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Abstract
Background: Point and copy number variant mutations in the PRRT2 gene have been 
identified in a variety of paroxysmal disorders and different types of epilepsy. In this 
study, we analyzed the phenotypes and PRRT2-related mutations in Chinese epilepsy 
children.
Methods: A total of 492 children with epilepsy were analyzed by whole exome se-
quencing (WES) and low-coverage massively parallel CNV sequencing (CNV-seq) to 
find the single nucleotide variants and copy number variations (CNVs). And quantita-
tive polymerase chain reaction was utilized to verify the CNVs. Their clinical informa-
tion was followed up.
Results: We found PRRT2-related mutations in 19 patients (10 males and nine fe-
males, six sporadic cases and 13 family cases). Twelve point mutations, four whole 
gene deletion, and three 16p11.2 deletions were detected. The clinical features of 
39 patients in 19 families included one early childhood myoclonic epilepsy (ECME), 
one febrile seizure (FS), two infantile convulsions with paroxysmal choreoathetosis 
(ICCA), six paroxysmal kinesigenic dyskinesias (PKD), 12 benign infantile epilepsy 
(BIE), and 17 benign familial infantile epilepsy (BFIE). All patients had normal brain 
MRI. Interictal EEG showed only one patient had generalized polyspike wave and five 
patients had focal transient discharges. Focal seizures originating in the frontal region 
were recorded in one patient, two from the temporal region, and two from the oc-
cipital region. Most patients were treated effectively with VPA or OXC, and the child 
with myoclonic seizures was not sensitive to antiepileptic drugs.
Conclusion: PRRT2 mutations can be inherited or de novo, mainly inherited. The clini-
cal spectrum of PRRT2 mutation includes BIE, BFIE, ICCA, PKD, FS, and ECME. The 
PRRT2-related mutations contained point mutation, whole gene deletion and 16p11.2 
deletions, and large microdeletion mutations mostly de novo. It is the first report of 
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1  | INTRODUC TION

Mutations in the proline-rich transmembrane protein 2 (PRRT2) gene 
on chromosome 16 were first identified in the paroxysmal kinesi-
genic dyskinesias (PKD) family and subsequently in benign familial 
infantile epilepsy (BFIE) and infantile convulsions with paroxysmal 
choreoathetosis (ICCA) (Mathot, Lederer, Gerard, Gueulette, & 
Deprez, 2017; Okumura et al., 2019; Zhao et al., 2019) and were 
also reported to be associated with benign infants myoclonic (Maini 
et al., 2016), west syndrome (Djemie et al., 2014), febrile convul-
sions (FS) (Zheng et al., 2016), hemiplegic migraines (Cloarec et al., 
2012), intermittent ataxia, and other differential movement disor-
ders (Castelnovo et al., 2016; Delcourt et al., 2015; Ebrahimi-Fakhari 
et al., 2014; Legris et al., 2019). Homozygous PRRT2 mutations give 
rise to the more severe clinical disease of mental retardation and 
intermittent ataxia (Labate et al., 2012). All of these findings broaden 
the phenotype caused by PRRT2 mutations, from which a definition 
of PRRT2-related diseases emerged. The phenotypes of PRRT2-
related diseases were incompletely extraneous, and the affected 
members of the same family had phenotypic heterogeneity (Cloarec 
et al., 2012).

Nonsense mutations containing premature termina-
tion codon (PTC) are the most common type, and c.649dupc 
(p.r217pfsx8) is a hot spot mutation (Fabbri et al., 2013; Zhang, 
Li, Chen, Gan, & Liu, 2017). Copy number deletions of this gene 
such as 16p11.2 deletion are also known to cause PRRT2-related 
diseases (Dale, Grattan-Smith, Nicholson, & Peters, 2012; 
Silveira-Moriyama et al., 2018; Termsarasab et al., 2014; Weber, 
Kohler, Hahn, Neubauer, & Muller, 2013). 16p11.2 microdeletion 
syndrome is a kind of congenital gene deletion disease, with the 
clinical manifestations as autism, developmental delay, mental 
retardation, spinal deformity, and a series of neuropsychiat-
ric developmental diseases (Al-Jawahiri, Jones, & Milne, 2019; 
Castelein, Steyaert, Peeters, & van Buggenhout, 2019; Hinkley 
et al., 2019; Li et al., 2018a; Siu et al., 2019). Phenotypic hetero-
geneity between patients is obvious, and its pathogenic mecha-
nism is not yet clear.

