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Amyloid β (Aβ) plaque formation is a prominent cellular hallmark of Alzheimer’s disease
(AD). To date, immunization trials in AD patients have not been effective in terms of
curing or ameliorating dementia. In addition, γ-secretase inhibitor strategies await clinical
improvements in AD. These approaches were based upon the idea that autosomal
dominant mutations in amyloid precursor protein (APP) and Presenilin 1 (PS1) genes
are predictive for treatment of all AD patients. However most AD patients are of the
sporadic form which partly explains the failures to treat this multifactorial disease. The
major risk factor for developing sporadic AD (SAD) is aging whereas the Apolipoprotein
E polymorphism (ε4 variant) is the most prominent genetic risk factor. Other medium-
risk factors such as triggering receptor expressed on myeloid cells 2 (TREM2) and nine
low risk factors from Genome Wide Association Studies (GWAS) were associated with
AD. Recently, pooled GWAS studies identified protein ubiquitination as one of the key
modulators of AD. In addition, a brain site specific strategy was used to compare the
proteomes of AD patients by an Ingenuity Pathway Analysis. This strategy revealed
numerous proteins that strongly interact with ubiquitin (UBB) signaling, and pointing
to a dysfunctional ubiquitin proteasome system (UPS) as a causal factor in AD. We
reported that DNA-RNA sequence differences in several genes including ubiquitin do
occur in AD, the resulting misframed protein of which accumulates in the neurofibrillary
tangles (NFTs). This suggests again a functional link between neurodegeneration of the
AD type and loss of protein quality control by the UPS. Progress in this field is discussed
and modulating the activity of the UPS opens an attractive avenue of research towards

Abbreviations: Aβ, amyloid β; AICD, APP intracellular domain; ADAM10, A Disintegrin and metalloproteinase domain-
containing protein 10; AD, Alzheimer’s disease; APP, amyloid precursor protein; APPs, soluble N-terminal part of APP;
APP-CTF, C-terminal part of APP; DS, Down syndrome; DUB, deubiquitinating enzyme; EOAD, early-onset AD; ERAD,
endoplasmic reticulum associated degradation; FAD, familial Alzheimer’s disease; FC, fear conditioning; FENIB, familial
encephalopathy with neuroserpin inclusion bodies; G, glycine; GWAS, genome wide association studies; HD, Huntington’s
disease; HECT, homologous to E6-associated protein C-terminus; HSP, heat-shock proteins; JAMM, JAB1/MPN/Mov34
metalloenzyme; LOAD, late-onset AD; K, lysine; MCI, mild cognitive impairment; MJD, Machado-Joseph Disease protein
domain protease; MWM, Morris water maze; NFT, neurofibrillary tangle; NMD, non-sense mediated RNA decay; NP,
neuritic plaque; NT, neuropil thread; NTS, nucleus of the solitary tract; OTU, ovarian tumor proteases; PBN, parabrachial
nucleus; PD, Parkinson’s disease; PHF, paired helical filament; PS1, presenilin 1; PS2, presenilin 2; RDD, RNA-DNA
differences; RING, really interesting new gene; RPT, regulatory particle triple; SAD, sporadic Alzheimer’s disease; tg,
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slowing down the development of AD and ameliorating its effects by discovering prime
targets for AD therapeutics.

Keywords: frameshift mutation, mRNA surveillance, molecular misreading, proteasome, amyloid precursor
protein, tau, neurodegeneration

Alzheimer’s disease (AD) is a progressive multifactorial
neurological disease and the most prevalent form of dementia,
accounting for 60–80% of all cases of dementia (Barnes and
Yaffe, 2011). Many reviews have been written about this complex
neurodegenerative disease e.g., (Selkoe et al., 2012). The sporadic
(SAD) and familial (FAD) forms are the two major types of
AD which differ in the age and cause of onset (Figure 1).
SAD is heterogeneous with risk factors for developing AD
including aging, cognitive inactivity, depression, oxidative
stress, brain injury, epigenetic factors and mild cognitive
impairment (MCI). Cardiovascular factors (cholesterol status,
diabetes, midlife hypertension, obesity, physical inactivy and
smoking) as well as genetic risk or dubbed timing factors
(apolipoprotein E4 polymorphism; Apoε4) are also associated
with the development of SAD (Querfurth and LaFerla, 2010;
Alzheimer’s Association, 2012). Other medium-risk factors
such as a rare missense mutation (R47H subsitiution) in the
gene encoding the triggering receptor expressed on myeloid
cells 2 (TREM2), which has in a normal situation an anti-
inflammatory role in the brain, lead to an increased risk
for AD through aberrant inflammatory processes (Jonsson
et al., 2013). An additional nine low risk factors detected via
Genome Wide Association Studies (GWAS) were reported to
contribute as well to AD (Holton et al., 2013). Genetic factors

