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A B S T R A C T   

The use of peptide drugs to treat cancer is gaining popularity because of their efficacy, fewer side 
effects, and several advantages over other properties. Identifying the peptides that interact with 
cancer proteins is crucial in drug discovery. Several approaches related to predicting peptide- 
protein interactions have been conducted. However, problems arise due to the high costs of re-
sources and time and the smaller number of studies. This study predicts peptide-protein in-
teractions using Random Forest, XGBoost, and SAE-DNN. Feature extraction is also performed on 
proteins and peptides using intrinsic disorder, amino acid sequences, physicochemical properties, 
position-specific assessment matrices, amino acid composition, and dipeptide composition. Re-
sults show that all algorithms perform equally well in predicting interactions between peptides 
derived from venoms and target proteins associated with cancer. However, XGBoost produces the 
best results with accuracy, precision, and area under the receiver operating characteristic curve of 
0.859, 0.663, and 0.697, respectively. The enrichment analysis revealed that peptides from the 
Calloselasma rhodostoma venom targeted several proteins (ESR1, GOPC, and BRD4) related to 
cancer.   

1. Introduction 

Patients with cancer are treated with three options, including surgery, radiotherapy, or pharmacotherapy, following their stage and 
tumor [1]. Recently, cancer treatment using targeted therapeutics in the form of peptide drugs is becoming an emerging trend that 
provides improved efficacy and reduced side effects [2]. Peptides have a crucial role in humans by interacting with various proteins 
and programming many cellular processes, such as cell death, and regulating gene expression [3]. 
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Furthermore, peptides have many advantages over small molecules and biologics, including simpler design, their ability to interact 
with unknown or unexplored targets, enhanced tissue penetration, and cheaper synthesis [1]. Research in peptides has become a good 
start for designing novel therapeutics due to their safety and tolerability in human bodies, and identifying peptide-protein interaction 
is crucial for this task [4]. However, finding new peptide-protein interactions often requires high costs and is very time-consuming [3]. 
Several methods have been developed to speed up peptide drug discovery. 

Identifying peptide-protein interaction has two general approaches: sequence-based and structure-based. Sequence-based ap-
proaches use information in peptide and protein sequences to predict the interaction. For example, CGKronRLS [5] and NRLMF [6] 
calculate the similarity between sequences, and then use machine learning models to predict peptide-protein interaction. This 
approach generally needs known interaction between peptide and ligand and its similarity score as the input feature, which then 
created large-scale data and costs high computational power due to the enormous computational complexity of calculating similarity 
and the use of large-dimensional peptide and protein features [4]. Structure-based approaches, such as molecular docking, solved the 
problem by modeling the structure of peptides and proteins at the atom level and predicting their affinities. Several docking strategies 
to determine peptide-protein interaction can be divided into local and global docking methods. Most of the docking approaches need 
three-dimensional (3D) structure information from the peptide and protein to calculate the binding energies. The usage of 3D 
structures consumes large computational power, resources, and time [3]. 

The number of research and work regarding the identification of peptide-protein interaction using in silico approaches, such as 
machine learning or deep learning algorithm, remains relatively low although peptide drugs are becoming an emerging trend and the 
number of approved therapeutics using peptides has been increasing over the last decades. While the utilization of machine learning 
and deep learning techniques for peptide and protein interaction prediction is limited, these approaches have found significant 
application in the field of compound-protein interactions, specifically drug-target interactions (DTI). Several studies have successfully 
employed ensemble methods or deep learning methods to predict DTI. For instance, Ramadhanti et al. [7] utilized Random Forest to 
predict the compounds that interact with proteins in the SARS-COV-2 virus, focusing on COVID-19-related DTI. Sajadi et al. [8] 
introduced AutoDTI++, a deep unsupervised learning method that addresses the sparsity challenge in the interaction matrix and 
enables accurate prediction of drug-target interactions. Sulistiawan et al. [9] employed a stacked autoencoder (SAE) for pretraining the 
weights in a deep neural network (DNN), aiming to achieve higher prediction accuracy in DTI, particularly those related to COVID-19. 
Furthermore, Fadli et al. [10] conducted multilabel DTI prediction using the stack autoencoder-deep neural network (SAE-DNN) al-
gorithm to address the limitations of binary classification models, which often overlook possible correlations between labels that could 
provide valuable information for enhancing the accuracy of DTI predictions. 