Therefore, in this study, we conducted whole exome sequenc-
ing and copy number variation sequencing (CNV-seq) on 492 ep-
ilepsy children who had benign or refractory epilepsy, in order 
to find new epileptic phenotypes related to PRRT2 and verify 
the positive prediction results of PRRT2-related CNV by qPCR, 
so as to further clarify the role of 16p11.2 deletion and further 
understand the clinical and mutational features of PRRT2-related 
epilepsy.

2  | METHODS

2.1 | Subjects

We analyzed 492 epilepsy children with the onset age of 0–14 years 
between 2016 and 2019 in the Pediatrics Department of Qilu 
Hospital Affiliated to Shandong University and Linyi people's 
Hospital Affiliated to Shandong University, China. Their clinical infor-
mation was retrospectively collected and followed up, including sei-
zure types, onset age, treatment process, growth and development 
history, previous disease history, family history, intellectual test, 
cranial magnetic resonance imaging (MRI), and video-EEG, antiepi-
leptic drugs (AEDs), and age of epilepsy remission. The patients were 
followed up by phone or visit clinic every three months. Exclusion 
criteria included seizures caused by nongenetic factors, such as an 
acquired brain injury, metabolic disease, and clinically phenotypi-
cally defined monogenic diseases (e.g., tuberous sclerosis complex). 
The study protocol was approved by the ethical committee of the 
Qilu Hospital Affiliated to Shandong University (No. 2016(027)) and 
Linyi people's hospital Affiliated to Shandong University (No.13003). 
All guardians signed informed consent forms.

2.2 | Next-generation sequencing (NGS) and DNA 
sequence analysis

Informed consent and blood samples were obtained from all the par-
ticipants in the families. Genomic DNA was extracted using QIAamp 
DNA Blood Mini Kit (Qiagen), according to the manufacturer's pro-
tocol. Each DNA sample is quantified by agarose gel electropho-
resis and Nanodrop 2000 (Thermo). Libraries were prepared using 
Illumina standard protocol. The amplified DNA was captured with 
whole exome sequencing. The capture experiment was conducted 
according to manufacturer's protocol. The junction sequences were 
trimmed, and the contamination or low-quality reads were filtered 
for the raw data. Then, the clean data were aligned to the human 
reference genome sequence (hg19) by Burrows–Wheeler Alignment. 
Single nucleotide variation (SNV) and insertion deletion mutation 
(InDel) were called by Genome Analysis Toolkit. Then, all SNVs and 
InDels were annotated by ANNOVAR （RRID: SCR_012821）. The 
mutation sites with frequencies less than 0.05 in the normal popula-
tion database were screened out, including the 1,000 genome pro-
ject, Exome Variant Server, and Exome Aggregation Consortium. 
Mutations were predicted by Mutation Taster (MT), Sorting 
Intolerant From Tolerant (SIFT, RRID: SCR_012813), PolyPhen-2 
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(PP2, RRID: SCR_013189), Genomic Evolutionary Rate Profiling 
(GERP++, RRID: SCR_000563), and Clustal-W (RRID: SCR_017277). 
The selected mutation sites were verified by Sanger sequenc-
ing. The analysis of deletions or duplications was performed using 
low-coverage massively parallel CNV sequencing (CNV-seq). After 
sequencing, the raw data were saved as a FASTQ format, then fol-
lowed the bioinformatics analysis: First, Illumina sequencing adapt-
ers and low-quality reads (<80bp) were filtered by Cutadapt (1.16) 
software (RRID: SCR_011841). After quality control, the clean 
reads were mapped to the UCSC hg19 human reference genome 
using BWA (0.7.12) software (RRID: SCR_010910). Only uniquely 
mapped reads were selected. Then, we use GATK (4.0.8.1) (RRID: 
SCR_001876) Mark Duplicates to remove duplicated reads. Mapped 
reads were classified into adjustable sliding windows, which were 
50 kb in length with 5 kb increments. The coverage of each window 
was calculated by the read amount and underwent two-step bias 
correction (GC correction and population-scale normalization). After 
correction, we use the binary segmentation algorithm to localize the 
segment breakpoints to identify the candidate CNV regions and de-
termination CNV genotype. Then, we use U test and Parallelism test 
to estimate the genotype and significance of each segment. All the 
obtained suspected missing repetitive regions were compared with 
OMIM (RRID: SCR_006437), GeneReviews (RRID: SCR_006560), 
Decipher (RRID: SCR_006552), ClinVar (RRID: SCR_006169), 
Database of Genomic Variants (DGV, RRID: SCR_007000) and other 
databases. CNV-related genes will also be searched in the Human 
Phenotype Ontology (HPO, RRID: SCR_006016) database to match 
similar phenotypes. After the analysis, the data were analyzed for 
advanced manual analysis, and the suspicious mutation fragments 
that were highly similar to the clinical phenotype of the proband 
were selected. Then, real-time quantitative PCR detecting system 
(qPCR) experiment was conducted to verify this section, so as to ex-
clude false positive of second-generation sequencing and ensure the 
accuracy of the results.