FIGURE 1 | Early [<65 years; early-onset AD (EOAD)] and late onset
[>65 years; late-onset AD (LOAD)] forms of Alzheimers disease (AD)
subdivided in familial, sporadic and autosomal dominant forms of AD.
“Familial” means that AD was observed in relatives of the first degree. In
familial EOAD, the majority (54%) is not yet linked to a chromosome, whereas
6% is inherited in an autosomal dominant way and linked to chromosome 14
(PS1), chromosome 1 (PS2) and chromosome 21 amyloid precursor protein
(APP; Harvey et al., 2003; Mercy et al., 2008). In familial LOAD, the majority is
not yet linked to a chromosome, whereas a minority is inherited in an
autosomal dominant way. A subset has been linked to chromosome 12
(Pericak-Vance et al., 1997). Figure was updated in 2015.

associated with AD consists of mutations in the genes encoding
for the amyloid precursor protein (APP; chromosome 21),
Presenilin 1 (PS1; chromosome 14) and Presenilin 2 (PS2;
chromosome 1).

A large number of pathogenic mechanisms in AD have been
identified (Jellinger, 2009) including proteasomal dysfunction,
oxidative stress, mitochondrial dysfunction, fragmentation of
Golgi complex, cellular/axonal transport disruption, mutation
of molecular chaperones, dysfunctional neurotrophins,
neuroinflammatory processes and more recently seeding
(Jucker and Christen, 2013). All these complex mechanisms are
interconnected resulting in cell dysfunction, neuron shrinkage
and cell death such as in parts of the hippocampal complex and
locus coeruleus (Mann et al., 1980; West et al., 1994; Heneka
et al., 2006). It needs to be noted that neuron loss is not a
widespread phenomenon in AD (Regeur et al., 1994) and that
cell shrinkage, resulting in weight loss of the brain, erroneously
suggested neuron loss, is occurring (Hoogendijk et al., 1995; Lee
et al., 2015). The present review focusses on two mechanisms
mentioned above; proteasomal dysfunction by a mutant form of
ubiquitin B (UBB+1) and partially in combination with oxidative
stress (Hope et al., 2003; Irmler et al., 2012; Braun et al., 2015),
both contributing to disease-specific inclusions (van Leeuwen
et al., 1998; Dennissen et al., 2012).

The neuropathogenesis of AD includes so called negative
and positive lesions. Negative lesions describe the loss of
cholinergic neurons in the brain, whereas positive lesions are
the accumulation of abnormal/misfolded proteins known as
deposits (Serrano-Pozo et al., 2011). This accumulation of
putative toxic protein species in the brain of the patients is one
common hallmark of many neurodegenerative diseases, such
as AD and, as well, Parkinson’s (PD) and Huntington’s (HD)
diseases (Fischer et al., 2003). These three diseases belong to
a group sharing the common feature of the accumulation of
insoluble protein deposits in neurons and are now designated
‘‘conformational diseases’’ coined as such (Lomas and Carrell,
2002). AD is associated with progressive accumulation of
two hallmarks, namely extracellular Amyloid β (Aβ) plaques
and intracellular neurofibrillary tangles (NFTs; Selkoe, 2001;
Duyckaerts et al., 2009) Currently there are no indications of
increased Aβ and tau protein production in AD which suggests
that the accumulation of these proteins is caused by a lack
of cellular clearance (Olsson et al., 2003). The degradation
pathway of these proteins remains elusive but autophagy is an
attractive possibility (Lee et al., 2013; Nilsson and Saido, 2014).
Although Aβ and tau do not seem to be substrates of the
26S proteasome, both proteins are able to impair functioning
of the 26S proteasome (Saido and Leissring, 2012). Further
details concerning Aβ, tau, and the proteasome are given in the
following paragraphs.
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The Aβ Peptide Hypothesis