Thus, our study aimed to utilize ensemble method and deep learning techniques to predict peptide-protein interactions using 
peptides derived from Calloselasma rhodostoma venom, with a particular focus on cancer-associated proteins. The methodologies 
employed included ensemble methods such as Random Forest (RF) and XGBoost, as well as a deep learning approach utilizing a deep 
neural network (DNN) that was enhanced with stacked autoencoders for pre-training (SAE-DNN). The goal was to leverage these 
techniques to accurately predict interactions between the venom-derived peptides and the target proteins associated with cancer. RF 
and XGBoost are bagging and boosting tree-based algorithms known for their good classification performance in bioinformatics and 
can handle high-dataset issues with the feature selection process even with a higher number of variables [11]. DNN is known for its 
ability to learn data representation and has achieved high performance in pattern recognition, computer vision, and bioinformatics 
[12,13]. We constructed two versions of the datasets: version 1 with a peptide sequence length of ≤50 and protein sequences length of 
≤1500 and version 2 with a peptide sequence length of ≤19 (the average length of all peptide sequences) and protein sequences length 
of ≤1500. The feature profiles for peptides and proteins are constructed using intrinsic disorder, amino acid sequences, physico-
chemical properties, position-specific scoring matrix, amino acid composition, and dipeptide composition. We tested the 
peptide-protein interaction prediction model using the Calloselasma rhodostoma venom-derived peptides. 

2. Materials and methods 

2.1. Dataset 

Three datasets were collected: the cancer protein dataset, the peptide-protein interaction dataset, and the peptide extracted from 
the Calloselasma rhodostoma venom, which will be used as test data to obtain new peptide-protein interaction. The cancer protein 
dataset is taken from The Cancer Genome Atlas website (https://www.cancer.gov/tcga accessed on October 3, 2022), resulting in a 
total of 571 proteins associated with cancer. The peptide data is collected from Protein Data Bank (PDB) [14] and DrugBank [15]. The 
peptide data in PDB is taken by first getting all the peptide and protein FASTA available, then using a protein-ligand interaction profiler 
(PLIP) to determine the interactions between peptide and protein. PLIP determines the interaction of peptide-protein by looking at 
seven types of interaction: hydrogen bonds, hydrophobic contact, pi-stacking, pi-caption interactions, salt bridges, water bridges, and 
halogen bonds [16]. Peptide-protein pairs are considered to have interaction if at least one of the interaction types is detected. Then, 
the generated interactions were filtered by selecting the cancer-associated proteins. We screened the drug-target interactions with 
peptide-type drugs and cancer proteins in DrugBank. A total of 452 positive interactions were obtained, including 404 from PDB and 
48 from DrugBank. 

Then, we generated the negative interactions to generate full datasets by randomly shuffling the peptides and proteins with un-
known interactions. Five negative interactions were generated for each peptide by randomly sampling the non-interacting proteins. 
Overall, 2712 peptide-protein pairs were obtained in the training dataset. 

We combined every unique venom peptide and cancer protein for the test data, which resulted in 23,925 peptide-protein pairs. The 
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test data consisted of 145 venom peptides. Venom was directly milked from Calloselasma rhodostoma snake. Freeze-dried venom was 
dissolved in buffer and digested using Trypsin Gold. The hydrolysate was measured for absorbance with a UV–Vis spectrophotometer 
at a wavelength of 585 nm. Then, trypsin-digested venom was subjected to high-resolution mass spectrometry. Hydrolysate was 
injected into the Acclaim® PepMap RSLC column and eluted using mobile phase A (water and 0.05 % formic acid) and B (water: 
acetonitrile at 20:80 and 0.1 % TFA). The MS and MS/MS were conducted using the NSI ionization method. Chromatograms of peptide 
fractions were obtained and analyzed using Xcalibur software. The dataset can be seen in Supplementary File 1. 

