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Abstract

A growing body of evidence suggests culture influences how individuals perceive the world around them. This study
investigates whether these cultural differences extend to a simple object viewing task and visual cortex by examining
voxel pattern representations with multi-voxel pattern analysis (MVPA). During functional magnetic resonance imaging
scanning, 20 East Asian and 20 American participants viewed photos of everyday items, equated for familiarity and
conceptual agreement across cultures. Whole brain searchlight mapping with non-parametric statistical evaluation tested
whether these stimuli evoked multi-voxel patterns that were distinct between cultural groups. We found that participants’
cultural identities were successfully predicted from stimuli representations in visual cortex Brodmann areas 18 and 19.
This result demonstrates culturally specialized visual cortex during a basic perceptual task ubiquitous to everyday life.
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Cultural specialization of visual cortex

Recent findings in psychology and neuroscience demonstrate
that culture substantially impacts how individuals perceive the
world around them. This evidence comes from experiments
testing explicitly cultural behavior, such as reading in one’s na-
tive vs non-native language (e.g. Baker et al., 2007), as well as
experiments testing culturally-nonspecific behavior, such as
simple visuospatial tasks (e.g. Hedden et al., 2008). Multiple
frameworks, the neuronal recycling hypothesis and theories of
cultural differences in information processing, account for how
culture might shape perception.

The Dehaene and Cohen (2007) neuronal recycling theory
hypothesizes that cortical specialization enables culturally
acquired behavior. Cultural specialization is, in turn, strongly
constrained by that cortex’s original functionality. For example,
reading a written language would specialize the cortex perform-
ing the prototypical computations required for that ability.
Reading is then both enabled by this specialized cortex and con-
strained by that cortex’s functional origins. Evidence for visual
word form area sensitivity to written language (Cohen and
Dehaene, 2004) and language-specific functionality (Paulesu
et al., 2000) supports this account. The neuronal recycling

hypothesis mainly concerns cultural inventions, which are
optional, evolutionarily recent behaviors acquired through
learning (e.g. written language, arithmetic and some tool
usage).

Another prevalent theory proposes that culturally special-
ized perception reflects information processing biases. For
example, culture can influence estimations of line lengths with-
in different visual contexts (Kitayama et al., 2003; Hedden et al.,
2008), focal object processing (Gutchess et al., 2006), and change-
detection ability (Boduroglu et al., 2009). Some of these biases
are discussed in the literature as differences in ‘analytic’ vs
‘holistic’ approaches. More specifically, individuals from
Western cultures prioritize feature-based information, whereas
individuals from Eastern cultures prioritize contextually based
information (e.g. Masuda and Nisbett, 2001; Nisbett et al., 2001;
Masuda et al., 2008; Rule et al., 2013). For example, when viewing
a photograph depicting a group of people, a Westerner
may preferentially attend to the photograph’s visual details,
such as the groups’ clothes, or hair color. An Easterner may
instead preferentially attend to contextual information, such as
relationships amongst individuals in the group, or the
depicted group’s location. These biases have been linked to
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corresponding differences in visual search (Wang et al., 2012)
and recognition memory performance [Millar et al., 2013; see
Paige et al., 2017a for a corresponding functional magnetic res-
onance imaging (fMRI) study].

Previous behavioral and fMRI studies have examined cultur-
ally biased information processing using simple visuospatial
tasks and judgments of complex scenes. The behavioral find-
ings largely support culturally specialized perception, in that
Easterners prioritize contextual visual information while
Westerners prioritize feature-based information, as reviewed by
Gutchess and Indeck (2009). However, it is important to note
that some behavioral experiments have not found perceptual
differences between culture groups, and the reported behavioral
findings do not unanimously support culturally specialized per-
ception (e.g. Zhou et al., 2008; Evans et al., 2009). Unlike the
behavioral literature, fMRI results uniformly show cultural dif-
ferences in blood-oxygen-level dependent (BOLD) activity for
perceptual tasks, based on two comprehensive reviews of cross-
cultural fMRI studies (Rule et al., 2013; Han and Ma, 2014).

Therefore, the rich neural data afforded by neuroimaging
methods may be advantageous for studying culturally special-
ized perception. Kitayama and Uskul (2011) argue that culture-
specific cognition has a strong neural basis and consequently,
neuroimaging experiments show greater sensitivity compared
with behavioral studies. Modern neuroimaging techniques
would then seem particularly suitable for evaluating whether
perception involves culturally specialized cortex in experiments
with conflicting behavioral results, such as simple visual tasks
without explicitly culturally laden stimuli.

