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Abstract

Increasing evidence demonstrates that inflammation and endoplasmic reticulum (ER) stress

is implicated in the development and progression of age-related macular degeneration

(AMD), a multifactorial neurodegenerative disease. However the cross talk between these

cellular mechanisms has not been clearly and fully understood. The present study investi-

gates a possible intersection between ER stress and inflammation in AMD. In this study, we

recruited two collections of involved protein markers to retrieve their interaction information

from IMEx-curated databases, which are the most well- known protein-protein interaction

collections, allowing us to design an intersection network for AMD that is unprecedented. In

order to find expression activated subnetworks, we utilized AMD expression profiles in our

network. In addition, we studied topological characteristics of the most expressed active

subnetworks to identify the hubs. With regard to topological quantifications and expressional

activity, we reported a list of the most pivotal hubs which are potentially applicable as pro-

bable therapeutic targets. Furthermore, we introduced MAPK signaling pathway as a sig-

nificantly involved pathway in the association between ER stress and inflammation, leading

to promising new directions in discovering AMD formation mechanisms and possible

treatments.

Introduction

Age-related macular degeneration (AMD), a multifactorial neurodegenerative retinal disease,

impairs the central vision in a significant fraction of over 55 years old population in the world.

It has been shown that approximately 8% of the world’s elder population is affected by AMD.

The number of people with this disease is anticipated to increase to 196 million by 2020 and to

288 million by 2040 [1].

Numerous studies have focused on pathways and molecular mechanisms involved in the

pathogenesis of this ocular disease. The involvement of inflammatory molecules in develop-

ment and progression of AMD has been investigated in several studies. A possible association

between inflammation and AMD was proposed at first by Hageman et al. in terms of the
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presence of immune response proteins in drusen, which is considered as the most common

hallmark in the early stages of AMD [2]. In addition to presence in drusen, multiple genetic

polymorphisms in complement elements have been detected in patients with AMD [3–5]. Fur-

thermore, elevated expression in a number of chemokines in different phenotypes of this dis-

ease can be considered as a potential link between pro-inflammatory molecules and AMD

development [6].

Another biological phenomenon which has been proposed as a key pathogenic mechanism

in AMD development is endoplasmic reticulum (ER) stress. ER stress has been proposed as a

key pathogenic mechanism in AMD development because of its association with oxidative

stress, angiogenesis and apoptosis [7, 8]. Oxidative stress, in which excessive reactive oxygen

species (ROS) lead to cellular and molecular impairment, is believed to be a primary cause of

damage to the RPE cells. Because of high oxygen consumption and exposure to light in retina,

RPE cells are susceptible to the oxidative damage [9]. Inadequately neutralized oxidative stress

can lead to oxidation-specific epitopes (OSEs) generation, which can induce immune reaction

[10]. In the RPE with AMD, different OSEs, including malondialdehyde (MDA), 4-hydroxy-

nonenal (4-HNE), advanced glycation endproducts (AGE) have been identified [11,12]. More-

over, accumulation of oxidized low density lipoproteins (oxLDL) in Bruch’s membrane can

induce a pro-inflammatory response by the RPE [13].

Protein folding is a redox dependent process that leads to ROS generation during disul-

phide bond formation by protein disulfide isomerase (PDI). Protein folding mediated by PDI

in the oxidative environment of the ER become up-regulated under conditions of ER stress.

During ER stress, glutathione (GSH) which is the main redox buffer is consumed and redox

potential within ER environment becomes increasingly reduced [14]. PDI in its reduced state

may act as a chaperone rather than a disulfide isomerase [15, 16]. In response to ER stress in

neurodegenerative diseases with protein aggregation, up-regulating of chaperones including

PDI protect against misfolded protein accumulation. It has been suggested that PDI participa-

tion in initial responses to ER stress is protective, but it may have pro-apoptotic role when pro-

teins are damaged beyond repair [17].