The amyloid hypothesis focuses on the endoproteolytic cleavage
pathway of APP, a transmembrane protein (Glenner and Wong,
1984). This ‘‘hypothesis’’ is supported by the fact that Aβ

plaques are present in AD brains and that mutations in the
APP gene are involved in the autosomal dominant inherited
form of AD (Masters and Selkoe, 2012). APP is a precursor
molecule which experience proteolysis to generate Aβ species of
different length. Normally, a cascade of endoproteolytic cleavages
of APP by α-, β- and γ-secretases results in the production
of both non-amyloidogenic (the α-secretase pathway) and
amyloidogenic (β-secretase pathway) peptides (Figure 2). The
γ-secretase cleavage is a heterogeneous event, so depending on
the site of cleavage by this protease Aβ-peptides of different
size are generated: Aβ40 and Aβ42 are the most common ones
(Haass et al., 2012). The two additional amino acids in Aβ42
compared to Aβ40 render Aβ42 more hydrophobic thereby
making it more susceptible aggregate. Due to a higher rate
of insolubility and fibrillization, Aβ42 is more abundant than
Aβ40 in extracellular plaques. In many types of AD the ratio
of Aβ42/Aβ40 is increased (Masters and Selkoe, 2012). This
ratio can also be influenced by mutations in the α-secretase
(ADAM 10), favoring the amyloidogenic pathway (Suh et al.,
2013). Aβ peptides eventually oligomerize to fibrils which
eventually accumulate intracellularly, are secreted and promote
synaptotoxicity by seeding (Duyckaerts et al., 2009). Three
major types of Aβ plaques can be distinguished in AD: diffuse
amyloid plaques, dense-core plaques and neuritic plaques (NPs;
Serrano-Pozo et al., 2011). Currently, there is still an ongoing
debate about which species is exactly more toxic: intracellular
oligomers or extracellular plaques? A lot of mutations are found
within the γ-secretase complex (PS1, PS2) which cause excessive
production of Aβ42. Excessive accumulation of Aβ species and
subsequent seeding is the initiating event in the pathogenesis of
AD according to this hypothesis. It turned out that the formation
of Aβ plaques in a transgenic (tg) model of AD can be modulated
by UBB+1 expression via γ-secretase and of this multimeric
complex at least the presenilin expression (van Tijn et al., 2012;
Gentier et al., 2015b).

Other studies showed genomic duplications in the APP
locus in families suffering from early-onset AD (EOAD) with
concurrent cerebral amyloid angiopathy. These data suggests as
well that increased expression of APP has an important role in
the AD disease etiology (Rovelet-Lecrux et al., 2006; Sleegers
et al., 2006). In addition, the link between Down syndrome (DS)
and AD regarding neuropathogenesis and dementia, supports
the relevance of Aβ even further, because DS patients have
three copies of chromosome 21 and APP is located at the
same chromosome. In DS, Aβ plaques already appear around
30 years of life e.g., (van Leeuwen et al., 2006). Development
of dementia in DS patients is the result of overproduction of
toxic Aβ species as a direct consequence of the triplication of the
APP gene (Weksler et al., 2013). In addition, a coding mutation
(A673T) in the APP gene was found in an Icelandic population
which protects against AD and cognitive decline in the elderly
without AD. This A673T mutation results in an approximately

40% reduction in the formation of amyloidegenic peptides
in vitro and provides proof of principle for the hypothesis
that reducing the amyloidogenic cleavage of APP may protect
against AD (Jonsson et al., 2012). At the present time, evidence
is appearing which suggests that Aβ is neither sufficient nor
necessary in the development of AD but only related to it.
This finding is based on the observation that the amount and
distribution of Aβ accumulation do not correlate with the degree
of cognitive impairment and that Aβ is present as well in the
brains of cognitively normal elderly people (Drachman, 2014).
The prevalence of amyloid pathology increased from age 50
to 90 years from 10% (95% CI, 8–13%) to 44% (95% CI,
37–51%) among participants with normal cognition (Jansen
et al., 2015). In addition, Aβ immunization trials in AD patients
have been up to now unsuccessful in terms of curing or
ameliorating dementia probably because these clinical trials
started too late in the disease process and even resulted in
meningoencephalitis in 6% of the cases. e.g., (Holmes et al.,
2008; Lannfelt et al., 2014). A limited clearance of pre-existing
Aβ plaques was also shown in experimental studies with the
same tg AD mouse model as used for our studies (Tucker
et al., 2008; van Tijn et al., 2012). As mentioned before using
line 85 we were able to lower the formation of Aβ plaques.
This shows again that an earlier start of immunization trials
is an option (Reiman et al., 2012). Another strategy to lower
the amount of Aβ plaques or signs of dementia is the use of
γ-secretase inhibitors that were unsuccessful so far, because
these trials were halted due to worsening of the outcomes (De
Strooper, 2014). A detailed discussion on these trials and the
biology of APP processing goes beyond the scope of the present
review.

