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Abstract: Background: Electroencephalography (EEG)-derived event-related potentials (ERPs) pro-
vide information about a variety of brain functions, but often suffer from low inherent signal-to-noise
ratio (SNR). To overcome the low SNR, techniques that pool data from multiple sensors have been
applied. However, such pooling implicitly assumes that the SNR among sensors is equal, which
is not necessarily valid. This study presents a novel approach for signal pooling that accounts for
differential SNR among sensors. Methods: The new technique involves pooling together signals from
multiple EEG channels weighted by their respective SNRs relative to the overall SNR of all channels.
We compared ERP responses derived using this new technique with those derived using both individual
channels as well as traditional averaged-based channel pooling. The outcomes were evaluated in both
simulated data and real data from healthy adult volunteers (n = 37). Responses corresponding to a range
of ERP components indexing auditory sensation (N100), attention (P300) and language processing
(N400) were evaluated. Results: Simulation results demonstrate that, compared to traditional pooling
technique, the new SNR-weighted channel pooling technique improved ERP response effect size in
cases of unequal noise among channels (p’s < 0.001). Similarly, results from real-world experimental
data showed that the new technique resulted in significantly greater ERP effect sizes compared to
either traditional pooling or individual channel approach for all three ERP components (p’s < 0.001).
Furthermore, the new channel pooling approach also resulted in larger ERP signal amplitudes as well
as greater differences among experimental conditions (p’s < 0.001). Conclusion: These results suggest
that the new technique improves the capture of ERP responses relative to traditional techniques. As
such, SNR-weighted channel pooling can further enable widespread applications of ERP techniques,
especially those that require rapid assessments in noisy out-of-laboratory environments.

Keywords: EEG; ERP; neural signal processing; signal augmentation; signal to noise ratio; channel pooling

1. Introduction

In recent years, advances in portable electroencephalography (EEG) technology have
increasingly enabled the development of point-of-care, objective, physiology-based mea-
surements of brain function, such as the brain vital sign monitoring [1–3]. Event-related
potentials (ERPs) extracted from EEG can provide physiology-based measures to augment
existing behaviour-based assessments of brain function, which had been shown to be
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highly subjective and potentially error-prone [4–6]. ERPs have been shown to index both
low-level sensory and high-level cognitive processes [7], and both our group and others
have previously demonstrated the significant utility of ERPs in capturing cognitive changes
in brain function during aging [1,8], and due to brain injury, disease, and recovery [9–11].

ERP assessments in both research and clinical settings rely on comparing the brain’s
responses to different types of stimuli or experimental conditions (Figure 1). ERP responses,
or components, are typically identified using established features in the waveform (e.g.,
a peak with a specific polarity within an expected time interval [12]) that are contrasted
among experimental conditions (e.g., different types of stimuli). Thus, the goal of many
ERP experiments is to increase ERP response capture for improved detection of experi-
mental effects. The amount of response captured can be quantified through effect size (ES)
measurements, and can be improved by increasing the difference between the means of the
experimental conditions, or by decreasing the variance of that difference. However, increas-
ing the difference among the means is generally considered infeasible, and so reduction of
variance is commonly pursued through various signal-processing approaches [13].
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ERP waveforms are generated through conditional averaging of several trials (“tr”), each consisting 
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and awareness levels in patients [15,16]. 
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Figure 1. Sample ERP waveforms illustrating experimental methodology and trial averaging process.
(Left) Brain responses to specific stimuli are measured by contrasting a target experimental condition
(Condition B, orange) with a control condition (Condition A, blue). The black arrow indicates the
response peak of interest, or ERP component. The black dotted line denotes stimulus onset. ERP
components are typically evaluated by quantifying amplitude differences between the two conditions
over an interval of interest spanning the peak (dark shaded region). Additional comparisons are also
made with the signals during a pre-stimulus baseline interval (light shaded region). (Right) ERP
waveforms are generated through conditional averaging of several trials (“tr”), each consisting of
signal and noise components. This process relies on the event-related neurophysiological signal of
interest (“Signal”) having relatively similar morphology and latency in each trial, in contrast to the
noise components (“Noise”) being relatively dissimilar from trial to trial, leading to signal-to-noise
increases by a factor of

√
k.