ER stress and inflammation have been linked to a variety of diseases including autoimmune

diseases, metabolic disorders and neurodegenerative diseases. Anti ER chaperones antibodies

have been recognized in a number of autoimmune diseases such as autoimmune hepatitis [18],

rheumatoid arthritis and systemic lupus [19] and inflammatory bowel disease [20]. Genetic inacti-

vation of PERK signaling in multiple sclerosis experimental models exhibit exacerbated experi-

mental autoimmune encephalopathy [21]. In the pathogenesis of metabolic disorders such as type

2 diabetes, it has been shown that ER stress and inflammation are critical contributors to pancre-

atic β cell dysfunction. ER stress leads to inflammatory cytokine secretion, and these inflammatory

cytokines, including IL23, IL24, and IL33, amplify ER stress in pancreatic β cells [22]. It has also

been suggested that ER stress and inflammation may contribute to neuronal death in Parkinson’s

disease (PD) which is a neurodegenerative disease. Accumulation of α-synuclein, which forms

aggregates called Lewy bodies that are characteristic of PD, causes cell death and ER stress [23]. It

has been reported that α-synuclein released from Lewy bodies may activate microglial cells and

lead to neuroinflammatory responses [24]. In fact, the interplay between ER stress and inflamma-

tion in many of these diseases is in the ambiguity. It seems that this interaction is highly depen-

dent on the context of specific diseases and their signaling pathways.

However, although the contribution of inflammation and ER stress in AMD development

have been addressed by prior studies, little attention has been paid to clarify the interplay

between them. Moreover, as AMD proves to be a complex disease in which several proteins

and molecular pathways are involved, traditional “one-gene” approaches would not give us a

comprehensive understanding of the disease mechanism. A new conceptual framework has

Cross talk between ER stress and inflammation in AMD

PLOS ONE | https://doi.org/10.1371/journal.pone.0181667 July 24, 2017 2 / 17

https://doi.org/10.1371/journal.pone.0181667


been developed by systems biology which enable us to characterize complex intracellular net-

works that contribute to cellular functions in normal and pathological conditions [25]. As a

major part of interactomes, protein-protein interaction (PPI) networks are powerful tools for

decoding the biological process complexity. The biological importance of highly-connected

proteins (hubs) in PPI networks occurs because of their involvement in essential complex bio-

logical modules [26]. Network analysis using topological properties including degree and in

betweenness has provided a powerful tool that can help us identify biomarkers and probable

therapeutic targets in neurodegenerative diseases [27].

In this study, we aim to investigate the association between ER stress and inflammation

using a systems biology approach in multilateral perspectives. By recruiting the markers of ER

stress and inflammation in AMD, we design an intersection network containing the informa-

tion on how these two biological phenomena are linked. Our ontology analysis indicates that

the most enriched pathway associated with this intersection network is MAPK (Mitogen-Acti-

vated Protein Kinases) signaling pathway. Furthermore, regarding topological quantifications

and expressional activity, we report a list of the most pivotal hubs that the majority of them are

MAPK signaling pathway components.

Materials and methods

ER stress and inflammation related markers (data set collection)

A literature search was performed to retrieve two lists of ER stress and inflammation markers

in AMD. These markers which exhibit differential expression (either at the RNA or protein

levels), have genetic variants or existing in drusen, were defined as our seed proteins, Table 1.

Network construction

PPI information for each protein set were retrieved in International Molecular Exchange

(IMEx) consortium members comprising I2D, InnateDB, IntAct, MBInfo, MINT, HPIDB,

UCL-BHF, UniProt and MolCon through the PSI Common Query Interface (PSICQUIC)

[46]. IMEx-curated databases commit to apply common curation strategies to provide a non-

redundant protein-interaction framework (http://www.imexconsortium.org/)[47]. Different

types of interaction data which are experimentally determined such as physical association,

direct interaction and colocalization have been represented by these databases. Two PPI net-

works for ER stress and inflammation were visualized using the Cytoscape software (version

3.3.0) [48] and then the intersection network between them was extracted. In a given intersec-

tion network, we detected highly interconnected regions (clusters) using Molecular Complex

Detection (MCODE) (http://baderlab.org/Software/MCODE). This clustering method finds

clusters based on vertex weighting by local neighborhood density and outward traversal from

a locally dense seed protein to isolate the dense proteins [49].