2.2. Feature extraction 

All peptide and protein sequences used have different lengths. We set the sequence to a certain length to make the same input 
feature size for all the peptides and proteins. We used two versions of data for the peptide data: peptide with a length of sequences of 
≤50 [4] and peptide with a length of sequences of ≤19 (the average length of all peptide sequences). We set the length of protein 
sequences at≥50 and ≤ 1500 for the protein data. Peptides with sequence lengths of <50 and 19 and proteins with <1500 amino acids 
were zero-padded to give the same input feature size. We then constructed the feature for both peptides and proteins using six feature 
profiles: amino acid sequences, physicochemical properties, intrinsic disorder, position-specific scoring matrix (PSSM), amino acid 
composition (AAC), and dipeptide composition (DPC). 

We encoded each residue using an integer between 1 and 21 (the number of amino acid types) for the amino acid sequences (AAS) 
feature. We encoded residue in sequence using an integer between 1 and 7, which is based on the combination of polarity and the 
hydropathy index, for physicochemical property representation. This index measures the energy of the transfer of an amino acid side 
chain from a hydrophobic solvent to water [17]. Table 1 shows the encoded rules. 

Intrinsic disorder (ID) features represent the tendencies of disordered amino acid pairs to form contacts with other objects such as 
protein or RNA. Its value ranges from 0 (complete order) to 1 (complete disorder). Three forms of intrinsic disorder scores are used: 
long disorder score (considering the long disorder regions), short disorder score (considering the short stretches of disorder), and 
ANCHOR score (the probability of specific amino acids to be a part of the disorder region) [18]. The use of intrinsic disorder for protein 
and peptide features can help increase the accuracy of peptide-protein interaction [4]. This feature is generated using IUpred2 [18]. 

PSSM feature is one the representation of protein sequences that can detect the homology between other protein sequences. This 
feature consists of an array S of size N × 20, with N as the length of the sequence and every position in Si, j as the probability of residue j 
in position i. PSSM profile is generated using psi-blast [19] with the number of iteration of 3 and e-value of 0.001 which have been 
proved to work well for generating effective feature profiles from the protein sequences [20]. The profile is then transformed using 
auto cross-covariance (ACC) after getting PSSM the profile of each peptide and protein. ACC can measure the correlation between any 
two properties and transform the PSSM profile into the same matrix. ACC is the combination of auto covariance between the same 
residue and cross-covariance (CC) between two different residues [21]. ACC transformation in PSSM profiles resulted in 400 features of 
peptide and protein. AAC and dipeptide composition represent the percentage of single amino acids and dipeptides (2 combinations of 
amino acids, such as AA, AR, and AN) in the sequences [22]. AAC converts the sequences into 20 features, while DPC converts them 
into 400 features. 

2.3. Prediction model 

The prediction model used three algorithms: deep neural network (DNN) with pre-training using stacked autoencoder (SAE), which 
will be referred to as SAE-DNN, RF, and XGBoost. SAE is used as pre-training to get the initial weight for DNN, which can help produce 
an optimal model compared to a model using random initial weights [23]. SAE training resulted in the weight and bias which will be 
used in the DNN training process. The activation functions in the output layer of DNN uses sigmoid because the data class is binary, 
while the other parameter will be tuned to find its optimal value. 

RF is popular machine learning based on multiple decision trees (ensemble). RF achieves better prediction performance through the 
usage of bagging, randomly subsetting the variables, and a majority voting system [24]. RF can handle the high-dimensional dataset in 
bioinformatics by performing feature selection processes while building the prediction rules [25]. This study will tune several pa-
rameters of RF, namely: n_estimators (the number of trees built), max_samples (the number of variable samples used in the training 
process), and max_depth (the depth of individual trees). 

XGBoost is a tree-based algorithm which is an optimization model that uses both the linear model and boosting tree model. XGBoost 
can improve the efficiency of the optimal results and achieve global optimal faster through the usage of the first derivative and second 

Table 1 
Encoded physicochemical feature.  