A common approach to reduce the variance and enhance the signal-to-noise ratio
(SNR) of ERP responses is by averaging over a large number of repeated trials (Figure 1).
Trial-averaging enables effective removal of non-stimulus locked EEG signals while retain-
ing the stimulus-locked response of interest [7,14]. However, a significant drawback to this
approach is the lengthy experimental time necessary for obtaining a large number of trials.
Large trial numbers (with hundreds of trials being routine)—and therefore long acquisition
times—are not feasible in many cases (e.g., realistic out-of-laboratory assessments) where
ERP-based assessments may be utilized. Moreover, the use of long test times is further
constrained by practical considerations, such as habituation, participant compliance or
fatigue, as well as clinical challenges such as rapidly changing attention and awareness
levels in patients [15,16].

Given the limitations on simply increasing the number of trials, an alternate approach
for enhancing the signals is to combine data from several electrodes [13,17]. Pooling
together data from multiple electrodes enables the effective total number of trials to be
further increased (with corresponding decrease in variance), without lengthening the data
collection time. However, given that the relative amounts of signal and noise content



Sensors 2021, 21, 7258 3 of 16

in individual channels are dependent on factors such as their respective scalp-electrode
impedances [18], pooling together data from electrodes without accounting for these
differences can lead to inaccuracies. Moreover, these issues are exacerbated in modern ERP
experiments, which are often performed with scalp-electrode impedances in a much larger
range (e.g., 0–20 kOhms) compared to traditional ERP studies (e.g., 0–5 kOhms), thereby
greatly increasing the possibility of mismatched signal quality across sensors. Indeed, there
have been previous reports of the blurring of the ERP response following channel pooling,
resulting in attenuation rather than improvement when data from electrodes were pooled
without accounting for the signal quality differences [19].

A new technique is needed that can retain the attractive features of channel pooling
and enhance ERP signals without introducing inaccuracies due to cross-channel signal
quality variations. In this paper, we present a new dynamic SNR-weighted (dSNRw) signal
capture approach that enables the pooling of multiple channels while accommodating
potential differences in signal quality among them. Specifically, our technique first quanti-
fied the relative signal-to-noise content of each channel and condition, then utilized this
information to inform the combination of data across electrodes.

In this study, we demonstrated the dSNRw approach using both simulated and em-
pirical EEG data, and hypothesized that the dSNRw technique would achieve significant
improvements in capturing ERP responses compared to traditional channel pooling. Our
results confirmed our hypothesis, and validated that the dSNRw technique indeed im-
proves capture of ERP responses in both simulated data as well as in real world EEG
data—with the improvements observed across a variety of established ERP components
ranging from sensation (N100 ERP [20]) to attention (P300 ERP [21]) to language processing
(N400 ERP [22]). Thus, by boosting the ERP response capture without requiring additional
trials, the dSNRw approach, may enable more widespread application of ERP technology
in realistic, out-of-the-laboratory situations, especially those that require rapid assessment.

2. Methods
2.1. Study I: Simulated Data

The primary motivation for the development of the new signal combination technique
described herein was to fuse signals from multiple sensors while accounting for potential
differences in SNR among the sensors. Accordingly, the first study focused on evaluating
the dSNRw technique using synthetic data with well controlled parameters.

2.1.1. Data Generation

Simulated ERP trials were generated by combining template ERP time series vectors
with simulated noise vectors as shown in Figure 2A, in line with the additive model of
ERP generation [23]. The template ERP vectors representing the signal of interest were
derived using data from healthy adults collected in prior works [1,2]. Specifically, the
template ERP waveforms, derived from the previous studies, corresponded to the grand-
averaged responses to two types of stimuli—in particular, the standard and deviant tone
waveforms represented the P300 ERP response, and the congruent and incongruent language
waveforms represented the N400 ERP response. Templates corresponding to both the P300
and the N400 ERP responses were chosen since they represent differing underlying neural
responses. Moreover, these ERPs also have inherently different signal characteristics in that
the P300 response is a large positive deflection, whereas the N400 is a relatively smaller
negative deflection in the time series data. The noise vectors were generated by using a
3rd-order auto-regressive process, as shown in Equation (1), with coefficients estimated by
the Burg method based on background EEG in line with prior works [24,25].