Enrichment analysis

To further understand the biological meaning behind the intersection network, we performed

an enrichment analysis using DAVID (Database for Annotation, Visualization and Integrated

Discovery), the functional annotation tool, and retrieved Gene Ontology (GO) terms (for more

details, see S1 Table). DAVID provides a comprehensive set of functional annotation tools to

identify the most pertinent biological processes to a gene/protein set [50]. Using charts of

molecular function (GOTERM_MF_FAT), biological process (GOTERM_BP_FAT) and cellu-

lar component (GOTERM_CC_FAT), three lists of GO terms and their p values were generated

independently (for more details, see S2 and S3 Tables). For summarizing and visualizing GO
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categories, REVIGO (Reduce + Visualizes Gene Ontology) http://revigo.irb.hr/ was applied,

with the following parameters: “Small (0.5)” for the allowed similarity and “SimRel” for seman-

tic similarity measure [51]. To gain insight into the most enriched biological pathways of the

intersection network and its clusters, the Kyoto Encyclopedia of Genes and Genomes (KEGG)

enrichment analysis were also performed.

Expression data integration

After merging networks of ER stress and inflammation as a united one, expression values were

integrated into the network to obtain a more informative network. A comparative transcriptome

Table 1. Seed proteins.

Gene Names Description References

ER Stress

HSPA5 Heat shock protein family A (Hsp70) member 5 [28]

ERN1 Endoplasmic reticulum to nucleus signaling 1 [29]

EIF2AK3 Eukaryotic translation initiation factor 2 alpha kinase 3 [29]

ATF6 Activating transcription factor 6 [29, 30]

XBP1 X-box binding protein 1 [31]

ATF4 Activating transcription factor 4 [30]

DDIT3 DNA damage inducible transcript 3 [28, 30]

EIF2A Eukaryotic translation initiation factor 2A [30]

Inflammation

C2 Complement component 2 [4]

C3 Complement component 3 [32]

C5 Complement component 5 [3]

C9 Complement component 9 [3]

VTN Vitronectin [33]

CLU Clusterin [34]

APP amyloid beta precursor protein [35]

CRP C-reactive protein [36]

CFH Complement factor H [5]

CFD Complement factor D [37]

CFB Complement factor B [4]

CD46 CD46 molecule, complement regulatory protein [32]

CR1 Complement component (3b/4b) receptor 1 [32]

CXCL1 C-X-C motif chemokine ligand 1 [6]

CXCL2 C-X-C motif chemokine ligand 2 [6]

CXCL9 C-X-C motif chemokine ligand 9 [6]

CXCL10 C-X-C motif chemokine ligand 10 [6]

CXCL11 C-X-C motif chemokine ligand 11 [6]

CCL2 C-C motif chemokine ligand 2 [6]

CCL8 C-C motif chemokine ligand 8 [6]

HLA-C Major histocompatibility complex, class I, C [38]

IL8 Interleukin 8 [39, 40]

IL6 Interleukin 6 [41]

CASP4 Caspase 4 [42]

CASP12 Caspase 12 [43]

TLR4 Toll like receptor 4 [44]

CX3CR1 C-X3-C motif chemokine receptor 1 [45]

https://doi.org/10.1371/journal.pone.0181667.t001
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analysis by Newman et al. is one of the most comprehensive studies on human AMD [6].

GSE29801 with 293 samples from the macular or extra-macular region of normal and AMD

human donor eyes was analyzed using the GEO2R (http://www.ncbi.nlm.nih.gov/geo/geo2r/)

[52]. GEO2R is an R-based web tool which allows the users to identify and visualize differentially

expressed genes and sort by significance using GEOquery and limma packages from the Biocon-

ductor project. After assigning samples to (normal or AMD) a group, p value adjustment was

applied with the Benjamini & Hochberg false discovery rate method (for more details, see S4

Table). After importing expression data into the network, jActiveModules (version 3.1) was

applied to find expression activated subnetworks with significant changes between disease and

normal conditions [53]. According to the algorithm of this software, subnetworks were scored

using an aggregated Z-score derived from each gene p value.

Topological analysis. Topological characteristics (degree and betweenness) of highest

scored module identified by jActiveModules were examined by CentiScaPe (Version 2.1) [54]

to screen for hub proteins. The centrality degree index determines the number of directly con-

nected edges to each node. Nodes with high degree are likely to be a hub having interactions

with several other nodes. The betweenness centrality index is calculated by the number of

shortest paths passing through a node linking a couple of nodes. The high value of betweenness

can indicate the central role of a protein holding together communicating proteins. The values

of degree and betweenness for all nodes in the module were plotted in a scatter plot to identify

nodes with high values in both the centrality parameters using the Minitab1 17.3.1.