Polarity Positive/negative of hydropathy index Amino acid Encoded integer 

Non-polar Positive Ala, Phe, Ile, Met, Leu, Pro, Val 1 
Non-polar Negative Gly, Trp 2 
Polar-uncharged Positive Cys 3 
Polar-uncharged Negative Asn, Gln, Ser, Thr, Tyr 4 
Negatively-charged Negative Asp, Glu 5 
Positively-charged Negative Lys, His, Arg 6 
Unknown Unknown Otherwise 7  
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derivative of the loss function for second-order derivation [26]. XGBoost also performs a feature selection process while being trained 
through the use of a gain score in each split tree and has already achieved good performance in the bioinformatics area [21]. 

This study attempted several scenarios, with scenarios 1–7 searching an optimal dataset for the model while scenarios 8–13 
compared SAE-DNN, RF, and XGBoost performance. Table 2 shows the details of scenarios, with the only DrugBank data used from 
models 6–13. We used the peptide length of ≤50 and then compared the best model with the performance of the peptide length of ≤19 
datasets to compare the performance of each scenario. 

Hyperparameter tuning was also conducted using Bayesian Optimization to produce the optimal model. Table 3 shows the 
hyperparameter search space. 

2.4. Model evaluation 

The model is trained using StratifiedKFold Cross Validation to balance the number of positive and negative interactions, with the 
number of folds, K = 5. The evaluation metrics include accuracy, recall, precision, Fscore, receiver operating characteristic curve 
(ROC), and precision-recall curve (PRC). The accuracy value measures how well the test data predicts. Precision measures the per-
centage of positive predictions against a positive class. Recall measures the accuracy of the positive prediction of the model. Fscore 
measures the performance of the minority class. The ROC curve shows the trade-off between sensitivity (or TPR) and specificity (1 - 
FPR) [9]. The PRC curve shows the comparison between precision and recall which aimed to measure how well the model predicted 
the class in imbalanced settings [27]. 

2.5. Enrichment analysis 

Enrichr (https://maayanlab.cloud/Enrichr/) [28] is a database used to search for protein pathway enrichment. Pathway enrich-
ment analysis consists of identifying the KEGG Pathway and Gene Ontology (Biological Processes, Molecular Functions, and Cellular 
Components). The online tool SRPlot (http://www.bioinformatics.com.cn/). Cytoscape v3.9.1 (https://cytoscape.org/) [29] was used 
to build protein-enrichment and protein-peptide-enrichment network topologies to visualize predicted results of pathway enrichment. 

Table 2 
Scenarios details.  

Scenario Prediction model Feature used 

Model 1a SAE-DNN ID, PSSM 
Model 2a SAE-DNN ID, PSSM, and Amino Acid Composition (AAC) 
Model 3a SAE-DNN ID, PSSM, and Dipeptide Composition (DPC) 
Model 4a SAE-DNN ID, PSSM, AAS, and PP 
Model 5a SAE-DNN ID, PSSM, AAS, PP, and AAC 
Model 6 SAE-DNN ID, PSSM, AAS, and PP 
Model 7 SAE-DNN ID, PSSM, AAS, PP, and AAC 
Model 8 SAE-DNN with RF feature selection ID, PSSM, AAS, PP, and AAC 
Model 9 SAE-DNN with XGBoost feature selection ID, PSSM, AAS, PP, and AAC 
Model 10 RF prediction model ID, PSSM, AAS, PP, and AAC 
Model 11 XGBoost prediction model ID, PSSM, AAS, PP, and AAC 
Model 12b RF prediction model with class_weight settings ID, PSSM, AAS, PP, and AAC 
Model 13b XGBoost prediction model with class_weight settings ID, PSSM, AAS, PP, and AAC  

a DrugBank dataset excluded. 
b The weights are calculated using the inverse proportion of class frequencies. 

Table 3 
Hyperparameter search space.  