η(t) = α1(t− 1) + α2(t− 2) + α3(t− 3) + r(t) (1)

where η(t) is the auto-regressive process, r(t) is Gaussian white noise driving the system,
and parameters (α1, α2, α3) are estimated as described above.
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Figure 2. Overview of simulation process. (A) Template ERP waveforms derived from healthy
participants were combined with simulated noise signals to create channels of simulated ERP data.
(B) Simulated channels of data were generated under two scenarios—(1) with the power of the
noise being equal in both simulated channels, and (2) power of the noise being unequal in the two
simulated channels, and data from both scenarios were combined using the traditional channel
pooling and the dSNRw techniques.

The data generation process described above was repeated 100 times to simulate the
generation of ERP responses from 100 individuals, all having the same signal of interest
(i.e., the template ERP) but different noise vectors (i.e., the simulated additive noise). This
procedure produced a single channel of simulated ERP (Sim Chan 1) for all 100 individuals.
To simulate equal and unequal noise scenarios between different sensors, a second channel
of simulated ERP (Sim Chan 2) was also generated using the same procedure according
to two different conditions: (1) Equal Noise: the power of the noise vector of the second
channel is equal to that of the first channel; and (2) Unequal Noise: the power of the noise
vector for the second channel is not equal to the power of the noise vector for the first
channel, and is indeed double that of the first channel (Figure 2B).

2.1.2. Channel Data Fusion

Following the generation of simulated data as described above, the two channels of
simulated data under both equal and unequal noise scenarios were combined using two
different techniques—(a) traditional channel pooling, and (b) dSNRw channel pooling.

2.1.3. Traditional Channel Pooling

The traditional technique for channel pooling entails signal augmentation through
the process of averaging across the channels being pooled at each time point and for each
stimulus/experimental condition, described mathematically in Equation (2):

Cpooled(s, t) = ∑J
j=1

1
J

Cj(s, t) (2)
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where Cpooled is the combined signal from each channel Cn for stimulus type s and all-time t
within an epoch/trial, and J is the total number of channels being pooled.

2.1.4. dSNRw Channel Pooling

The dSNRw technique performs a weighted combination of signals from the channels
being pooled together, depending on the relative signal-to-noise ratios of each channel as
shown in Equation (3):

CdSNRw(s, t) = ∑J
j=1 wjCj(s, t) (3)

where CdSNRw is the combined signal from each channel Cj for stimulus type s and all time
t within an epoch/trial, wj is calculated as the ratio of the SNR of channel j divided by the
sum of the SNR values of all channels in the pool (i.e., SNRj/(SNR1 + SNR2 + . . . + SNRJ)),
and J is the total number of channels pooled.

The pre-stimulus interval is not deemed to contain significant neural response of
interest (signal), and therefore is used as a surrogate for the amount of noise remaining
after signal-processing steps have been undertaken [26]. In contrast, the signal of interest
is generally evaluated within a time interval of interest post stimulus presentation, and
therefore SNR is commonly defined as shown in Equation (4):

SNR =
ytw

σM,b
(4)

where, ytw is the mean amplitude of the ERP waveform computed within a post-stimulus
time interval of interest tw for each trial before averaging across trials, and σM,b is the
standard error across trials of the mean waveform amplitude computed within the pre-
stimulus baseline internal.

2.1.5. ERP Response Quantification & Comparison of Pooling Techniques

The goal of ERP experiments is to elicit differential responses to experimental condi-
tions. The separation between experimental conditions within specific time windows of
interest can be quantified using effect size (ES) measurements as shown in Equation (5):

ES =
|XiB(tW)− XiC(tW)|

σ(tW)
(5)

where, XiB and XiC are means of conditions B and C, respectively (e.g., deviant and standard
for P300, or congruent and incongruent for N400), and σ is the pooled standard deviation.
Both are measured within time intervals of interest tW.

In order to compare the two channel techniques (traditional vs. dSNRw), the ES
metric was used as an outcome variable within a Monte-Carlo framework. In particular,
this entailed selecting a subset of 10 simulated participants (out of the 100 simulated
participants), and calculating the effect size within a time interval of interest across the
pairs of waveforms/conditions using both the traditional and the dSNRw techniques
for each participant. The time interval of interest for ES calculations were chosen to be
250–550 ms post-stimulus for simulated P300, and 300–600 ms for simulated N400, in line
with prior literature [2,27]. This process was repeated 1000 times, and paired t-tests were
utilized to compare the outcomes of the two channel pooling techniques, with p < 0.001
considered to be significant. This comparison was made separately for the equal and
unequal noise scenarios.