3  | RESULTS

3.1 | Genetic analyses

We screened a cohort of 492 children with epilepsy for mutations in 
the PRRT2 gene using whole exome sequencing (WES) and low-cov-
erage massively parallel CNV sequencing (CNV-seq) (281 male and 
211 female). We found heterozygous PRRT2-related mutations in 
19 patients (19/492, 3.86%), six sporadic cases and 13 family cases. 
Four point mutations were found in 12 patients (12/19, 63.16%), 
nine of them were c.649dupC mutation (9/12, 75%), four whole gene 
deletion (4/19, 21.05%) and three 16p11.2 deletions (3/19, 15.79%) 
(Table 1 and Figure 1). Three mutations were located in exon 2 and 
one in exon 3. Two missense mutations (c.640G > C/p.Ala214Pro; 
c.950G  >  A/p.Ser317Asn), one nonsense mutation (c.718C  >  T/p.
Arg240*), one frameshift mutation (c.649dupC/p.Arg217Profs*8). 
Missense mutations all affected amino acids of the cytoplasmic 

domain of proline-rich transmembrane protein 2 (PRRT2), which are 
highly conserved in orthologs and in paralogs of PRRT2, and were 
predicted to be pathogenic by Mutation Taster, Polyphen2, and SIFT 
(Figure 2, Table 2). Four cases were deletion of whole PRRT2 gene 
(Table 1, Figure 1 and Figure 3), three were de novo (3/4, 75%), and 
all the three 16p11.2 deletions were de novo (3/3, 100%) (Figure 4). 
Six of the 19 probands for PRRT2 mutations were de novo (6/19, 
31.58%). The inheritance of PRRT2 mutations in 13 families, fam-
ily No.2 was four-generation pedigrees, family No.3,5,7 were three-
generation pedigrees, and the others were two-generation pedigrees 
(Figure 5). Five probands inherited the mutation from asymptomatic 
parents. Six families exhibit incomplete penetrance phenomenon 
(family No.1: I-1; family No.2: Ⅲ-1; family No.4: I-1; family No.8: I-1; 
family No.12: I-2; family No.14: I-1).

3.2 | Clinical features

The onset age of 492 children ranged from one day after birth to 
eight years. Thirty-two (32/492, 6.5%) patients were diagnosed as 
BIE, 61 as Febrile convulsion plus, 59 as West syndrome, 41 as Dravet 
syndrome, 12 as Ohtahara syndrome, four as Lennox–Gastaut 
syndrome, three as West syndrome evolving to Lennox–Gastaut 
syndrome, four as Doose syndrome, three as childhood absence epi-
lepsy, two as benign childhood epilepsy with central temporal spikes, 
and one as early childhood myoclonic epilepsy (ECME). Twenty-nine 
patients were diagnosed as unclassified epileptic encephalopathy, 
and 241 patients were diagnosed as unclassified epilepsy. We found 
PRRT2-related mutations in 19 patients. Among the 19 probands, 10 
were males and nine were females. The onset age of the 19 probands 
ranged from 3 months to 3 years and 2 months. The mode of these 
19 patients is six months old, and the median is six months old too. 
There were 39 patients in these 19 proband families with PRRT2 mu-
tations. The common clinical features of the 39 patients included 
one ECME, one febrile seizure (FS), six paroxysmal kinesigenic dyski-
nesias (PKD), two infantile convulsions with paroxysmal choreoathe-
tosis (ICCA), 12 benign infantile epilepsy (BIE), and 17 benign familial 
infantile epilepsy (BFIE). The clinical information of 39 patients with 
PRRT2 mutations in 19 proband's families is summarized in Table 3.