Results

Networks of ER stress and inflammation

PPI data of the known genes of ER stress and inflammation in AMD and their interacting part-

ners were retrieved from IMEx-curated databases and then were applied to construct two sepa-

rated networks for ER stress and inflammation. The majority of linker proteins in these two

networks were obtained from IntAct and MINT databases. Table 2 shows the numbers of

nodes and edges derived from IMEx-curated databases in the ER stress and inflammation

Table 2. PPI data derived from IMEx-curated databases for ER stress and inflammation in AMD.

Databases Nodes Edges

ER Stress

HPIDB 29 41

IntAct 305 510

MINT 66 105

UCL-BHF 4 3

UniProt 7 7

Inflammation

HPIDB 65 73

I2D-IMEx 62 99

InnateDB-IMEx 69 140

IntAct 3632 10620

MBInfo 8 5

MINT 2418 5038

MolCon 21 33

UCL-BHF 43 62

UniProt 184 432

https://doi.org/10.1371/journal.pone.0181667.t002
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networks (for more details, see S5 Table). After removing redundant interactions (from organ-

isms other than Homo sapiens) with taxid_identifier other than 9606, there were 374 nodes

and 666 edges in the ER stress network and 5017 nodes and 16502 edges in the inflammation

network. The constructed intersection network between ER stress and inflammation con-

tained 1475 interaction pairs between 269 nodes, (for more details, see S6 Table). Highly con-

nected regions of the intersection network were identified using MCODE plugin implemented

in the Cytoscape platform. A total of five clusters as shown in Fig 1 were detected. The number

of nodes in clusters 1, 2, 3, 4 and 5 was 50, 10, 11, 20 and 9, respectively (score: cluster 1: 8.98,

cluster 2: 8.222, cluster 3: 4.8, cluster 4: 4.105 and cluster 5: 3.75), Table 3. Using DAVID

Fig 1. Clusters of intersection network identified by MCODE plugin. a Cluster 1, b Cluster 2, c Cluster 3, d Cluster 4 and e Cluster 5.

https://doi.org/10.1371/journal.pone.0181667.g001
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annotation system, we identified the most significant KEGG pathways within each cluster sep-

arately, Table 4. The results showed the highest scored cluster (Cluster 1) contains nodes that

associate with MAPK signaling pathway (hsa04010).

Enrichment analysis

An enrichment analysis was performed on the intersection network in order to identify the

most relevant GO terms. GO terms of molecular function, biological process, cellular compo-

nent and their p values were applied to construct three GO networks, Fig 2. GO terms provided

by DAVID annotation system with smaller EASE Score (a modified Fisher Exact p value) were

more enriched and associated with gene list in the intersection. According to the p values, the

most enriched GO terms of biological process were death (GO:0016265), regulation of apoptotic

process (GO:0042981) and protein phosphorylation (GO:0006468), of molecular function they

were protein kinase activity (GO:0004672) and transcription factor binding (GO:0008134), of

cellular component they were cytosol (GO:0005829), organelle lumen (GO:0043233) and mem-

brane-enclosed lumen (GO:0031974), which are represented in dark red nodes in Fig 2.

Identification of hubs

The Cytoscape plugin, jActiveModules, permits scoring expression activated connected

regions of the merged network. All nodes in the most expressed active subnetwork (score:

Table 3. MCODE clusters.

MCODE

Cluster

Node IDs

1 IKBKB, CASP8, IKBKG, RIPK3, TNFRSF1A, PSMA5, PSMA6, TRAF6, CEBPB, CEBPG,

EGFR, PSMA7, RELB, POLR2C, PAK2, POLR2E, MAP3K3, MAP3K1, HNRNPA1,

PSMC5, HNRNPA2B1, HNRNPA3, APP, SMARCB1, BTRC, JUNB, TP63, RAF1,

PRKCA, PSME3, TP53, ABL1, RIPK1, ATF4, MAP2K7, FUS, CAV1, ESR1, ESR2,

NR4A1, JUN, COPS5, MDM2, BCL2, TAB2, TAB1, HNRNPD, EIF4G1, GRB2, PTEN

2 NCOR2, CREB1, AKT1, NFKB1, REL, CREBBP, EP300, BAX, FOS, SIRT1

3 HSPA4L, HSP90B1, EIF2S2, STIP1, EIF2S1, RPS6, UBC, DNAJB4, HYOU1, PRKCSH,

EIF2S3

4 TBK1, RELA, ARRB2, NFKB2, ERN1, NFKBIA, CSNK2A1, TNFRSF1B, DDIT3, TRAF1,

NFKBIB, DVL2, ATF6, ATF2, ATF3, TANK, HSPA8, PRKDC, HSPB1, MAP3K7

5 PDIA3, PDIA2, OS9, CANX, B2M, PDIA6, CALR, PPIB, FAF2

https://doi.org/10.1371/journal.pone.0181667.t003

Table 4. KEGG pathways of intersection network and each MCODE cluster by DAVID.