2.2. Study II: Experimental Data
2.2.1. Participant Details

Thirty-seven healthy individuals (age 34 ± 12, 16 female) volunteered for the study.
All were fluent in English, had normal hearing, and normal or corrected-to-normal vision.
None had history of neurological disease or psychoactive medications. The study was
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approved by the Research Ethics Boards at Simon Fraser University and Fraser Health
Authority, and all participants provided written informed consent prior to data acquisition.

2.2.2. Stimulus Paradigm

The ERP experimental paradigm used auditory stimulation of the brain vital signs
framework, which enabled the elicitation and evaluation of a spectrum of ERP brain
responses including N100 [20], P300 [21] and N400 [22] in about 5 min [1]. Details of the
stimulus sequences have been presented elsewhere [1,16,28]. Briefly, the tones were 250 ms
in duration and were comprised of two types of sounds: a more frequently occurring
standard tone (740 Hz, 75 dB, 80% occurrence), and a less frequently occurring deviant tone
(1047 Hz, 100 dB, 20% occurrence). The words were presented in pairs across two equally
likely experimental conditions: the congruent condition consisted of two words that were
congruent in meaning (e.g., ‘Bread’ ‘Butter’, 50% occurrence), and an incongruent condition
in which the words did not agree in meaning (e.g., ‘Bread’ ‘Cat’, 50% occurrence). The N100
and P300 responses were derived by comparing the standard and deviant conditions, while
the N400 response was derived by contrasting the congruent and incongruent conditions.

2.2.3. Data Acquisition

EEG data were collected using a 64-channel system with active Ag/Ag-Cl electrodes
(BrainAmp 64-channel with actiCap) in a dedicated EEG room with consistent conditions
such as lighting levels. Skin-electrode impedances were maintained below 20 kOhms,
and binaural auditory stimulation was provided to the participants via insert earphones
(ER4), while they maintained visual fixation on a cross, displayed on a screen 75 cm away.
Stimulus delivery and time stamping signals were controlled by Presentation software
(version 18.0, Neurobehavioral Systems Inc., Berkeley, CA, USA), and EEG data (with
concurrent time stamping signal recording) were recorded using BrainVision Recorder
software (version 1.20.0801, Brain Products GmbH, Munich, Germany).

2.2.4. Data Pre-Processing and ERP Generation

Raw EEG data were first visually inspected, and artifactual channels were removed.
Data were then notch-filtered to remove power line noise (60 Hz), band-pass filtered
(0.1–50 Hz), and automatic artifact rejection was applied using a gradient analysis approach
with 10 µV/ms as threshold. Thereafter, independent component analysis (ICA, [29,30])
was employed to select and remove artefacts corresponding to ocular, muscular, cardiac,
and other sources based on previously established criteria [31]. For each channel, the
ICA-cleaned data were then low-pass filtered to 20 Hz, segmented (−100 to 900 ms epochs
relative to stimulus onset), baseline corrected (−100 to 0 ms), and conditionally averaged
to generate the ERPs using established procedures [7]. All analyses were conducted using
BrainVision Analyzer software (version 2.03, Brain Products GmbH, Munich, Germany)
and custom MATLAB scripts.

2.2.5. Channel Data Fusion

As described in the Study I section, the per-channel ERPs generated using the process-
ing steps above were combined using both the traditional channel pooling (described in
Equation (2)) and dSNRw channel pooling (described in Equation (3)) techniques. A major
motivation for this work was to enable ERP-based approaches in realistic non-laboratory
settings, and thus the focus was on utilizing minimal numbers of electrodes rather than
the full-head electrode array of 64-channels. Accordingly, in line with the ERP-based rapid
assessment brain vital signs technology, the analysis focused on the three midline electrodes
(Fz, Cz and Pz). Specific channels to be pooled were selected based on the ERP of interest
due to the spatial distribution differences among the N100, P300 and N400 ERP responses.
In particular, to maximize the captured effects, Fz and Cz were pooled for N100 and P300
ERP responses give the frontal-central distribution of this ERP response, whereas Cz and
Pz were pooled for N400 given the centro-parietal maxima of this response [2,16,17].
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2.2.6. ERP Response Quantification & Comparison of Pooling Techniques