The proband with ECME was a boy aged four years and seven 
months old, the only child of nonconsanguineous parents. The child 
was born via spontaneous vaginal delivery at 37 weeks gestation, 
without asphyxia. The patient had normal cranial MRI and develop-
mental quotient, no special family history or personal history, and 
no regression of development after onset. When the child was three 
years and two months old, one generalized tonic–clonic seizures 
(GTCS) occurred without obvious inducement. Six months after 
that, GTCS occurred when he had a fever. Then, another form of 
seizure occurred, characterized by a quick shake of the upper limbs 
or whole body. It occurred several times a day, without other asso-
ciated symptoms. Interictal electroencephalography (EEG) showed 
normal background activity and high to very high amplitude spike or 
polyspike wave discharges at 3–4 Hz. Ictal EEG detected myoclonic 
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seizures as generalized polyspike wave with a time-locked relation to 
muscle activation (Figure 6). The whole gene sequencing revealed a 
heterozygous mutation (c.640G > C), resulting in protein truncation 
(p.Ala214Pro). Three other variants of likely pathogenic or patho-
genic were identified in this patient as well (VWF, SYNGAP1, and 
ABCB4). SYNGAP1 (c.3964_3965insCCCCCCC/p.P1326Tfs*38) and 
ABCB4 (c.1015dupT/p.S339Ffs*16) variations were not found after 
one generation verification. VWF (c.5014G > A/p.G1672R) mutation 
originated from the father of the child. However, neither the child nor 
the father has hemophilia phenotype, which is inconsistent with the 
clinical manifestations, so it is not considered as a pathogenic gene 
mutation. The patient was insensitive to valproate sodium (VPA), le-
vetiracetam (LEV), topiramate (TPM), and clonazepam (CZP).

The onset age of the thirty-one patients with BIE or BFIE ranged 
from three months to one year and three months, both the mode and 
median age were six months. Among them, there were 16 patients 
with onset age of <6 months (16/31, 51.61%), 13 patients with onset 
of disease at 6–12 months (13/31, 41.94%), and one patient with 
onset after 12 months (1/31, 3.22%). Remission age ranged from six 
months to two years and one month. The type of seizures in one pa-
tient was unknown, two patients only had generalized tonic–clonic 
seizures (GTCS) (2/30, 6.67%), 25 patients had focal motor seizures 

(25/30, 83.33%), three patients had both types of seizures (10%), 
and 20 patients had seizure clusters (20/29, 68.97%). All patients 
had normal intelligence, except one patient with 863kb deletions of 
16p11.2 who had a mild language delay. All the PKD patients were 
triggered by sudden movement. All patients had a normal brain 
MRI. Only one patient had generalized polyspike wave, and five pa-
tients had focal transient discharges in interictal EEG. Focal seizures 
originating in the frontal region were recorded in one patient, two 
from the temporal region, and two from the occipital region. Most 
patients were treated effectively with sodium valproate (VPA) or 
oxcarbazepine (OXC); the child with myoclonic seizures was not sen-
sitive to antiepileptic drugs.

4  | DISCUSSION

PRRT2 is localized to chromosome 16p11. 2, with a total length 
of 3,794  bp. It contains four exons and codes 340 amino acids 
and is highly expressed in the cerebral cortex, basal ganglia, and 
cerebellum. PRRT2 is composed of n-terminal sequence rich in 
proline (n-glycosylation site), two transmembrane domains and 
c-terminal sequence (Rossi et al., 2016), and its transmembrane 

