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Deep magma storage during the 2021 La Palma
eruption
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The 2021 La Palma eruption provided an unpreceded opportunity to test the relationship between earthquake
hypocenters and the location of magma reservoirs. We performed density measurements on CO2-rich fluid in-
clusions (FIs) hosted in olivine crystals that are highly sensitive to pressure via calibrated Raman spectroscopy.
This technique can revolutionize our knowledge of magma storage and transport during an ongoing eruption,
given that it can produce precise magma storage depth constraints in near real time with minimal sample prep-
aration. Our FIs have CO2 recorded densities from 0.73 to 0.98 g/cm3, translating into depths of 15 to 27 km,
which falls within the reported deep seismic zone recording the main melt storage reservoir.
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INTRODUCTION
One of the most important challenges in modern volcanology
studies is constraining the depth of magmatic reservoirs that
supply and sustain eruptions (1). However, commonly used
methods such as mineral-melt barometry have relatively low preci-
sion and accuracy, with standard error estimates of ±200 to 400MPa
(±4 to 7 km) (2), which can span the entire crustal column in most
ocean-islands or mid-oceanic ridges. These shortcomings have ne-
cessitated the use of pre- and syn-eruptive earthquake swarm loca-
tions as critical resources to illuminate our understanding of melt
migration, but these do not necessarily pinpoint the location of
magma storage reservoirs within the lithosphere (3–7).

The 2021 eruption of Tajogaite on La Palma (Canary Islands,
Spain) provides an unpreceded opportunity to study a volcanic
magma storage system given the open-source availability of earth-
quake and ground deformation data paired with near-real-time field
sampling campaigns. Here, we performed Raman spectroscopic
measurements of fluid inclusions (FIs) in olivine crystals from
tephra spanning the length of the eruption using the fact that the
densities of CO2-rich fluids are highly sensitive to pressure, and
this relationship is well constrained physically through an equation
of state (EOS) (see the Supplementary Materials) (8), unlike the em-
pirically calibrated mineral-liquid barometers describing the rela-
tively weak relationship between pressure and mineral

composition (2, 9, 10). While the utility of CO2 FI has been demon-
strated in previous studies of volcanic plumbing systems (1, 5, 11,
12) using microthermometry (heating-cooling stage), this study is
the first of its kind to use an accurately calibrated Raman technique
to constrain the depth of the magma reservoir rapidly and precisely
on a time scale relevant to active eruptions. This technique can rev-
olutionize our understanding of magma storage and transport
during an ongoing eruption as we collected data on 120 FI in less
than a week, including sample preparation, Raman spectroscopy
analyses, and data reduction. We demonstrate the enormous poten-
tial of this technique as a form of rapid-response petrological mon-
itoring to provide near-real-time information on plumbing system
geometry, which can be used in hazard assessment during volcanic
crises [e.g., (13)].

The island of La Palma in the Canary Islands includes an extinct
volcanic complex in the North (Taburiente) and the active Cumbre
Vieja Ridge (CVR) in the South (<125 thousand years) (Fig. 1, A
and B). The CVR is the most volcanically active region in the
Canary Islands (Fig. 1C) (14). Along this ridge, eruptive vents
align to form a characteristic ocean island rift zone. Most lavas
that erupt at the CVR are silica undersaturated basanites and teph-
rites, but small volumes of evolved phonolites also occur (11, 14).
On the basis of the record from eroded rift systems of other islands,
these eruptions are fed by a tightly packed dyke swarms within the
rifts (14, 15). The intrusion of one such dyke, or possibly a series of
dykes, initiated the eruption on the western flank of the CVR on
September 19 (16, 17).