Similar to Study I, effect size (described in Equation (5)) was used to quantify the
amount of ERP response captured. In line with prior works [2], the following time windows
were used for the ES calculations: 80–180 ms for N100, 250–550 ms for P300, 300–600 ms for
N400. In order to compare the two channel pooling techniques, statistical analysis utilized
a bootstrapping approach using sub-selection of participants from the available data pool
to compare the two combinatorial techniques. Specifically, this entailed selecting a subset
of 10 participants, and calculating the ES for each of the pooled signals formed using the
traditional and dSNRw channel pooling techniques. This process was repeated 1000 times,
and the calculated ES measures across the two pooling approaches were tabulated and
stored for further analysis. Additionally, the ES measurement was also undertaken for
each of the electrodes being pooled together, and the largest ES value was stored for
further analysis.

One-way ANOVA was utilized to identify omnibus effects in comparing ES of differing
pooling types (i.e., single largest electrode ES, traditional pooling ES and dSNRw pooling ES),
with Bonferroni correction for post-hoc multiple comparisons. For additional comparison,
ES measures derived using both the traditional and dSNRw pooling techniques were also
converted into a percentage differential relative to that of the single electrode exhibiting
the largest ES, and paired t-tests were applied to assess differences across the techniques.

In addition, qualitative visual comparison of the ERP responses derived using the
traditional and dSNRw combination approaches were undertaken. Furthermore, the mean
signal amplitude of the ERP responses in time windows (50 ms for N100, 100 ms for P300
and 200 ms for N400) surrounding the peaks of interest were quantified. Additionally, the
difference in mean signal amplitude among the experimental conditions (i.e., standard and
deviant for N100 and P300, and congruent and incongruent for N400) in the same time
windows were also recorded. This process was repeated 1000 times as described above,
and both the mean signal amplitude and the difference of signal amplitude among experi-
mental conditions derived from ERPs generated using traditional and dSNRw weighted
combinations were compared using paired t-tests. As described in the introduction, ERPs
are often evaluated in terms of the relative changes among experimental conditions, and
therefore the percentage change in the differences among experimental conditions due to
the dSNRw combination relative to the traditional combination were also quantified.

2.2.7. Supplementary Analysis

While not the primary objective of the current study, additional analysis was under-
taken to assess the performance of the dSNRw technique when applied to electrodes not
located along the midline. In recent years, there has been increasing interest in obtain-
ing ERP-based metrics from in or around the ears as it provides an easy access point for
application of EEG sensors [32]. In order to further assess the robustness of the dSNRw
approach, the technique was also applied to combining data from sensors located near the
ears (i.e., at mastoid locations). Specifically, data from T7 and T9 sensors were combined
using the traditional pooling and the dSNRw pooling techniques, and compared using
paired t-tests for assessing the impact on ES of N100, P300 and N400 ERPs.

3. Results
3.1. Study I: Simulated Data

Effect size measurements on simulation data showed that the dSNRw combinatorial
technique better captured the difference between the ERP waveform pairs compared to
traditional channel pooling (Figure 3). The improvement in signal capture provided by the
dSNRw technique over the traditional pooling approach was significant when the channels
being combined had varying noise levels (p < 0.001), but no significant differences were
observed when the same level of noise was present in the channels being pooled. In fact,
the effect size measures for the equal noise scenario were highly correlated across the two
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combination approaches (simulated P300: r = 0.8996, p < 0.001; simulated N400: r = 0.8792,
p < 0.001).
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Figure 3. Effect size measurements for simulated P300 and N400 ERPs with varying noise levels for
channels being combined. Results are presented as mean ± SEM. The dSNRw signal combinatorial
approach outperformed the traditional channel pooling technique in the presence of unequal noise
levels for both simulated P300 and N400 ERPs. No significant differences among the techniques were
observed for the situation of equal noise levels in the channels being pooled. * p < 0.001 across signal
pooling techniques.