F I G U R E  1   (a) Schematic diagram of 
the mutations identified in the PRRT2 
gene. PRD, Proline-rich domain. (b) 
The mutations identified in Membrane 
topology of PRRT2. Red star: nine 
c.649G > C, gray red: the other point 
mutations
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region is highly conserved, suggesting important physiological 
functions. Studies have shown that PRRT2 has analogues in ver-
tebrates such as humans, gorillas, macaques, and mice, while no 
homologous products have been found in invertebrates such as 
nematodes. In humans and rodents, PRRT2 is a neural protein and 
is most expressed in the cerebellum, basal ganglia, and neocortex. 
PRRT2 serves as a regulator of the SNARE complex and provides 
a circuit mechanism underlying the PRRT2-related diseases (Tan 

et al., 2018). The mutant PRRT2 may affect glutamate signal trans-
duction and glutamate receptor activity through its weak inter-
action with synaptic proteins SNAP-25, leading to an increase in 
glutamate release, which in turn leads to overexcitation of neurons 
(M. Li et al., 2015). PRRT2 is closely related to Ca2+ sensing mecha-
nisms and plays an important role in the final phase of neurotrans-
mitter release by interacting with SNAP-25 and synaptotagmin 
(Tan et al., 2018; Valente et al., 2016).

F I G U R E  2   Sequence chromatograms 
and conversation of amino acid residues 
affected by the missense mutations. 
Sequence chromatograms of a PRRT2 
mutation as detected in an affected 
proband is shown for each family. The 
black arrow upon orthologous and 
paralogous protein alignments, showing 
the high conservation of each amino 
acid altered by missense mutations in 
vertebrates and paralogous

TA B L E  2   Pathogenicity assessment and conservative analysis of 2 missense mutations

Family
Amino acid 
changes

Consequence at the 
protein level Parents’ analysis SIFT PolyPhen 2 Mutation Taster GERP++

1 c.640G > C p.Ala214Pro paternal Damaging Probably damaging Polymorphism 3.9 (Conserved)

12 c.950G > A p.Ser317Asn maternal Damaging Probably damaging Disease causing 3.75 (Conserved)
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Currently, the clinical phenotypes caused by PRRT2 gene mu-
tation are mainly BFIE, PKD, and ICCA. Other rare phenotypes 
include hemiplegic migraine (HM) and sporadic benign infant ep-
ilepsy (BIE), suggesting phenotypic heterogeneity in PRRT2 mu-
tations. So far, most of the mutations associated with the PRRT2 
have been labeled "benign." However, west syndrome and FS were 
identified in some PRRT2 families (Djemie et al., 2014; Igarashi 
et al., 2016), suggesting that the spectrum of PRRT2-related dis-
eases may be broader. To explore the phenotypic boundaries of 
PPRT2-related mutations, we screened a wide range of benign 

and severe infantile epilepsy patients. In this study, we found one 
ECME, one FS, six PKD, two ICCA, 12 BIE, and 17 BFIE in 39 pa-
tients of 19 probands’ families. This is the first time PRRT2 muta-
tion has been discovered in ECME. The proband with the onset age 
of three years and two months had myoclonic seizures and GTCS, 
and febrile or afebrile GTCS appeared before myoclonic seizures, 
normal cranial MRI and developmental quotient, 3–4 Hz general-
ized spike-wave, and polyspike wave on interictal EEG. According 
to the characteristics of ECME summarized by Yang et al. (2017)), 
we diagnosed the child as ECME. This is the first report of PRRT2 

F I G U R E  3  Quantitative PCR validation 
of whole PRRT2 gene deletion. Y-axes 
represent Log R ratio; the X-axis indicates 
the exon on PRRT2

F I G U R E  4  Genomic positions of the deletions and phenotypes of the PKD patients with 16p11.2 deletions. Genomic positions of the 
16p11.2 deletions in patients with PKD are shown using red bars
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mutation in ECME and extends the spectrum of diseases associ-
ated with PRRT2.

In our study, five probands of BIE or BFIE families had their 
first seizure episodes caused by diarrhea (family 5, 8, 11, 12, 16), 
and some of them had clusters of seizures. We could not figure out 
whether these patients manifested convulsions with mild gastro-
enteritis (CwG) or the symptoms were the presentation of BFIE it-
self at first. CwG is characterized by the following clinical features: 
infants aged 6 months to 3 years having afebrile generalized con-
vulsions induced by mild gastroenteritis; clustering seizures; normal 
laboratory examination results including electrolytes, blood glu-
cose and cerebrospinal fluid; normal interictal EEG and brain MRI; 
and good prognosis. As the disease progressed, the children devel-
oped unprovoked seizures a few months later that set them apart 
from the CwG. Moreover, PRRT2 mutations have not been reported 
in such patients with CwG, which is one of the distinguishing points 
with PRRT2-related diseases (Ishii et al., 2013). Therefore, when we 
encounter the first cluster or single seizure induced by mild gastro-
enteritis in clinical, we should pay attention to the family history 
and the follow-up prognosis. The patient with family history could 
chose genetic test to assist diagnosis and prognosis.