This study investigates whether perception involves cultur-
ally specialized cortex during a simple object viewing task with
multi-voxel pattern analysis (MVPA). Previous fMRI studies
investigating culture and visual perception have exclusively uti-
lized univariate fMRI analyses [see reviews by Chiao (2009), Han
and Ma (2014) and Rule et al. (2013)], which only reveal where
average brain activity differs, typically after spatial smoothing.
This approach is likely suboptimal for this study, as regional
BOLD activity may not reflect the fine-grained cortical special-
ization that is likely necessary to produce perceptual differences
between cultures. How people perceive the world differently is
also arguably multivariate by nature, and therefore poorly
described by univarate measurements [see review by Charest
and Kriegeskorte (2015)]. Unlike univariate approaches, MVPA
methodology assumes information in the brain is represented
by a distributed neural code (i.e. fine-grained patterns of voxel
activity across cortex) (Norman et al., 2006). This offers much
greater analytical sensitivity, particularly in visual perception
experiments (Haxby et al., 2001; Serences and Boynton, 2007).
Therefore, MVPA provides a more suitable approach for this
study, despite its underutilization to date in cultural neurosci-
ence. The authors are aware of only one other cross-cultural
study employing this approach, in which Raizada et al. (2010)
demonstrated that voxel patterns can predict how well
Japanese and English speakers are able to discriminate between
syllables specific to the English language. This study also con-
cluded that univariate analyses insufficiently characterized the
distinctions between cross-cultural representations of auditory
stimuli, as mean BOLD signals did not show this effect.

This study investigates perception, employing a simple
object viewing task with stimuli that are not specific to any
particular culture. East Asian and American participants viewed
pictures of common objects, which were equated for cultural
familiarity in a previous study, and then further checked for
cultural equivalence in this study. If these stimuli evoke

multi-voxel patterns that are distinct between cultural groups,
this will provide compelling evidence that perception involves
culturally specialized cortex.

Materials and methods
Dataset

This study re-analyzes a dataset (Paige et al., 2017b) originally
collected to investigate cultural specificity in memory. The pre-
sent analyses evaluate perception, distinct from memory
outcomes.

Participants

Twenty East Asian (10 female) and 20 American (17 female) par-
ticipants were recruited for this study. East Asian participants
originated from China (including Hong Kong and Taiwan),
Japan, Korea, Malaysia, Thailand or Vietnam and had lived in
the United States for < 5 years (M ¼ 2.6, s.d. ¼ 1.3, range ¼
0.5–4.5) prior to the experiment. All American participants were
United States natives, native English speakers (learned before 5
years of age), and had not resided outside the United States for
>5 years.

All participants were between the ages of 18 and 35
(Americans M ¼ 22.5, s.d. ¼ 2.4; East Asians M ¼ 24.3, s.d. ¼ 3.8).
All participants were right handed, had normal (or corrected-
to-normal) vision and hearing and were screened for head
trauma (loss of consciousness for >10 min), emotional, psy-
chiatric or learning disorders, and other contraindications for
scanning. Participants provided written informed consent for
the protocol approved by the Brandeis University IRB.

Stimuli

The image stimuli were developed by Kensinger et al. (2007),
and later used by Millar et al. (2013) for testing cross-cultural dif-
ferences in memory performance. Millar et al. (2013) piloted the
stimuli with American and East Asian participants to match
cultural familiarity and conceptual agreement. Stimuli were
images of common objects against white backgrounds (exam-
ples in Figure 1). In total 216 images were used for encoding,
with two different exemplars sharing the same verbal label (e.g.
apple) employed across participants.

Picture viewing procedure

Each participant viewed 108 pictures during fMRI scanning, div-
ided into two runs of 54 images. The selection of individual
images was counterbalanced across four selection lists, deter-
mining which stimuli appeared in each run for each participant,
and equated across cultures. The stimuli order within each run
was randomized for each participant.

At each trial, a prompt, presented in English, was shown for
2 s: ‘Please indicate whether you would approach/avoid/stay’.
This was followed by an image for 500 ms and a fixation cross
during the interstimulus interval from 3500 to 11 500 ms, with
jitter determined by Optseq (Dale, 1999). When the image
appeared, participants made their decision and responded with
a button press. Before scanning, participants practiced the task
until competent.