3.2. Study II: Experimental Data

In line with results from simulation data, the dSNRw approach also improved the
measurability (as quantified by effect size) of ERPs corresponding to sensation (N100),
attention (P300) and language processing (N400) in experimental data as shown in Figure 4
(left panel). The percentage change in the effect size from dSNRw and traditional channel
pooling compared to that of the largest single channel ERP results are also shown in Figure 4
(right panel). Statistical analysis showed a significant effect of combination technique for
N100 [F (1.4, 1376.6) = 80.7, p < 0.001], P300 [F (1.2, 1204.0) = 497.8, p < 0.001] and N400
[F (1.5, 1531.2) = 31.9, p < 0.001]. Post-hoc testing demonstrated that the dSNRw technique
produced higher ES measurements compared to the traditional channel pooling, as well as
the electrode with the largest effect size measurement (p < 0.001, Bonferroni corrected). The
improved measurability of the ERPs is further confirmed in Figure 4 (right panel), which
showed greater increase in effect size relative to the single electrode setup compared to
traditional channel pooling (p < 0.001).

As shown in the supplementary material (Figure S1), the general pattern of dSNRw
outperforming traditional channel pooling holds true for all three ERPs when applied
to the signals from the mastoid channels (p < 0.05). However, the absolute effect size
values were found to be lower for N400 in both pooling techniques. This may be a
reflection of the relative proximity between the source of the N400 (left temporal lobe
largest contributor) and the recording (T7, TP7) and reference (TP9) electrodes within this
specific measurement scheme.
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Figure 4. Effect size measurements for experimental N100, P300 and N400 ERPs, presented
mean ± SEM. (Left): ES measurements for all three ERPs are shown at midline electrodes. (Right):
The relative percentage change in ES for each of the two combinatorial approaches relative to the
single electrode with the largest ES. * p < 0.001. Traditional, dSNRw = channel pooling techniques;
Single = electrode with the largest effect size measurement.

In addition to the above results, qualitative visual comparisons of the ERP waveforms
generated by the traditional and dSNRw pooling approaches (Figure 5) reveals the similar-
ity of the morphology of the ERP response time courses between the two approaches. In
general, both techniques are able to capture the three ERP responses of interest, but the
response size is larger when ERPs are generated with the dSNRw approach. Further to the
qualitative assessments, quantitative comparisons (Figure 6) also confirm the superiority of
the dSNRw approach. Specifically, larger signal amplitudes were captured when ERPs were
generated using the dSNRw techniques compared to the traditional channel pooling ap-
proach as confirmed by pairwise comparison of experimental conditions for each the three
ERPs (all p’s < 0.001). Similarly, comparisons of the magnitude of the differences among
experimental conditions (e.g., deviant—standard condition amplitudes for P300) revealed
larger differences when ERPs were generated using the dSNRw technique (p’s < 0.001).
Indeed, these differences were up to 12% more when the dSNRw approach was utilized
(Figure 6).
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Figure 5. Group averaged ERP waveforms. (Left): ERP responses corresponding to N100 (N1), P300
(P3) and N400 (N4) derived from traditional channel pooling. (Right): ERP responses derived using
dSNRw channel pooling. Shaded sections correspond to time windows of interest for respective
ERP components. Std = standard tonal stimuli, Dev = deviant tonal stimuli, Cong = congruent word
stimuli, Incong = incongruent word stimuli.
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Figure 6. ERP amplitude measurements for N100, P300 and N400 ERPs, presented mean ± SEM.
Left: ERP signal amplitude in time windows of interest, shown as shaded intervals in previous figure,
for ERPs derived from traditional and dSNRw weighted pooling schemes. All pairwise p’s < 0.001.
Right: The magnitude of the difference among experimental conditions for each channel pooling
technique, as well as the relative percentage change. Pairwise comparisons of magnitude differences
for each ERP: p < 0.001. Traditional, dSNRw = channel pooling techniques; Std = standard tonal
stimuli, Dev = deviant tonal stimuli, Cong = congruent word stimuli, Incong = incongruent word
stimuli; N1 = N100 ERP, P3 = P300 ERP, N4 = N400 ERP.

4. Discussion
4.1. Main Findings

In this paper, we developed and validated a novel signal pooling technique (dSNRw)
that combined data from multiple electrodes/channels while accounting for the relative
contributions of signal and noise within each channel. In support of our hypothesis, our
results indicate that the dSNRw technique enables improved capture of ERP responses
compared to traditional channel pooling as well as non-pooled individual-channel ERP
responses. The effect size improvement achieved with dSNRw is demonstrated using both
“ground truth” simulated data and empirical data from healthy adults for ERPs spanning
the entire information processing spectrum from low-level auditory sensation (N100) to
attention (P300) to high-level language processing (N400).

