictor for antioxidant
protein prediction, which achieves a sensitivity of 0.95, a specificity of 0.93, an accuracy of 0.94,
an MCC of 0.880, and an AUC of 0.978. To evaluate the prediction performance objectively,
the proposed method is compared with existing methods on the same independent testing
dataset. Our method obtains the best specificity of 0.860, accuracy of 0.863, MCC of 0.617, and
AUC of 0.948. In addition, our method achieves more balanced performance with a sensitivity
of 0.878 and a specificity of 0.860. It is convinced that the proposed ensemble predictor is quite
promising in predicting antioxidant proteins.

Supporting Information

S1 Table. The benchmark dataset. The benchmark dataset contains a training dataset and an
independent testing dataset. The training dataset is composed of 100 antioxidant and 100 non-
antioxidant proteins. The independent testing dataset consists of 74 antioxidant and 392 non-
antioxidant proteins.

(XLSX)

S2 Table. The ranked feature list given by the Relief algorithm. Within the list, a feature with
a smaller index represents a more important one for antioxidant protein prediction. Such a list
of ranked features are used to establish the optimal feature set in the IFS procedure.

(XLSX)

S3 Table. The Incremental Feature Selection (IFS) results. In the IFS procedures, adding the
ranked features one by one, individual predictors for all the feature subsets are constructed
using our ensemble classifier and evaluated by 10-fold cross validation. The IFS results are
obtained.

(XLSX)
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