The Tau Hypothesis

This so-called ‘‘Tau and tangle hypothesis’’ suggests that
hyperphosphorylated tau is the primary causative factor in AD
development leading to neurotoxicity. This hypothesis is based
on the observation that NFT density and distribution correlates
with the clinical stage of the disease (Morris et al., 2011; Braak
and Del Tredici, 2013).

The tau gene (located on chromosome 17) is translated into
a protein found predominantly in nerve cells, concentrated in
axons, in normal brain and the protein has six isoforms. It
contains a microtubule-binding domain formed out of three
or four repeating regions (tau 3 R and tau 4 R) (Goedert
et al., 2012). The history of Tau has been reviewed recently
but mutations in the Tau gene have only be shown for
tauopathies related to AD (Mandelkow and Mandelkow, 2012).
Tau initiates and stabilizes neuronal microtubules, which are
components of the cytoskeleton, by binding tubulin in healthy
brain (Iqbal et al., 2009; Kadavath et al., 2015). When tau
is hyperphoshorylated, the ability to bind microtubules is
reduced. Accumulations of hyperphosphorylated and misfolded
tau proteins are observed in affected neurons in AD. Under
normal conditions tau is a soluble protein but it becomes
insoluble in its hyperphosphorylated state. In contrast to the
normal function of tau protein, the aberrant protein causes
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FIGURE 2 | Left panel: α-secretase (α) cleaves the APP molecules inside
the Aβ sequence in a non-amyloidogenic manner, creating a soluble
N-terminal part of APP (APPsα) and a C-terminal part (αAPP CTF) which
is anchored in the membrane. Subsequently the γ-secretase (γ) cleaves the
C-terminal part in a p3 peptide and an APP intracellular domain (AICD). Right
panel: β-secretase (β) cleaves the APP at the N-terminus of the Aβ-sequence in

an amyloidogenic manner, generating an N-terminal fragment of APP (APPsβ)
and a C-terminal part (βAPP CTF). Following, the γ-secretase (γ) cleaves the
βAPP-CTF which results in Aβ and AICD. We showed that ubiquitin B+1

(UBB+1) is able to modulate the formation of Aβ plaques in the transgenic (tg)
line via γ-secretase, this is shown in the Right panel by the arrowhead (van Tijn
et al., 2012; Gentier et al., 2015b).

disruption of microtubules, dysregulated axonal transport,
sequestration of normal tau and subsequently promotes self-
assembly (Simic et al., 2009). Three kinds of tau aggregates
can be differentiated in AD: pretangles and NFTs in the cell
body of neurons, neuropil threads (NTs) in the dendrites, and
dystrophic neurites associated with NPs in the axons (Duyckaerts
et al., 2009). These different forms of tau are detected in our
studies by using the MC1 antibody, recognizing aberrant tau
in pretangles, and CP13, recognizing phosphorylated tau and
appeared to coincide with the appearance of UBB+1. How
UBB+1 is related to aberrant and phosphorylated Tau, both
spatially and temporally needs to be determined. A common
procedure to classify the degree of AD pathology is the so-called
Braak staging (Stages I–VI) based on topographical and time-
dependent distribution of NFTs and NTs (Braak and Braak,
1991). It was generally accepted that the progression of tau
pathology follows a consistent pattern of propagation, which
initiates in the transentorhinal cortex and eventually affects
all the subdivisions of the neocortex (Braak and Braak, 1995).
Currently, however, more evidence is available suggesting that
tau aggregation starts in other regions of the brain, such as
the brainstem, in particular the locus coeruleus (Braak and
Del Tredici, 2011). Based up on these data now also tau
immunizations have started (e.g., Sankaranarayanan et al., 2015).