4.2. Simulated Data

Typical models of EEG generation assume the brain tissue to be resistive, and volume
conduction mediated by a propagation vector with minimal capacitive effects is considered
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to give rise to the scalp-recorded potentials [33]. Within the context of ERP studies, the
task-relevant ERPs are considered signals of interest, while all other neural activity as well
as interfering non-neural artifacts are considered noise, with the superposition of signal
and noise recorded at the electrodes [34]. The relative amounts of signal and noise recorded
at each electrode (even adjacent ones) can therefore vary, with empirical studies having
previously demonstrated the impact of various external factors such as skin-electrode
impedance on the signal-to-noise ratio [18,35]. In the present study, the results from
simulated data demonstrate that, when equal background noise is present in the channels
being combined, both traditional channel pooling as well as the dSNRw technique capture
similar levels of ERP effects (Figure 3 left panel). However, in the more realistic scenario of
unequal noise levels among channels, the proposed dSNRw technique far outperforms the
traditional channel pooling approach (Figure 3 right panel).

These results provide the foundational ‘ground truth’ verification of our primary
hypothesis that a technique that accounts for SNR differences among channels would
better capture ERP effects compared to the traditional channel pooling technique, which
simply averages signals across channels without accounting for signal quality differences.
Analytically, the impact of channel pooling on the noise portion can be modelled as a
mixture of Gaussian distributions; and since the noise terms of each channel being pooled
is considered to be zero-mean due to signal processing steps, the noise mixture when
pooling channels can also be considered a weighted mixture of the underlying variances of
the noise terms. Specifically, this means that, in the case of traditional channel pooling, the
amount of variance introduced due to the noise term is simply a mean of the variances of
the noise terms of each of the constituent channels in the pool. If the component channel
noise variances are equal, the variance of the noise component of the pooled channels
remains the same, and the measurability of the ERP effect improves due to the impact
of trial averaging as previously mentioned. However, if the two variances are unequal
(e.g., variance of one channel is double that of another), the variance of the pool actually
becomes larger than the original variance of each channel, thereby increasing the impact of
the noise and potentially obscuring the ERP effect. However, weighting the constituent
channels of the pool differently based on the relative SNR, rather than a constant weighting
as is applied in the traditional channel pooling technique, can mitigate the negative impact
of the mismatched variances. Indeed, our simulation results confirm this analytical view.

4.3. Experimental Data

Following the successful demonstration of the proposed technique using simulated
data, the same technique was applied to real world experimental data collected using the
brain vital signs framework [1] capturing neural responses corresponding to sensation
(N100), attention (P300) and language processing (N400). Improvements in the measure-
ment of ERP responses were observed for all three neural markers using the dSNRw
technique relative to both the single best electrode/channel as well as the traditional
channel pooling technique (Figure 4).

For the P300 response, the traditional channel pooling technique resulted in a re-
duction of effect size, and may be reflective of prior reports suggesting the blurring of
amplitude effects when traditional channel pooling is applied [13,19]. In contrast, the
application of the dSNRw technique resulted in an increase in the measured effect size of
the P300 response. Similarly, the dSNRw technique resulted in a near-doubling of effect
size of the N400 response (8% improvement with traditional pooling vs. 15% improvement
with dSNRw technique). For N100 ERP, the improvements were not as dramatic (8% for
traditional vs. 10% for dSNRw technique), and may be reflective of the inherent robustness
of the N100 ERP [27]. In line with the effect size results, complimentary measurements
including comparisons of ERP signal amplitudes and comparisons of differences among
ERP experimental conditions further reinforced the superiority of the dSNRw approach
(Figures 5 and 6). ERPs generated using the dSNRw pooling resulted in larger ERP am-
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plitudes and captured greater conditional differences, with improvements ranging from
8–12% compared to ERPs generated using traditional pooling.

Given that ERPs are generated as conditionally signal-averaged neural responses to
pairs of stimuli (e.g., standard and deviant tone stimuli for P300) [7], increases in effect size
implies a reduction of the variance of the difference among the two pairs of waveforms
for the conditions, resulting in more robust capture of neural responses. The improved
capture of neural responses is further confirmed by increased ERP signal amplitude and
conditional differences. Most state-of-the-art ERP-based assessments currently rely upon
the averaging of hundreds of trials [11,27], often resulting in long testing times, with
30–90 min being routine. However, as highlighted in previous work, most commonly used
clinical assessments are pervasive in part due to their rapid assessment capabilities [36].
With improved effect size achieved using the dSNRw technique, there is now possibility to
reduce the number of trials—and therefore test time—necessary to capture reliable neural
signatures, thereby enabling more widespread applications of ERP-based techniques.