Hyperparameter Values 

HL0 Node 100–2000 
HLi Node 0.5 × (HL i-1)–0.75 × (HLi-1) 
Hidden layer 1–6 
Learning rate/etab 0.01–0.1 
Dropout rate 0.2–0.7 
n_estimatorsa b 100–500 
colsample_bytreeb/max_samplesa 0.1–1 
max_deptha 3–6  

a for the RF model. 
b for XGBoost model. 
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Table 4 
All scenario comparison results with peptide length of ≤50 dataset.  

Metrics Accuracy Recall Precision ROC-AUC Fscore 

Model 1 0.825 ± 0.005 0.136 ± 0.046 0.429 ± 0.040 0.647 ± 0.030 0.202 ± 0.053 
2 0.831 ± 0.024 0.341 ± 0.062 0.509 ± 0.094 0.723 ± 0.036 0.402 ± 0.058 
3 0.832 ± 0.016 0.428 ± 0.047 0.502 ± 0.052 0.733 ± 0.031 0.460 ± 0.042 
4 0.825 ± 0.020 0.349 ± 0.062 0.494 ± 0.091 0.726 ± 0.013 0.397 ± 0.035 
5 0.822 ± 0.016 0.495 ± 0.014 0.485 ± 0.089 0.761 ± 0.024 0.486 ± 0.047 
6 0.804 ± 0.003 0.433 ± 0.079 0.428 ± 0.011 0.654 ± 0.023 0.428 ± 0.043 
7 0.818 ± 0.020 0.358 ± 0.118 0.480 ± 0.094 0.736 ± 0.025 0.393 ± 0.084 
8 0.828 ± 0.012 0.427 ± 0.072 0.499 ± 0.044 0.743 ± 0.013 0.457 ± 0.051 
9 0.830 ± 0.017 0.413 ± 0.100 0.518 ± 0.055 0.753 ± 0.017 0.448 ± 0.050 
10 0.842 ± 0.007 0.148 ± 0.012 0.709 ± 0.133 0.688 ± 0.039 0.243 ± 0.021 
11 0.859 ± 0.006 0.369 ± 0.040 0.663 ± 0.055 0.697 ± 0.020 0.466 ± 0.025 
12 0.800 ± 0.014 0.433 ± 0.067 0.419 ± 0.037 0.685 ± 0.042 0.455 ± 0.032 
13 0.843 ± 0.009 0.400 ± 0.023 0.560 ± 0.038 0.690 ± 0.029 0.466 ± 0.023  

Fig. 1a. ROC curve for model 1–5. 
Fig. 1b. ROC curve for model 6-13. 

Fig. 2a. Precision-Recall (PR) curve for model 1–5. 
Fig. 2b. Precision-Recall (PR) curve for model 6-13. 
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3. Results and discussion 

3.1. Prediction results of dataset version 1 

Supplementary Table 4 shows all the prediction models trained using the optimal hyperparameters. Table 4 shows all scenario 
comparison results. 

All models generally produced fairly good average accuracy with a score of ≥80 %. All models have a decent result in an average 
ROC-AUC of >0.6. However, all models produced a bad recall and Fscore, with a score of under 0.4 in both metrics. A low recall score 
indicated a high number of false negatives in the models which is a common case in imbalanced class problems. 

The ROC curve is used for another measurement to evaluate the model. The ROC curve of each model can be seen in Fig. 1a and b. 
The ROC curve closer to the top-left corner indicates the following. Higher AUC means that the model can distinguish classes between 
positive and negative. Hence, model 5 has the best AUC in one of its folds of 0.8, while the other models produced almost similar scores 
of AUC with only model 1 scoring below 0.7. This means that all scenarios, except model 1, have at least a 73 % chance to differentiate 
the class between positive and negative. 

An imbalanced setting is PRC is another metric used to measure model performance, which can be seen in Fig. 2a and b. PRC shows 
the trade-off between precision and recall, and a model is considered to perform better when moving closer to point (1,1) in the graph. 
Hence, no models tend to be close to the ideal point with some of the models having a high precision and low recall. A model with high 
precision but low recall means returning very few positive classes, but most of its predictions were correct. 