The ‘approach/avoid/stay’ trial prompts were intended to
ensure participants paid attention and encoded items through-
out the experiment, as the original experiment included a sur-
prise memory test. The prompt responses and retrieval
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performance are not of interest in this study, and will not be
discussed further [see Paige et al. (2017a) for further treatment
of this issue].

Stimulus familiarity

Approximately 10 days after encoding, participants completed
an online survey in which they named and rated their familiar-
ity with each object in the stimulus set (1–5 Likert rating scale).
This survey assessed whether participants across cultures
reported equal familiarity with the stimuli. Even though these
stimuli were previously equated for cultural familiarity in Millar
et al. (2013), this check is important for interpreting the current
results so that differences between culture groups cannot sim-
ply be attributed to differences in stimulus familiarity.

fMRI data acquisition

Images were acquired using a Siemens Trio 3T whole-body
scanner. The two encoding runs utilized a 32-channel head coil
and simultaneous multi-slice scanning, for which 69 slices
2.0-mm thick were acquired with an echo-planar image
sequence (TR ¼ 2000 ms, TE ¼ 30 ms, FOV ¼ 216 mm, and flip
angle ¼ 80�). Stimuli presentations were timelocked to TR
onsets. High-resolution anatomical images were acquired using
multiplanar rapidly acquired gradient echo sequence.

fMRI pre-processing

Pre-processing was implemented with SPM12 (Wellcome
Department of Cognition Neurology, London, UK). Images were
slice-time corrected, realigned for motion correction, co-
registered to anatomical data, and normalized to the Montreal
Neurological Institute (MNI) template space. No spatial smooth-
ing was performed after normalization; subsequent analyses
were implemented with in-house Matlab scripts.

A gray matter tissue probability map was applied to the
unsmoothed data, and only voxels with at least 10% gray matter
probability were retained. This tissue probability map was con-
structed with the IXI dataset (http://www.brain-development.
org/), the same tissue probability map used in SPM segmenta-
tion and spatial normalization routines.

Hemodynamic response modeling

The hemodynamic response (HDR) for each stimulus was mod-
eled using the least squares-separate (LS-S) method described
in Mumford et al. (2012). Event-related fMRI designs with short
interstimulus intervals, like this study, pose a general challenge
for MVPA. Trial HDRs overlap in these designs, so activity during
the HDR of one trial will often contain signal from a previous

trial as well. The LS-S technique addresses this problem by
deconvolving BOLD activity for individual trials from an experi-
ment’s fMRI timecourse. This allows the estimation of voxel re-
sponse patterns specific to individual stimuli.

LS-S HDR modeling was performed separately for each sub-
ject and within individual runs. Modeling each run separately
maintains the independence between training and testing data-
sets necessary for cross-validation in the subsequent analyses
(Kriegeskorte et al., 2009). Therefore, the following modeling
procedure was applied individually to each of the 80 runs in the
dataset (i.e. 40 subjects � 2 runs, every run modeled separately).
Thus, the following procedure was applied to a single run from
a single subject, and iteratively repeated across the whole
dataset.

First, each voxel’s timecourse was normalized to zero mean
and unit variance (i.e. Z scored), then a highpass temporal filter-
ing was applied (Gaussian-weighted least-squares line, 128 s
cut-off). The LS-S design matrix consisted of an intercept and
two regressors. Following the procedure in Mumford et al.
(2012), the first regressor modeled the trial of interest HDR, and
the second modeled all other trial HDRs. The 128 s cut-off high-
pass filter was also applied to these regressors prior to HDR esti-
mation. For every trial, HDR voxel betas were estimated, and
then t-values were calculated by dividing the beta estimates by
their standard errors. Transforming response pattern betas into
t-values is a noise normalization technique shown to limit the
influence of noisy voxels on classification analyses (Misaki et al.,
2010). The estimated patterns for trials which began less than
3 TRs before the end of a run were discarded for insufficient
data. Thus, the response pattern to each stimulus was meas-
ured by the voxel t-values calculated from LS-S modeling.

Modeling each trial’s HDR pattern in this way served two
purposes. First, stimulus-specific response patterns were
obtained from the event-related timecourse. Second, this pro-
cedure should separate the activity related to the image stimuli
from the activity related to the trial prompts that preceded
every trial. As it has been demonstrated that reading in one’s
native vs non-native language produces differences in mean
BOLD activity (Baker et al., 2007), the sensitivity of MVPA com-
bined with this study’s overlapping trial HDRs presents the pos-
sibility that our results could be confounded with neural
responses from reading the English trial prompts. Although par-
ticipants likely habituated to the prompt (repeated throughout
the study and practice), the possibility of differences resulting
from native language was addressed analytically. The LS-S
modeling performed in this study deconvolves HDRs timelocked
to the image stimulus onsets, which suppresses prestimulus
‘bleed through’ activity. This model further accounts for activity
common between trials by including an intercept term.
Therefore, HDR estimates would not include prestimulus bleed

Fig. 1. Four example stimuli.
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through activity common to all trials, such as leftover activity
from a common prompt.