The 2021 eruption lasted from September 19 to December 13
and is the most substantial historical eruption on La Palma in
terms of its volume (~0.2 km3), duration (85 days), and degree of
destruction, amounting to nearly 1 billion euros in damages (18).
The event was preceded by deep (15 to 35 km) but low-magnitude
seismic activity since 2017 (Fig. 1, D and E) (19, 20), with the erup-
tion itself taking place following a week of intense seismic unrest
and ground deformation (16). This eruption represents a typical Ca-
narian mafic fissure eruption that included effusive lava emission,
lava fountaining, and Strombolian activity in a multi-crater vent
complex interrupted by episodic phreatomagmatic pulses (18).
The eruption opened a series of successive vents (six major
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craters) as it progressed along a >550-m northwest-southeast align-
ment, ultimately building up a sizable cinder cone (300 m high) and
an extensive lava flow field. Throughout the three-month eruption,
the intensity of the explosive activity was highly variable, reflected
by the variation in seismic intensities and an eruptive column
height that was typically around 3500 m above sea level (asl) but
reaching up to 8500 m (21). Plume height together with emitted py-
roclastic volume (~45 million m3) defines the event as a volcanic
explosivity index (VEI) 3, with a total volume (pyroclastic deposits
and lava) of >200 million m3 (Fig. 1C) (18).

RESULTS
Tephra samples were collected from a stratigraphic section in the
locality of Las Manchas in January 2022 (Fig. 1C and fig. S1). A
total of seven layers were defined in the field, which contain the
record of the eruption, from September 19 to 21 (LM6) to the
end (LM0) (fig. S1). Four samples were selected for FI studies
(LM6, LM4, LM2, and LM0). Glass-coated, euhedral olivine crystals
(500 μm to 1 mm) were handpicked and cleaned in HBF4.

Individual grains (~200) were mounted and polished for petro-
graphic study and FI identification (fig. S2). We analyzed primary
FI (N = 120) (22) in 34 olivine crystals (fig. S3) in under a week.
These inclusions were analyzed by Raman spectroscopy to deter-
mine CO2 densities based on Fermi diad splitting using the
highly accurate and precise calibration method (23). All spectro-
scopy data were collected above the CO2 critical point (Tcrit = 31°C)
at T = 37°C to ensure homogenization of liquid and vapor into one
phase (fig. S4).

Using the CO2 EOS and an estimate of entrapment temperature
(1150°C) (8, 24, 25), we can relate CO2 density to pressure (Fig. 2, A
to C, and Supplementary Materials). We then convert these pres-
sures into storage depths, assuming a crustal density of ρ = 2.8 g/
cm3 above theMoho (14 km) and ρ = 3.1 g/cm3 belowwith the pres-
ence of melt (26, 27). All olivine crystals are not in equilibrium with
the carrier melt (Fig. 2D), and olivine Mg# varies as the eruption
progressed (Fig. 2, D and E). Samples from the early stages of the
eruption from September 19 to 21 (LM6) and October (LM4) host
FI in relatively evolved olivine crystals (core Mg# 80 to 81%), re-
cording storage depths of 15 to 24 km. Storage depths increase
with olivine Mg# (core 84 to 86%) to depths down to 27 km
toward the end of the eruption (LM2 and LM0; Fig. 2E). FIs have
CO2 densities ranging from 0.73 to 0.98 g/cm3, translating to pres-
sures of 420 to 780 MPa and depths of ~15 to 27 km (with most
centered around 21 km) below the volcanic center (Fig. 2E).

When compared with the location of earthquake hypocenters
during the eruption (Supplementary Materials) (28), it is evident
that our FIs were trapped/re-equilibrated in the same area as the
deep earthquake seismic swarm between ~20 and 25 km (Fig. 3,
A and B). These results agree with evidence for deep magma
storage in previous CVR eruptions (29) and mimic the deep
magma plumbing system of the 2014–2015 eruption of Fogo in
which FI pressures also align with the seismic data (5).

Clinopyroxene-liquid barometry from previous eruptions of the
CVR (25, 30–32) unsurprisingly span a much wider range of pres-
sures (410 to 1410MPa) and overlap with the deep seismic zone and
the main magma reservoir recorded by our FI densities. The signifi-
cantly wider spread of clinopyroxene-liquid pressures may reflect
the substantially lower precision of mineral melt compared with
FI barometry, in addition to the fact that pyroxene crystals may
record various depths of crystal growth as opposed to a single
magma storage reservoir. The clinopyroxene-liquid barometer (2,
9) used in previous studies has a standard error of ~420 MPa on
data not used to calibrate the expression, and analytical errors
during analysis of clinopyroxene can easily introduce random
error spanning 200 to 600 MPa (Supplementary Materials) (33).
In contrast, our Monte Carlo simulations show that the 1σ error
in calculated pressure resulting from Raman analytical errors
(±0.003 g/cm3) is only ±4.5 MPa (±140 m). When uncertainty in
entrapment temperatures (1150° ± 50°C) is also accounted for,
the overall errors are still extremely small (1σ = 22 MPa, ~±0.74
km) (Fig. 2E and Supplementary Materials).