4.4. Caveats and Future Directions

While the results of the current study are promising for the initial validation of the
dSNRw technique for signal augmentation, certain limitations of the study should be noted.
As an initial study, the results of the dSNRw pooling technique were compared to results
obtained from traditional channel pooling and single-electrode ERPs only within this
study. However, this does not reflect an exhaustive comparative analysis with all possible
signal combinatorial techniques (e.g., singular value decomposition or deep-learning based
approaches). Furthermore, the analyses focused on specific electrodes, and future work
should be undertaken for more widespread evaluation with other electrodes as well and
also evaluating the topographical differences in the captured responses. Similarly, while
beyond the scope of the current study, further work can be undertaken using simulated
data to more comprehensively evaluate the impact of differing levels of noise among
channels. Additional future directions include evaluation of the test/re-test reliability of
ERPs generated using dSNRw combination and evaluation using consumer grade devices
as well as comparisons with conventional ERP paradigms with large trial numbers. Finally,
while this study utilized a sample size and best practices recommended for ERP studies [37],
the results should be further verified using larger and/or distinct participant populations
(e.g., patients) as well as other stimulation modalities (e.g., visual [38]).

4.5. Study Implications

ERP experiments focus on eliciting and assessing specific ERP features that are embed-
ded within background EEG and other unrelated noise of neural, physiological, instrumen-
tational, and environmental origin, which are often orders of magnitude greater than the
ERP features of interest [7]. Signal conditioning and processing techniques such as differen-
tial amplification, filtering, trial averaging and channel pooling enable the isolation of the
ERP features of interest by enhancing the contribution of the ERP features (‘signal’) and/or
minimizing the impact of the unrelated artefactual noise [33]. However, techniques such as
traditional channel pooling were developed in the era when most ERP experiments were
undertaken within pristine laboratory environments, and EEG instrumentation mandated
strict operating conditions within ideal parameter bounds (e.g., <5 kOhm skin-electrode
impedances for all electrodes). In recent years, there has been a resurgence of interest in
EEG, with experiments often undertaken outside laboratory environments (e.g., patient
bedside [9,36], in-aircraft [39]), and modern EEG equipment now enables operations in
less ideal conditions (e.g., <30 kOhm skin-electrode impedance with active electrodes [1]).
As such, while the relative signal and noise contributions may have been similar across
channels when experiments were undertaken within pristine environments and with lower
impedances, that may no longer be the case when operating in more realistic environments
and with higher skin-electrode impedances [18]. The dSNRw technique thereby brings
the channel pooling approach into the modern era by explicitly assessing the SNR of the
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channels being pooled and enabling dynamic combinations in order to retain the maximum
signal contributions and minimizing the noise influences.

5. Conclusions

In this study, we developed and evaluated a novel signal augmentation technique
based on dynamically combining multi-sensor data through dynamic SNR-weighted pool-
ing (dSNRw). Results from Monte-Carlo based simulations demonstrate the superiority
of the dSNRw technique in capturing ERP effects of interest compared to the traditional
channel combination approach in the realistic scenario of uneven noise levels among the
channels being pooled. Real-world experimental data on healthy individuals using brain
vital signs targeting the sensation (N100), attention (P300), and language processing (N400)
ERP neural markers further confirmed the effectiveness of the dSNRw technique in im-
proving the measured effect size of the ERP features of interest. With the increasing use of
ERP-based techniques for monitoring across various brain diseases and disorders including
traumatic brain injury and dementia, the improvements in ERP effect capture afforded by
the dSNRw technique further optimize the translation of EEG capabilities from research
settings into clinical and other out-of-laboratory applications.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/s21217258/s1, Figure S1: Comparison of Traditional and dSNRw pooling techniques at
mastoid electrodes. The dSNRw technique captures significantly better ERP effects of interest
compared to the traditional channel pooling technique across all three (N100, P300 and N400) ERP
components. For each ERP component, values shown for 1000 permutations of effect size calculations
as mean ± std. error. Diamond signifies p < 0.05 across pooling techniques.
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