Multi-voxel pattern analysis

Pre-processing. Two further pre-processing steps were taken for
these analyses; the first step removed unsuitable fMRI data, and
the second step improved the suitable data’s signal-to-noise
ratio. Only voxels valid in all subjects are appropriate for this
study’s classification design (see ‘Analysis design’ section), so
voxels with signal dropout in any subject at any timepoint dur-
ing the experiment were considered invalid and removed (see
Supplementary Material).

Finally, run-wise temporal compression was performed on
the valid voxels. This procedure averages the trial HDR esti-
mates within each run, producing two voxel response patterns
per subject (one per run). Temporal compression improves
signal-to-noise ratio without spatial smoothing by averaging
over noisy trial-to-trial pattern variance [Mourao-Miranda et al.
(2006), see Supplementary Material]. These temporally com-
pressed t-value patterns were the input data for all analyses.

Analysis design. The preprocessed data was submitted to a
leave-one-subject-out (LOSO) classification design. In this
scheme, a classifier is trained on every subject except one left-
out subject, then tested on the left-out subject. Model cross-
validation is achieved by repeating this process iteratively until
every subject has been left-out once (k-folds ¼ 40).

The classifier was trained with fMRI activation patterns and
corresponding participant group labels (i.e. East Asian or
American) in the training dataset, and predicted the unseen
participant labels of response patterns in the testing dataset.
In other words, the classifier was trained to distinguish East
Asian from American response patterns, and then predicted
whether the left-out subject’s response patterns were from an
East Asian or an American participant. Classification accuracy
was measured by the percentage of correctly predicted labels
across all cross-validation folds, or, equivalently, the average
LOSO classification accuracy.

Searchlight mapping. Searchlight MVPA approaches analyze re-
sponse patterns contained within smaller regions of interest
(ROIs) iteratively across the whole brain (Kriegeskorte et al.,
2006). This allows the localization of culturally specialized cor-
tex without a priori ROIs in this study. Spherical searchlights
3 voxels (6 mm) in diameter were used, each with a volume of
19 total voxels. The average LOSO classification accuracy for
each searchlight was mapped to its center voxel. Importantly,
searchlights were only analyzed in locations where all voxels
within the searchlight were valid for analysis. Searchlights con-
taining any voxels excluded during preprocessing (invalid for
LOSO cross-validation or <10% gray matter probability) were
not analyzed. These parameters created 145 938 total
searchlights.

Classifier. Searchlights were analyzed with a Gaussian Naive
Bayes (GNB) classifier according to the previously described
LOSO design. The GNB classifier was implemented as detailed
in Raizada and Lee (2013), with a class prior term for the slightly
unbalanced LOSO training set:

by ¼ argmax
k2f1;:::Kg

logpðCkÞ þ
Xn

i¼1
logpðxijCkÞ

The classifier predicts one of K classes, Ck, based on the larg-
est class prior, p Ckð Þ; and voxel membership, p xijvCkð Þ; joint
probability. Class prior probability was defined as p Ckð Þ ¼ Nk

N

where N is the total number of training observations (i.e. pat-
terns) and Nk is the number of training observations belonging
to class Ck. The equation for voxel class likelihood (i.e. the prob-
ability an individual searchlight voxel, xi, belongs to a given
class) is defined as:

p xijvCkð Þ ¼ 1

r
ffiffiffiffiffiffi
2p
p e�ðxi � lkÞ2=2r2

k

The major advantage of searchlight MVPA with Gaussian
Naive Bayes classification is that GNB’s ‘naiveté’ can be
exploited during cross-validation for dramatically superior com-
putation time compared with other algorithms. This fast GNB
implementation was first reported by Pereira and Botvinick
(2011), then expanded on by Raizada and Lee (2013). The GNB
model (naively) assumes that class features are independent of
one another (e.g. the correlations between response pattern
voxels do not matter). Therefore, the GNB model can be trained
on every voxel in the whole brain all at once, whereas other
algorithms must be trained on each searchlight individually in
order to model the feature relationships in different voxel
groupings. The number of CV folds compounds this advantage
further, as each fold requires model retraining. Importantly,
this fast GNB implementation makes searchlight permutation
testing computationally tractable.