DISCUSSION
The depths from our FI densities indicate a level of magma stagna-
tion before the 2021 eruption, but not necessarily the depth of crys-
tallization and FI entrapment. FIs in olivine are susceptible to brittle

Fig. 1. Seismicity and La Palma 2021. (A) Canary Islands. (B) Geologic map of La
Palma (18). (C) Details of the historical eruptions of La Palma including the recent
2021 eruption (18). (D) The 2021 eruption earthquakes colored by depth. (E) Earth-
quake history of the 2021 eruption (28). Notice very shallow events just before the
beginning (September 9), a bimodal swarm of deep (~20 to 25 km) and shallower
(~6 to 12 km) events during the eruption, and a predominately aseismic gap in
between. LM denotes the location of the stratigraphic section in the town of
Las Manchas.
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(decrepitation) and plastic (stretching) deformation, which poten-
tially can allow for the modification of trapped CO2 density (34, 35).
Decrepitation results from mechanical failure of the host crystal
during ascent due to overpressure of the inclusion within, with
larger inclusions more susceptible to rupturing their hosts (36).
This brittle failure results in cracking of the host crystal and subse-
quent partial or total loss of fluid held within the inclusions, leading
to lower fluid densities (36). Inclusions with identifiable decrepita-
tion are present in all analyzed samples, but their densities are not
included in this study (fig. S3). Another advantage of this Raman
spectroscopy method is the ability to measure small FI (down to
1.5 μm in our samples), which are less susceptible to decrepitation
and are too small for the use of microthermometry (37).

Unlike decrepitation, which is optically identifiable by a halo of
cracks or cylindrical and spherical pores emanating from FI, stretch-
ing is a more cryptic phenomenon and is difficult to identify opti-
cally. The experiments on originally negative crystal-shaped CO2-
rich FI in San Carlos olivine indicate that FI can stretch at 1400°C
and become ellipsoidal on the order of hours (38). In addition,
when olivine crystals stagnate at high temperature (i.e., in a
magma reservoir), re-equilibration of CO2 density can occur via

dislocation creep (38). Our measured inclusions are generally ellip-
soidal with only weak negative crystal shapes, indicating that FI may
have undergone re-equilibration during a period of magma stagna-
tion 15 to 27 km below the CVR before the 2021 eruption (Fig. 3, A
and B). This observation aligns with previous studies in the Canary
Islands (1, 25, 39–43).

Therefore, it is critical to appreciate that the application of FI
barometry to volcanic eruptions is to reveal the final magma
staging depth before eruption (36), while clinopyroxene barometry
may record deeper storage levels feeding the final staging zone. This
reservoir may have been replenished multiple times from below, as
recorded by the deeper earthquake swarms and potentially illustrat-
ed by clinopyroxene barometry from this and previous eruptions
(25, 30–32, 44).

Plumbing system of La Palma
The 2021 La Palma eruption shares similarities to historical erup-
tions along the CVR (18, 45). For instance, the 1949 eruption also
emitted early tephritic lavas, which evolved to basanitic composi-
tions in later stages (29). Like those found within the basanite of

Fig. 2. FI and olivine phenocrysts. (A) Example of an olivine-hosted FI from La Palma 2021 eruption. (B) CO2 Raman spectra of the inclusion with a typical Fermi diad
split, proportional to the CO2 density of the inclusion (8). (C) CO2 density relation to pressure through the CO2 EOS. (D) Olivine crystals are not in equilibrium with the
carrying melt, indicating that the olivine was derived from a higher MgO source (Supplementary Materials). (E) FI depths. Notice the increase in FI pressure with crystal
Mg# as the eruption proceed. Error bars on FI showing ±1σ from Monte Carlo simulations of uncertainties (Supplementary Materials).
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the 1949 eruption (29), reversely zoned olivine crystals are common
within the first half of the 2021 eruption, indicating mantle replen-
ishment and mixing with a more primitive liquid. Crystals from the
second half of the eruption (LM0 and LM2) have uniform Mg# (82
to 86), and reverse-zoned crystals became less common.We found a
general increase in the CO2 densities and olivine Mg# as the erup-
tion progressed (Fig. 2E), suggesting that crystals from deeper in the
plumbing system were progressively transported upward as the
eruption evolved and vacated the chamber.