The reported mutation types summarized by Darius (Ebrahimi-
Fakhari, Saffari, Westenberger, & Klein, 2015) include missense, 
nonsense, insertion or deletion of bases, splicing, deletion of 

fragments or whole genes, and deletion of other adjacent genes. In 
our study, 63.16% patients had reported point mutations inherited 
from symptomatic or asymptomatic parents, two missense muta-
tions (Heron et al., 2012; Liu et al., 2016), one nonsense (Lee et al., 
2012), one frameshift mutation (Chen et al., 2011), and c.649dupC 
mutation is also the hot spot mutation. Since the majority of PRRT2 
mutations are truncating mutations that lead to loss of function or 
haploinsufficiency of PRRT2, copy number deletions of this gene 
are suspected of causing PRRT2-related diseases. There were still 
21.05% of patients who had whole gene deletion, and 15.79% had 
16p11.2 deletions, most of them were de novo. On the contrary, all 
the point mutations in this study were inherited. It indicates that 
screening for PRRT2 CNVs is necessary in these patients, especially 
in sporadic cases. Only one patient with the whole gene deletion 
inherited from asymptomatic father, PRRT2 point mutations had in-
complete extraneous dominance in previous studies, but the whole 
gene heterozygous deletion had no clinical phenotype, which has 
not been reported. Chromosome 16p11.2 deletion syndrome is a 
genetic disorder associated with multiple system abnormalities, 
including intellectual impairment, language developmental disor-
ders, seizures, psychical and psychological disease, PKD, obesity, 
hearing loss, and cardiac defects (Li et al., 2018b; Yang et al., 2015). 
In our study, all three BIE patients with 16p11.2 deletion had focal 
motor seizures, only one with the largest 16p11.2 deletion of 863kb 

F I G U R E  5   Pedigrees of PRRT2-related epilepsy families. Squares represent males, circles females; Upper left red corner: BIE; Upper 
right blue corner: PKD; Lower right green corner: ECME; Lower left yellow corner: FS; Dots in the middle of the squares indicate unaffected 
mutation carriers. The arrows indicate the proband in the family
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had mild language delay, which indicates that pure BIE or with mild 
language delay can be a phenotype of 16p11.2 deletion syndrome 
that extending the phenotype of 16p11.2 deletions to typical BIE/
BFIE. Screening for 16p11.2 deletions should be prescribed for pa-
tients with BIE, particularly in sporadic cases, although it is not 
common. A case of BIE and normal neurodevelopment in a child 
with a loss of 1.064 MB 16p11.2 was reported (Milone, Valetto, 
Bertini, & Sicca, 2017), with regression leading to autism, intelli-
gence retardation, and language impairment at 18 months of age. 
We had not found the autism or intellect regression in the other 
two children with 16p11.2 deletions of our study who had excel-
lent seizure-free and developmental outcomes as followed up at 
18 months to 31 months old. But, the patients with 16p11.2 dele-
tions still need long-term clinical follow-up.

5  | CONCLUSIONS

In conclusion, PRRT2 mutations can be inherited or de novo. PRRT2 
mutation-related epilepsy has incomplete penetration rate and 
phenotypic heterogeneity. The clinical spectrum of PRRT2 mu-
tation includes BIE, BFIE, ICCA, PKD, FS, and ECME. The PRRT2-
related mutations contained point mutations, whole gene deletion, 
and 16p11.2 deletions. Point mutations were mainly inherited, and 
large microdeletion mutations were mostly de novo. Screening for 
16p11.2 deletions should be prescribed for patients with BIE, par-
ticularly in sporadic cases. Our report expands the mutation and 
clinical spectrum of PRRT2-related epilepsy.
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