Searchlight mapping statistical inference. A non-parametric per-
mutation testing procedure was used to evaluate the statistical
significance of searchlight classification accuracies. This ap-
proach is particularly warranted as recent publications have
raised concerns over parametric significance testing in fMRI
(Eklund et al., 2012, 2016; Stelzer et al., 2013). Therefore, the non-
parametric cluster significance test developed by Stelzer et al.
(2013) was adapted for the current between-subjects MVPA de-
sign. Precise details of how we implemented this method are in
the Supplementary Material, but this adaptation only deviated
from the original Stelzer et al. (2013) procedure in one major re-
gard. Specifically, group accuracy maps were not bootstrapped
from single subject permutation maps. This is simply because
the current analysis is between-subjects and thus does not in-
volve single subject searchlight maps or group average accuracy
maps. This required more computationally expensive permuta-
tion testing, although the permuted searchlight maps in this
study were analyzed in the same fashion as the bootstrapped
group accuracy maps in Stelzer et al. (2013).

Computation time

The searchlight mapping analysis was implemented with the
Matlab parallel computing toolbox for running on a single server
node (Brandeis University High Performance Computing
Cluster) with 512GB RAM and 4� Intel Xeon CPU E5-4620 v2 @
2.60 GHz, each with 8 physical cores (32 cores total). The total
computation time was �15 days for this analysis. Even with a
parallelized fast-GNB implementation and powerful computing
resources, searchlight permutation testing accounted for >14
days of that run time. This computational limitation is why the
fMRI analyses enjoyed fewer permutations during statistical
evaluation than the behavioral analysis (see ‘Familiarity Check’
section).
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Results
Familiarity check

The post-task questionnaire revealed no differences in stimulus
familiarity (P ¼ 0.380) between East Asians (M ¼ 4.38, s.d. ¼ 0.20)
and Americans (M ¼ 4.30, s.d. ¼ 0.31), tested via permutation
testing of mean differences with 50 000 permutations. This find-
ing replicates the Millar et al. (2013) analyses, which also deter-
mined these stimuli were equally familiar across cultures.

Searchlight mapping

The whole brain searchlight mapping analysis revealed one
significant searchlight cluster after non-parametric cluster
size control (FDR q ¼ 0:05, pcorrected ¼ 0:03, qthreshold ¼ 0:0007,
puncorrected ¼ 0:0004). This cluster comprised 41 contiguous
searchlights spanning Brodmann areas 18 and 19 in visual cor-
tex (see Figure 2). The MNI coordinates and Brodmann areas of
each searchlight center in this cluster are listed in the
Supplementary Material.

ROI follow-up analyses

In order to determine whether culturally distinct neural codes
are distributed across the visual cortex identified by searchlight
mapping, follow-up ROI analyses were performed as prescribed
by Etzel et al. (2013). In these analyses, an ROI was constructed
from the significant searchlight cluster1 and tested. This ana-
lysis is deliberately circular (Kriegeskorte et al., 2009), as dis-
cussed by Etzel et al. (2013). The purpose is to test whether the
cortex identified in searchlight mapping is informative as a
whole, rather than just an agglomeration of smaller informative
searchlights. However, this analysis also afforded the opportun-
ity to test three important qualities of our result. First, whether
the effect generalized across different classifier algorithms, as
testing such generalizability with searchlight mapping was
computationally intractable. Second, whether this result truly
reflected fine-grained neural coding, rather than differences in
mean activity. Third, how differences in anatomical alignment
or gender ratios may have influenced this result. These empiric-
al tests were further characterized by visualizing the ROI data
for illustrative purposes (see ‘t-Distributed stochastic neighbor
embedding visualization’ section).

Model and cortical generalization. Gaussian Bayes Naive, diagonal
quadratic discriminant analysis (DQDA), linear support vector
machine (SVM-lin), and non-linear SVM (SVM-RBF) classifiers
were tested. The DQDA classifier was implemented with the
Matlab fitcdiscr function, and SVMs were implemented with
LIBSVM (Chang and Lin, 2011). SVM-lin used a linear kernel,
and SVM-RBF used a radial-basis-function kernel with
c ¼ 1

total ROI voxels. The cost parameter was fixed at 10 for both
SVM-lin and SVM-RBF.