The scenarios were further compared by measuring the confusion matrix on the last fold of the CV. Table 5 shows a comparison of 
the results. 

Models 5 and 8 had the highest number of TP (40 and 41 consecutively), but they also produced many FP which is something that 
should be avoided in peptide-protein interactions. Model 10 produced the lowest number of positive predictions with only 14. Hence, 
we considered models 5, 10, and 11 to be the better model among others with model 11 being the best due to its high number of TP (32) 
and low FP (11) as well as its performance in all evaluation metrics in Table 4. 

Table 5 
All scenarios’ confusion matrix comparison results.  

Metrics Model       

1 2 3 4 5 6 7 8 9 10 11 12 13 

True Positive (TP) 11 32 29 31 40 37 17 41 31 13 32 34 33 
True Negative (TN) 392 387 374 374 360 390 428 408 418 437 427 390 413 
False Negative (FN) 69 48 51 49 40 53 73 49 59 77 58 56 57 
False Positive (FP) 12 17 30 30 44 48 10 30 20 1 11 48 25  

Fig. 3. Comparison results for dataset versions 1 and 2 using models 5, 10, and 11.  
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Fig. 4. ROC curve comparison for dataset versions 1 and 2 using models 5, 10, and 11.  

Fig. 5. Precision-Recall curve comparison for dataset versions 1 and 2 using models 5, 10, and 11.  
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3.2. Prediction comparison of dataset version 1 and version 2 using the three best model 

Then, we compared the performance of models 5, 10, and 11 with the data version 2 which used the peptide sequence length of ≤19 
(the average length of all peptide sequences). The comparison results can be seen in Fig. 3. 

Overall, the performance of dataset versions 1 and 2 revealed no significant differences. Dataset version 2 has a slightly better 
performance in model 10 while dataset version 1 had a better performance in models 5 and 11. Fig. 4 shows the comparison for the 

Fig. 6. GO Biological Processes: a. Top 10 terms with the lowest p-value; b. network of protein-GO Biological Processes, darker colors indicate the 
terms with a p-value of <0.01(enrichment terms explanation can be seen in Supplementary File 5). (For interpretation of the references to color in 
this figure legend, the reader is referred to the Web version of this article.) 
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ROC curve, while Fig. 5 shows the PR curve comparison of each dataset. 

3.3. Venom peptide prediction results in dataset version 1 

The venom peptide prediction is performed using models 5, 10, and 11. Prediction using model 5 resulted in 23,532 pairs of 
peptide-protein with all peptides predicted to have interaction with cancer proteins. Only protein AFDN had no interaction with venom 
peptide. 

Prediction using model 10 produced 169 pairs of peptide-protein with 113 unique peptides predicted to have an interaction with 
only four proteins (Estrogen Receptor 1 [ESR1], Golgi-associated PDZ and coiled-coil motif-containing protein [GOPC], 
Bromodomain-containing protein 4 [BRD4], and androgen receptor [AR]), with protein ESR1 having the most peptide interaction of 
112 peptides, followed by GOPC (48), BRD4 (8), and AR (1). 

Prediction using model 11 produced 765 peptide-protein pairs with 140 distinct peptides and 66 proteins. The top 5 protein with 
the most interaction with a peptide is ESR1 with 90 peptides, followed by EGFR (76), GOPC (69), BCL6 (47), and YWHAE/14-3-3 
protein epsilon (42). 

Venom peptide prediction with these three models also yielded the same 121 pairs of peptide-protein that consisted of 86 unique 
peptides and 3 proteins (ESR1, GOPC, and BRD4). Supplementary File 2 shows all of these overlap prediction results. 

Fig. 7. GO Cellular Component: a. Top 10 terms with the lowest p-value; b. network of protein-GO Cellular Component, darker colors indicate the 
terms with a p-value of <0.01 (enrichment terms explanation can be seen in Supplementary File 5). (For interpretation of the references to color in 
this figure legend, the reader is referred to the Web version of this article.) 
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3.4. Venom peptide prediction results in dataset version 2 

Venom peptide prediction using dataset version 2 produced a slight difference result. Model 5 prediction resulted in 145 pairs of 
peptide-protein with all peptides predicted to have interaction with only 1 protein (CREBPP). 