Number of

Nodes

KEGG Pathway Genes p value

MCODE

Cluster 1

50 hsa04010: MAPK signaling

pathway

PRKCA, EGFR, GRB2, RELB, TP53, RAF1, NR4A1, TAB1, TAB2,

TNFRSF1A, ATF4, PAK2, MAP3K3, MAP3K1, JUN, IKBKG, IKBKB, TRAF6,

MAP2K7

6.27E-15

MCODE

Cluster 2

10 hsa05161:Hepatitis B AKT1, FOS, EP300, BAX, CREB1, CREBBP, NFKB1 6.14E-09

MCODE

Cluster 3

11 hsa04141:Protein processing in

endoplasmic reticulum

HYOU1, HSP90B1, EIF2S1, HSPA4L, PRKCSH 3.95E-05

MCODE

Cluster 4

20 hsa05169:Epstein-Barr virus

infection

MAP3K7, TRAF1, CSNK2A1, TBK1, RELA, NFKBIB, NFKBIA, HSPB1,

NFKB2, HSPA8, ATF2

1.45E-11

MCODE

Cluster 5

9 hsa04141:Protein processing in

endoplasmic reticulum

PDIA3, PDIA6, CALR, CANX, OS9 1.69E-06

https://doi.org/10.1371/journal.pone.0181667.t004
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10.649) consisted of 785 nodes and 4215 edges were examined for centrality parameters (for

more detail, see S7 Table). In a scatter plot of two topological parameters, hub nodes with

the highest degree and betweenness value were identified, Fig 3 and Table 5 (for more detail,

see S8 Table). Inhibitor of kappa light polypeptide gene enhancer in B-cells, kinase gamma

(IKBKG), Transcription factor p65 (RELA), Amyloid beta precursor protein (APP), TNF

receptor associated factor 6 (TRAF6), Nuclear factor kappa B subunit 1 (NFKB1), Ubiquitin C

(UBC), Inhibitor of kappa light polypeptide gene enhancer in B-cells kinase epsilon (IKBKE),

Activating transcription factor 2 (ATF2), Inhibitor of kappa light polypeptide gene enhancer

in B-cells, kinase beta (IKBKB), NF-kappa-B inhibitor alpha (NFKBIA), Amyloid protein-

binding protein 2 (APPBP2), Fos proto-oncogene, AP-1 transcription factor subunit (FOS)

and Heat shock protein family A (Hsp70) member 5 (HSPA5) were the hub nodes displaying

Fig 2. GO terms networks of biological processes (A), molecular functions (B), cellular components (C) and their pvalues associated

with shared gene set between ER stress and inflammation. Each node represents a biological process of each gene. Node color

indicates the pvalues of each GO term in this intersection (darker = more abundant). Node size indicates the generality of each GO term

(smaller = more specific). Edges represent the 3% of the strongest GO term pairwise similarities. The yFiles Organic Layout algorithm

was applied to display the topology of the network.

https://doi.org/10.1371/journal.pone.0181667.g002

Fig 3. Scatter plot of the centralities parameters.

https://doi.org/10.1371/journal.pone.0181667.g003
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the highest degree and betweenness within the network. It was noteworthy that seven out of

thirteen hubs related to MAPK signaling pathway.

Discussion

ER stress and inflammation are common features in AMD pathogenesis and are involved in

preserving homeostasis in retina. One of the fundamental questions is that how the two phe-

nomena are linked in this complex ocular disease. In order to explore the cross talk between

ER stress and inflammation, this investigation constructed the PPI networks of the two biolog-

ical phenomena. As far as this team knows, the present study is the first survey to delineate the

intersection between ER stress and inflammation using PPI networks, as well as providing

clustering and enrichment analysis. Our ontology analysis on intersection MCODE clusters

showed that the significantly enriched pathway in the highest scored cluster is the MAPK sig-

naling pathway.