The ROI data were submitted to the same LOSO cross-
validation scheme used in the whole-brain analyses, and per-
mutation testing was performed for statistical inference. For
this permutation testing, class labels were randomly permuted,
and ROI classification accuracies recalculated with the per-
muted class labels. This process was repeated 15 000 times,
each with a consistent label permutation order which remained
fixed across CV folds (matching the whole-brain analyses).

All four classifiers performed better than chance, and these
results are shown in Figure 3. This confirms that the cortex
identified by searchlight mapping is informative as a whole, not
just as contiguous individual searchlights. Furthermore, this
analysis demonstrates that our results generalize over multiple
classification models.

Fig. 2. Searchlight mapping results. All voxels in the 41 searchlight cluster spanning BA 18 and 19 are shown in yellow. Glass brain rendered via Madan (2015).

Fig. 3. ROI follow-up classification accuracies. The mean empirical chance accu-

racies were 49.29, 49.5, 49.47 and 48.82% for GNB, DQDA, SVM-lin and SVM-RBF,

respectively. These values are approximated by the dashed line at 50%. Error

bars are 90% CI for the mean, also obtained from the empirical chance

distribution.

1 All searchlight voxels were included, not just the center voxels.
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Mean activity. Group differences in mean activation (e.g. region-
al univariate effects) could influence these results. To address
this possibility, we repeated the previously described analyses
after treating the data to control for mean activation. The fixed
SVM-RBF cost was increased to 100 in this analysis, and all other
model parameters were unchanged. First, voxel-wise ‘cocktail
blank’ normalization (MacEvoy and Epstein, 2009) was per-
formed on the t-value patterns within each run by setting each
voxel to zero mean and feature scaling. After temporal com-
pression, the same normalization was applied individually to
each pattern across-voxels (i.e. spatially), so that all patterns
had the same mean population activity. All four classifiers
again performed better than chance on the treated data
(Supplementary Figure S1), replicating the previous ROI follow-
up analysis while controlling for mean activity. Furthermore, a
whole-brain univariate analysis showed no group differences in
mean bold activity for this cortical region (see Supplementary
Material for univariate analysis details). These analyses confirm
that the previous results were not simply driven by differences
in mean activity; voxel patterns may be necessary, and are ‘at
least’ sufficient for characterizing cortical specialization in this
study [see Coutanche (2013) for greater detail on these analyses
and their interpretations].

On a technical note, fixed SVM cost and c parameters were
chosen simply to avoid intensive parameter searches during
cross-validation (Hsu et al., 2003). Conducting such optimiza-
tions may have yielded superior performance, but the purpose
of these analyses was to test generalization across different
models, rather than comparing their relative performances.

Voxel alignment. Although the authors are not aware of any em-
pirical findings, group differences in anatomical alignment
could hypothetically influence between-groups voxel pattern
analyses. In order to account for this concern analytically, an-
other ROI analysis was performed with shared response model-
ing [SRM; Chen et al. (2015); also see Cohen et al. (2017) for a
broader review].

This method maps subjects’ fMRI data to a common latent
variable space, based on subjects’ shared responses to stimuli.
SRM effectively performs inter-subject alignment in this way,
aligning data in abstract response space rather than 3D anatom-
ical space. This is similar to hyperalignment (Haxby et al., 2011);
however, SRM naturally facilitates between-groups analyses by
estimating the latent representations shared by subjects2 in
order to find a common space. The ROI data were analyzed with
the between-groups SRM analysis described in Chen et al. (2015)
experiment 3, where group-specific responses are separated
from both the common and idiosyncratic responses. These
group-specific responses are then used for the between-groups
LOSO classification. See Supplementary Material for further
details.

This analysis successfully predicted participant’s cultural
identities (GNB accuracy ¼ 97.5%; 90% CI for the mean ¼ 82.94–
100%, P < 0.001), and the SRM estimates substantially improved
classification accuracy. This methodology should improve ana-
lytical sensitivity, as demonstrated in Chen et al. (2015). More
importantly, this result shows culturally distinct visual cortex
representations using methodology tolerant to anatomical mis-
alignment. If American and East Asian voxel patterns conveyed
the same stimulus information, but were anatomically mis-
aligned, this analysis would have shown no distinction between

these groups. Instead, SRM estimations improved classification
accuracy, providing good evidence that this study’s results
reflect differences in representational content.