Model 10 prediction yielded 121 pairs of peptide-protein with 108 unique peptides predicted to have an interaction with only three 
proteins (ESR1, GOPC, and BRD4), with protein ESR1 having the most peptide interaction of 107 peptides, followed by GOPC (7) and 
BRD4 (7). 

Prediction using model 11 produced 1056 peptide-protein pairs with 140 distinct peptides and 71 proteins. The top 5 protein with 
the most interaction with a peptide is ESR1 with 102 peptides, followed by AR (86), BRD4 (83), GOPC (73), and BCL6 (58). Peptide- 
protein pairs have no overlap among these three prediction model results. The overlap pairs were found in models 10 and 11 prediction 
results, with a total of 95 pairs that consisted of 86 unique peptides and 3 proteins (ESR1, GOPC, and BRD4). Supplementary File 3 
shows all of these overlap prediction results. 

A similarity was found in pairs of peptide-protein between the prediction of dataset versions 1 and 2, with 67 pairs which consisted 
of 64 unique peptides and 3 proteins (ESR1, GOPC, and BRD4). Supplementary File 4 shows these overlap pairs. 

3.5. Enrichment analysis results 

The identification results of protein overlap interactions with peptides included 83 peptides for ESR1, 6 for GOPC, and 6 for BRD4. 
Gene ontology and KEGG pathways are identified from ESR1, GOPC, and BRD4 proteins using the Enrichr database, as seen in Figs. 6–9 
and Supplementary File 5. Fig. 10 shows the topological network of protein-peptide-enrichment. 

Fig. 8. GO Molecular Function: a. Top 10 terms with the lowest p-value; b. network of protein-GO Molecular Function, darker colors indicate the 
terms with a p-value of <0.01 (enrichment terms explanation can be seen in Supplementary File 5). (For interpretation of the references to color in 
this figure legend, the reader is referred to the Web version of this article.) 
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Protein selection was based on the appearance of the three proteins from the overlapping venom peptide prediction results of 
dataset versions 1 and 2. The pathway enrichment analysis results revealed 121 GO terms consisting of 83 biological processes 
(Figs. 6b), 14 cellular components (Figs. 7b), and 24 molecular functions (Fig. 8b). The identified KEGG pathways included eight 
pathways with ESR1 as the associated protein (Fig. 9b). The top 10 terms with the lowest p-value from each gene ontology and KEGG 
pathway can be seen in Fig. 6a (biological processes), 7a (cellular components), 8a (molecular functions), and 9a (KEGG pathways). 

The analysis revealed the five lowest p-values of biological processes terms consist of regulation of I-kappaB kinase/NF-kappaB 
signaling (ESR1 and BRD4), negative regulation of anion transmembrane transport (GOPC), regulation of anion channel activity 
(GOPC), positive regulation of RNA polymerase II transcription preinitiation complex assembly (ESR1), and apical protein localization 
(GOPC). The GOPC protein revealed no molecular function results. The five lowest p-values of molecular function terms were RNA 
polymerase II general transcription initiation factor binding (ESR1), RNA polymerase II C-terminal domain binding (BRD4), RNA 
polymerase II CTD heptapeptide repeat kinase activity (BRD4), transcription coactivator binding (ESR1), and acetylation-dependent 
protein binding (BRD4). The cellular component result with the five lowest p-values was trans-Golgi network transport wascle (GOPC), 
condensed nuclear chromosome (BRD4), Golgi-associated vesicle membrane (GOPC), Golgi-associated vesicle (GOPC), and condensed 
chromosome (BRD4). 