The MAPK signaling pathway regulates the activity of transcription factors using a phos-

phorylation response to different stimuli [55]. There are three major MAPK pathways, includ-

ing extracellular regulated kinase (ERK) [56] which respond to growth factors and mitogens,

c-Jun NH2-terminal kinase (JNK) [57] and p38 kinase [58] which are activated by a variety of

stresses such as UV-exposure, heat shock and ROS. Activation of these pathways is associated

with vital diverse downstream processes in cellular fate such as proliferation, differentiation

and apoptosis. Imbalance in such processes in RPE cells are the prime early targets for AMD

and are involved in the disease development. Induced RPE cell apoptosis by UV exposure [59]

and cadmium treatment [60] could be mediated by MAPK signaling pathway so that using

specific inhibitors to this pathway may have an effect on reduced RPE cell death. Furthermore,

Pons et al. showed the involvement of MAPK signaling pathway in activity of Angiotensin II,

the most important associated hormone with hypertension—a potential risk factor for AMD

[61].

Moreover, SanGiovanni et al. reported that JNK/MAPK signaling pathway possesses the

strongest enrichment signals with identified advanced AMD-associated SNPs [62]. In this

study, we have shown for the first time to our knowledge, the most enriched pathway linking

ER stress and inflammation in AMD.

Many biological networks such as PPI networks are scale free with the concept that several

nodes are linked with a limited number of nodes entitled hubs. Identifying such hubs can lead

Table 5. Hub nodes.

Node Name Description KEGG pathway Betweenness Degree

IKBKG Inhibitor of kappa light polypeptide gene enhancer in B-cells, kinase gamma MAPK signaling pathway 216683.0837 234

RELA Transcription factor p65 MAPK signaling pathway 132455.8597 234

APP Amyloid beta precursor protein Serotonergic synapse 45977.69624 212

TRAF6 TNF receptor associated factor 6 MAPK signaling pathway 190468.8446 195

NFKB1 Nuclear factor kappa B subunit 1 MAPK signaling pathway 149197.6127 193

UBC Ubiquitin C PPAR signaling pathway 136502.46 159

IKBKE Inhibitor of kappa light polypeptide gene enhancer in B-cells, kinase epsilon Toll-like receptor signaling pathway 197335.8785 152

ATF2 Activating transcription factor 2 MAPK signaling pathway 112390.4689 128

IKBKB Inhibitor of kappa light polypeptide gene enhancer in B-cells, kinase beta MAPK signaling pathway 37528.04375 115

NFKBIA NF-kappa-B inhibitor alpha cAMP signaling pathway 28564.14077 114

APPBP2 Amyloid protein-binding protein 2 - 61543.76254 97

FOS Fos proto-oncogene, AP-1 transcription factor subunit MAPK signaling pathway 102392.7735 96

HSPA5 Heat shock protein family A (Hsp70) member 5 Protein export 114924.3485 94

https://doi.org/10.1371/journal.pone.0181667.t005
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us to central players in massive and complex networks which are functionally relevant to sev-

eral proteins. We identified the most significant nodes regarding topological quantifications

and expressional activity. Thus, after finding expression activated subnetwork we computed

centrality parameters for constituent nodes and eventually a series of hubs were reported. In

addition to the two seed proteins, APP and HSPA5, we also found eleven hubs that although

the involvement of some of them in AMD pathogenesis had been examined but the participa-

tion of others were less well known. In line with our finding which report MAPK signaling

pathway as the most enriched pathway associated with ER stress and inflammation intersec-

tion, more than half of the detected hubs belong to this pathway.

As parts of IKK (IκB kinase) complex, inhibitor of kappa light polypeptide gene enhancer

in B-cells, kinase gamma (IKBKG) and inhibitor of kappa light polypeptide gene enhancer in

B-cells, kinase beta (IKBKB) cause nuclear factor kappa B (NF-κB) activation by phosphoryla-

tion-induced degradation of inhibitory IκB proteins [63]. Lu H et al. investigated the func-

tional role of IKBKB in the development of laser-induced choroidal neovascularization

(CNV), and they have found that IKBKB specific chemical inhibitor significantly reduced the

laser-induced CNV formation [64].