Gender. Although there was no reason to expect gender differ-
ences in visual cortex representations, this study’s participant
groups were imbalanced with respect to gender. To address
gender-imbalance concerns, two control analyses were con-
ducted on the ROI data. In the first analysis, all male subjects
were excluded, and the cross-validation scheme was altered
to fairly account for those exclusions. This analysis success-
fully predicted participant’s cultural identities (GNB accuracy
¼ 88.99%; 90% CI for the mean ¼ 80.15–98.97%, P < 0.001),
while controlling for gender. The second analysis excluded
male subjects from training, but included every male subject
in the testing-sets (in addition to female subjects). This second
analysis successfully predicted cultural identity as well
(GNB accuracy ¼ 75.74%; 90% CI for the mean ¼ 68.82–83.14%,
P < 0.001 p < :001). In both analyses the model was trained ex-
clusively on female subjects, so the model’s decision boundary
could not discriminate cultural identity based on gender dif-
ferences. The second analysis demonstrated that decision
boundary also generalized to testing-sets comprised of both
female and male participants. This indicates that this study’s
results are unlikely due to a gender-imbalance between cul-
tural groups. The Supplemental Material describe these analy-
ses in detail, including both ROC analyses and confusion
matrices.

t-SNE. Improved methods for visualizing high-dimensional data
provide valuable context for interpreting fMRI analyses
(Johnson et al., 2006; Peltonen and Kaski, 2011; Vellido Alcacena
et al., 2011). Therefore, the t-distributed stochastic neighbor
embedding (t-SNE) algorithm was used to visualize the fMRI
data submitted to the ROI follow-up analyses. t-SNE is a non-
linear dimension reduction technique which can produce 2D
representations of high-dimensional data (Maaten and Hinton,
2008). Using this technique, a scatter plot was created illustrat-
ing how subjects’ neural representations in visual cortex relate
to each other (Figure 4a), and the quadratic discriminant ana-
lysis boundary was calculated for this 2D representation
(Figure 4b). This figure is included purely for illustrative pur-
poses, and is not quantitative evidence (see Supplementary
Material for detailed methods).

Discussion

These results demonstrate culturally specialized visual cortex
during a simple object viewing task. Additionally, this study is
the first to show culturally distinct multi-voxel representations
of stimuli that are non-specific to any particular culture.
Raizada et al. (2010) found distinct fMRI pattern representations
between Japanese and English participants, but in response to
English syllables which have no functional distinction in
Japanese. These stimuli are considerably different to Japanese
and English speakers, so perhaps their dissimilar representation
is less surprising. The stimuli in this experiment depicted
objects familiar to both American and East Asian participants,
yet the stimuli were nevertheless represented differently by
American and East Asian participants in visual cortex.

This result reveals that one’s cultural background specializes
the cortex involved with object recognition, a routine and
fundamental perceptual task. This finding is consistent with
theories that predict prevalent and extensive cross-cultural

2 When compared with hyperalignment, which finds the rotations and
reflections needed to make subjects’ responses maximally similar.
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differences, such as differences in information processing be-
tween cultures. It is difficult to say whether these results reflect
neuronal recycling, as the stimuli used in this study do not rep-
resent cultural inventions unique to either group. Neuronal
recycling also proposes that humans’ innate cortical organiza-
tion limits how cultural acquisition may influence broader cog-
nition. However, the real psychological limits imposed by these
organizational constraints are unknown. In addition, this study
cannot speak to whether culturally specialized visual cortex
manifests as cross-cultural differences in information process-
ing biases. Additional experiments would be needed to support
that conclusion, as no experimental manipulations or analytical
measures in this study addressed that specific hypothesis.

That being said, the current findings could coincide with re-
cent work examining the cultural differences in information
processing in light of spatial frequency tuning. Tardif et al.
(2016) found Chinese participants utilized lower spatial fre-
quency information than Canadian participants during a face
recognition task [for further discussion of this idea, see Paige
et al. (2017b)]. They concluded this difference in spatial
frequency tuning underlies cultural differences in feature vs
context information processing, because lower spatial
frequency information is linked to narrower, feature-based
focus (Shulman and Wilson, 1987). The cortex identified by
searchlight mapping in the current experiment shows retino-
topic sensitivity to spatial frequencies, that is, a strong cortical
organization for responses to preferred spatial frequencies [see
review by Tootell et al. (1998)]. Moreover, other research indi-
cates that the region of visual cortex identified in this study
responds to statistical regularities such as texture (Freeman
et al., 2013) and responds to the accumulation of high- and low-
spatial frequency information (De Cesarei et al., 2013). In add-
ition, experimentally manipulating attention to high vs low spa-
tial frequency consistently produces fMRI results with left-right
hemispheric asymmetry (Han et al., 2002; Iidaka et al., 2004). It is
plausible that cultural differences in spatial frequency tuning
could explain why this study finds cultural specialization in
left-lateralized visual cortex. Further research, employing stim-
uli designed to address this question, is needed (see
Supplementary Material for a post hoc analysis).