ESR1, GOPC, and BRD4 are proteins involved in cancer. ESR1 is a gene that codes for estrogen receptor α (ER-a) [30]. ER-α is a 
ligand-activated transcription factor that regulates the transcription of estrogen-sensitive genes [31]. ESR1 gene mutations can cause 
estrogen dysfunction and increase the risk of breast cancer [32]. ESR1 dysregulation also increases breast cancer’s metastatic potential 
and therapeutic resistance [33], which causes ESR1 as an important prognostic factor [34]. The role of ESR1 in cancer is seen from the 
KEGG pathway results, including pathways in cancer, breast cancer, proteoglycans in cancer, chemical carcinogenesis, and thyroid 
hormone signaling pathways, estrogen signaling pathways, prolactin signaling, and endocrine and other factor-regulated calcium 
reabsorption. 

GOPC is localized in the trans-Golgi network, interacting through its single SDF-95/discs large/ZO-1 (PDZ) domain with various 

Fig. 9. KEGG Pathway: a. Top 10 terms with the lowest p-value; b. network of protein-KEGG Pathway, darker colors indicate the terms with a p- 
value of <0.01 (enrichment terms explanation can be seen in Supplementary File 5). (For interpretation of the references to color in this figure 
legend, the reader is referred to the Web version of this article.) 
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cell surface receptors [35,36]. GOPC controls the intercellular trafficking of numerous integral membrane proteins. Lower expression 
of GOPC correlates with a worse prognosis in patients with colorectal cancer [37]. 

BRD4 is a member of the Bromodomain and Extra-terminal (BET) protein family, which is a cancer protein because it plays a role in 
super-enhancers organization and regulation of cancer gene expression [38]. Additionally, BET also plays a vital role as a therapeutic 
target in diseases, such as inflammation, neurological disorders, obesity [39], and cardiovascular [40]. Meanwhile, BRD4 is an 

Fig. 10. Topology of protein-peptide-enrichment network: round, triangular, and hexagonal shaped nodes indicate protein, peptide, and enrich-
ment; the enrichment terms have a p-value of <0.01 (terms explanation can be seen in Supplementary File 1–5). 
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epigenetic reader that binds to acetylated histones, regulates gene transcription and proliferation, and repairs DNA damage. BRD4 can 
trigger tumor growth and inflammation [41–43]. BRD4 hyperphosphorylation contributes to bromodomain and extra-terminal in-
hibitor (BETi) resistance, where BRD4 phosphorylation supports chromatin binding and higher oncogene expression [42]. 

4. Conclusions 

This study conducted the prediction of peptide-protein interactions in cancer cases using SAE-DNN, RF, and XGBoost. The results 
revealed that all algorithms produced fairly similar results, with the XGBoost model (scenario 11) considered the best model among 
other algorithms and scenarios due to its good results in accuracy (0.859), precision (0.663), ROC-AUC (0.697), and the number of true 
positive and false positive in its prediction results. Enrichment analysis of the three proteins (ESR1, GOPC, and BRD4) overlapping 
from models 5, 10, and 11 showed that the proteins are related to cancer disease. The KEGG Pathway analysis revealed that ESR1 
protein has associated with several pathways related to cancer, including pathways in cancer (hsa05200), chemical carcinogenesis 
(hsa05207), breast cancer (hsa05224), and proteoglycans in cancer (hsa05205). 

The methods proposed in this study to predict peptide-protein interaction in cancer cases have several advantages. Firstly, the 
methods only require sequence information on peptide and protein as an input, which can speed up the training process instead of 
using structure data of the peptide and protein. Moreover, comparing multiple methods of machine learning and deep learning models 
can help narrow down the best models to predict the interaction, as well as enhance the prediction results through the overlap 
interaction that occurred in the models. 

However, this study still has several limitations. Firstly, the amount of data used is considered small due to the small number of 
samples (peptide and protein) that have been acquired for cancer cases. This study did not produce an overall good performance due to 
its low results in recall and Fscore. Additionally, the prediction in this study still cannot predict the binding sites and peptide-binding 
residue involved in the interactions. Therefore, more data should be collected regarding the interaction of peptides in cancer proteins 
and more advanced algorithms should be used. Predicting the binding residue in each interaction should be attempted to improve the 
prediction results. 
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