Transcription factor p65 (RELA) and nuclear factor kappa B subunit (NFKB1) are Rel-like

domain-containing proteins. They are one of the components forming the transcription factor

NF-κB. In a study by Diez G et al. [65] on a model for retinal degeneration during iron-

induced oxidative stress, an increased level of RELA was observed in nuclear fractions of iron

exposed retinas. In the presence of phospholipase A2 inhibitors this overexpression was

restored to the control level. Li et al. found that inhibition of apurinic endonuclease 1/redox

factor-1 (APE1/Ref-1) redox activity can rescue RPE cells from oxidative stress induced by oxi-

dized low-density lipoprotein (oxLDL) and also lead to reduced level of RELA in oxLDL-chal-

lenged RPEs [66].

Fos proto-oncogene, AP-1 transcription factor subunit (FOS) and activating transcription

factor 2 (ATF2) are the forming parts of activator protein-1 (AP-1) which is a downstream tar-

get of MAPK signaling pathway [67]. Impacted by its components and cellular context, this

transcription factor contributes to different biological processes such as light induced apopto-

tic cell death of photoreceptors [68].

TNF receptor associated factor 6 (TRAF6) is the other hub found, that has been implicated

in NF-κB and MAPK pathways activation in response to the signals from receptor families

such as TNF receptor superfamily and IL-1R/Toll-like receptor superfamily. As E3 ubiquitin

ligase, TRAF6 propagates signals mediating the synthesis of K63-linked-polyubiquitin chains

[69]. Ubiquitin C (UBC) is one of the three eukaryotic gene families encoding ubiquitin [70].

Its conjugation into the target proteins can be as a monomer or a polymer linked by different

Lys of the ubiquitin. Based on the linking Lys residues, their attachment to a target protein

leads to different cellular destinations such as lysosomal degradation, DNA repair, endocytosis

and ERAD [71]. Amyloid protein-binding protein 2 (APPBP2) is involved in controlling post-

transcriptional mechanisms including mRNA decay pathway [72]. It has reported that translo-

cation of APP along microtubules to the basolateral surface is associated with interacting with

APPBP2 [73].

The list of the most pivotal hubs including newly introduced and already investigated ones

that we presented in this study can be applied as a complete and practical set of probable thera-

peutic targets. In contrast to global biomarkers that have relied upon only expression differ-

ences, in this study we couple expressional activity with topological characteristics which

enable us to introduce key players in AMD more accurately and comprehensively.

A more complete delineation of the underlying cellular and molecular mechanisms

involved in a complicated pathophysiologic process of AMD is required for navigating into
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novel therapeutic targets. In this study, we presented the association between ER stress and

inflammation—in terms of biological networks—exclusively in AMD. Our results indicated

that MAPK signaling pathway and its components have been the most involved players in this

communication. The list of the most pivotal hubs including newly introduced and already

investigated ones that we presented in this study can be applied as a complete and practical set

of probable therapeutic targets.

MAPK signaling pathway has also recently become a spotlight in clinical studies of cancer

toward the discovery of new drug targets. In fact, it is estimated that approximately one third

of human cancers are affected by mutations in components of this pathway. Drug targeting

members of MAPK signaling pathway including RAF proto-oncogene serine/threonine-pro-

tein kinase (RAF1) and mitogen-activated protein kinase kinase 1 (MAP2K1), which were also

presented in our intersection network, are ongoing projects leading to substantial progress

[74].

Today, intravitreal vascular endothelial growth factor (VEGF) inhibitors are the main drugs

for AMD treatment. By binding free circulating VEGF or its receptors, these inhibitors prevent

neovascularization. New anti-VEGF agents including brolucizumab [75], conbercept [76],

designed ankyrin repeat protein (DARPin) [77] and sFLT01 [78] are currently under investi-

gation. Despite significant visual improvements in patients with AMD since the availability of

new drugs, challenges in AMD treatment are still present. It has been reported that patients

with refractory or recurrent AMD may develop mechanisms of resistance, especially to anti-

VEGF therapy [79]. In fact, the multifactorial pathogenic mechanism of AMD might explain

the insufficient response to the current drugs. Therefore, targeting alternative contributions

from different pathways is needed.

Computational exploration of major players in AMD pathogenicity is still an open challenge

in etiological studies of the disease. The results of the present study shows the major role of

MAPK signaling pathway as an intersectional role in both ER stress and inflammation of AMD

underlying promising new directions to mechanism discovery and the treatment of AMD.
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