A worthwhile future direction would be to directly test this
hypothesis with classification image methods, where behavior-
al responses can be directly mapped to changes in stimulus

spatial frequency [see Murray (2011) for review]. Such an experi-
ment would have ideal control over the stimuli’s spatial
frequency, while also providing a strong test of cultural differ-
ences by employing artificial stimuli that should not differ
across cultures. Although this study’s stimuli were rated
equally familiar across cultures, it is impossible to ensure these
stimuli were perfectly matched. However, Charest et al. (2014)
found pictorial stimuli representations in early visual cortex
(EVC; V1–V3) are both robustly common across people, and idio-
syncratic to individuals. Furthermore, in their experiment, idio-
syncratic EVC representations were surprisingly not observed
when the stimuli were unequally familiar across participants
(e.g. one participant’s own house); that is, participant’s EVC
representations only differed when the stimuli were equally
familiar to everyone. Our results indicate that such EVC repre-
sentations are also systematically different between cultures.

Two other studies reporting culture-specific effects in this
cortical area provide additional context for these results. Szwed
et al. (2014) reported higher mean BOLD activity in left-lateralized
BA 17–19 when Chinese and French participants read letter-
scrambled words in their own native script. Gutchess et al. (2006)
found dissimilar mean BOLD responses to focal objects vs con-
textual backgrounds between East Asian and American partici-
pants in left-lateralized BA 18 and 19 as well. This study involved
a simple perceptual task, like this study, where participants
viewed pictures of a central object within a contextual back-
ground (e.g. an elephant by a watering hole), and also pictures of
those objects and backgrounds in isolation (e.g. only the elephant
or watering hole). These studies show how the cultural differen-
tiation of visual cortex can support either neuronal recycling or
cultural differences in information processing. However, this
study shows cultural specialization in visual cortex without an
experimental manipulation specific to either theory. Given that
these theories are not mutually exclusive, a more comprehensive
hypothesis may unify these results.

One such hypothesis may be that culture-specific behavior
specializes the cortex functionally relevant for that behavior,
which in turn may broadly influence cognition beyond the
scope of culturally acquired behavior. For example, reading in
one’s native script, an example of culture-specific behavior,
would specialize visual cortex for reading that particular lan-
guage. The specialization would tune this cortex for the spatial
frequency information most useful for reading that language’s

Fig. 4. t-SNE visualization of visual cortex representations. Each subject’s ROI data is shown in 2D t-SNE space (a). The dashed line marks the QDA boundary

(b). The visualized data consists of 80 total observations, with two ROI voxel patterns (one corresponding to each run) for each of the 40 subjects.
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script (Horie et al., 2012). Consequently, perceiving and recogniz-
ing objects, an example of non-culture-specific cognition, uti-
lizes the visual cortex, which has been tuned for information
on particular spatial frequencies. Language could potentially
specialize visual cortex in a similar manner. Primary sensory
cortices have shown multi-sensory coding (Liang et al., 2013),
and object representations have shown some consistency
across modalities (Shinkareva et al., 2011). The cortex perform-
ing object recognition may be culturally specialized through
correlated auditory and visual stimuli, or higher-level associa-
tions with linguistic representations. This hypothesis would
produce perceptual differences across cultures consistent with
cultural differences in information processing, as may be the
case in Tardif et al. (2016). Neuronal recycling may also accom-
modate this hypothesis, if the theoretical constraints proposed
by Dehaene and Cohen (2007) are informed by evidence for
broader perceptual differences. This hypothesis is far beyond
this study’s reach, although future studies along these lines
may provide a more comprehensive explanation for perceptual
differences across cultures.

Conclusion

This study successfully predicts participants’ cultural identities
from multi-voxel pattern representations of common objects in
visual cortex. This result demonstrates the cultural specializa-
tion of visual cortex during a perceptual task ubiquitous to
everyday life. Future research should address the fundamental
mechanisms driving cultural cortex specialization, and how
that specialization manifests downstream across behavioral
domains. Attempting to answer these questions should further
advance understanding of how culture shapes cognition.

Supplementary data

Supplementary data are available at SCAN online.
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