We envision a scenario where the most primitive melt ascended
from a deeper storage zone via dikes that cut the rigid lithospheric
mantle (causing deep earthquakes at ~30 km), which has been pro-
posed for previous eruptions along the CVR (29, 40). This ascend-
ing melt then entered the main deep reservoir (~15 to 27 km) where
olivine crystalized in the presence of a CO2-rich fluid, trapping FI
that recorded the pressure and depth location of this chamber. Al-
ternatively, FI hosted in olivine may have crystallized at a deeper
location (e.g., lithosphere-asthenosphere boundary) and re-equili-
brated their densities at this level. From this main staging reservoir,

geochemically primitive melts continued to ascend and mix with
more evolved liquids at shallower levels before reaching the
surface. This implies that olivine crystals and FI were either
trapped or re-equilibrated in the magma reservoir between 15 and
27 km, before final ascent, mixing, and transport via a more evolved
melt as also observed in other ocean islands (1, 25, 39–43).

To better elucidate the plumbing system under the CVR, we
combined our new FI data with data from previous FI studies of
La Palma (Fig. 4) (39). FI densities were converted to depths
using the same procedure as described (Supplementary Materials).
Most FI data come from minerals (clinopyroxene, plagioclase,
apatite, amphibole, and olivine) within xenoliths, with more
limited representation of phenocrysts (clinopyroxene and olivine).
The FI data from xenoliths record depths of ~4 to 17 km, centered at
~10 km within the crust, with only the olivine grains within these
xenolith populations reaching mantle depths (Fig. 4). FI in clino-
pyroxene phenocrysts record much shallower depths than olivine
phenocrysts, mostly within the crust (average of ~12 km). This
bimodal behavior among the phenocrysts is likely controlled by
the well-developed cleavage in clinopyroxene that aids in their
CO2 re-equilibration during crustal storage (12), whereas olivine
behaves as a more robust pressure vessel preserving mantle depths.

Notably, our FI-derived average depths are similar to those from
olivine phenocryst hosted CO2 FI from the eruption of 1949 (Fig. 4)
(1, 29). The 1949 density values of 0.85 to 0.89 g/cm3 (versus our
0.73 to 0.98 g/cm3) (29) correspond to pressures of 600 to 680
MPa (versus our 420 to 780 MPa). The wider range of pressures re-
corded by our primary FI potentially suggests a plumbing system
with a more vertically extensive magma reservoir than the one re-
corded in 1949 (Fig. 4). The 1949 eruption was significantly smaller
in magnitude (VEI 2) and only lasted 37 days (29), which could lead
to the overlapping but smaller range of densities.

Our high-precision FI densities in olivine crystals document
pressures constrained to a seismically active deep reservoir, indicat-
ing a unified location for olivine-bearing magma staging. While
multiple magma reservoirs for the La Palma plumbing system
have been recorded by different barometers and FI in other
mineral phases (1, 25), they do not reflect the main deep reservoir
feeding the 2021 eruption, which was precisely (and rapidly) con-
strained using Raman-based FI barometry.

MATERIALS AND METHODS
Seven tephra samples were collected from a stratigraphic section of
the 2021 eruption in January 2022 in the town of LasManchas. Four
samples were selected for FI study spanning the duration of the
eruption. Olivine crystals covered with glass were handpicked
under a stereoscope and cleaned in HBF4 to dissolve glass
coating. Single olivine crystals were then individually polished to
identify primary FI, which were then photographed and analyzed
using the WiTec Alpha300R Raman spectroscopy system in the De-
partment of Earth and Atmospheric Sciences at Cornell University.
Olivine and glass major element chemistry was obtained via the
Cameca SX5-Tactis Electron Microprobe at the American
Museum of Natural History in New York City. See all details in
the Supplementary Materials.

Fig. 3. Deep magma storage. (A) FI data fits in the deep seismic zone between
~20 and 25 km (28), indicating a zone of melt and crystal storage exhumed during
eruption. (B) Three-dimensional comparison of the 2021 (syn-eruptive) earth-
quakes with our new FI depths from Raman CO2 densities.
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