The Ubiquitin Proteasome System
and UBB+1

The levels of many proteins must be highly regulated
both spatially and temporally in order for cellular functions
to proceed accurately (Hegde et al., 2014). The ubiquitin
proteasome system (UPS) is one of the major intracellular

mechanisms responsible for executing this process severely
contributing to homeostasis in eukaryotic cells. Apart from
cellular homeostasis, this system plays an essential role in
maintaining neuronal functioning, regulation of chromatin
structure, DNA repair, transcriptional regulation, cell cycle
and cell division, synaptic development, maintaining synaptic
connections and numerous other functions (Ciechanover, 2005).
The UPS proteolytic pathway does this by the selective
ATP-dependent degradation of target proteins such as short-
lived, truncated or misfolded proteins by tagging these with
polyubiquitin chains. In addition to the ubiquitination, other
post transcriptional modifications such as SUMOylation and
NEDDylation contribute to protein degradation (Dennissen
et al., 2012) and autophagic processes are activated when the UPS
capacity is exceeded (Lee et al., 2013; Nixon, 2013; Nilsson and
Saido, 2014).

Ubiquitin (UBB) is a highly conserved signaling molecule of
76 amino acids with a molecular mass of 8.5 kDa, that acts in
the membrane, nucleus, and cytoplasm of all eukaryotic cells
(Gregori et al., 1995). The main function of this protein is a
post translational modification by covalent attachment via an
isopeptide bond betweenUBB and a target protein which is called
ubiquitination. The addition of a chain of UBB moieties on the
target molecule is called multiubiquitination. The C-terminal
glycine (G76) of the UBB molecule will attach to an internal
lysine (K) of the target protein (Figure 3). After tagging the target
protein with a polyubiquitin chain, the protein is subsequently
translocated and degraded by a 26S proteasome complex in an
ATP-dependent manner.

The conjugation of UBB to the internal lysine residues
(K) of the target protein is mediated by a cascade of
E1-activating, E2-conjugating, E3-ligating and E4-elongating
enzymes, which are stepwise described in Figure 5. UBB is
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FIGURE 3 | Simplified scheme of the multiubiquitination process
of proteasome substrates. In the ubiquitin proteasome system
(UPS), a substrate (= a degron, such as a misfolded protein) is
(poly)ubiquitinated via a number of enzymatic steps (E1, E2 and E3).
The C-terminal glycine (G76) of the UBB molecule will attach to lysine
moieties (K) at positions 29, 48 and 63 which are involved in
multiubiquitination and degradation. The UBB molecule “on top” of
the target protein prone for degradation can be ubiquitinated itself,
developing a multiubiquitination chain with at least four residues to be
efficient for triggering proteasomal degradation (left panel). A GAGAG

motif is present at the C-terminus of UBB and a dinucleotide deletion
(∆GU) occurs adjacent to this motif which results in an 20 amino
acids extension (red bar), called UBB+1 (see Figure 4). This causes
the absence of G76, necessary for binding to the target protein, and
consequently it is not able to ubiquitinate (Ciechanover and Kwon,
2015). Interestingly, E3 enzymes are able to form a “forked”
polyubiquitin chain in which two ubiquitin chains are linked ot
adjacent lysines on a preceding ubiquitin moiety (e.g., K29, K48 and
K63). These forked polyubiquitin chains are relatively resistant to
degradation by the 26S proteasome (Kim et al., 2009).

generated from a precursor protein which is cleaved by ubiquitin
C-terminal hydrolases (UCHs). UBB becomes activated in
an ATP-dependent manner by the enzyme E1 via a high-
energy thiolester bond between the carboxyl group of UBB
and the active-site cysteine of E1 enzyme (Pickart, 2001).
Subsequently, activated UBB is conjugated to the active site of
an E2 ubiquitin-conjugation enzyme by a transthioesterification
reaction. Currently, at least 30 different E2 enzymes have been
described in the human genome (Bhowmick et al., 2013).
Thereafter, UBB is transferred to an internal lysine of the
target protein by E3 ubiquitin-protein ligases. There are at
least 600 E3 ligases encoded in the human genome (Bhowmick
et al., 2013). E3 ligases mediate the ligation between UBB
and the target protein resulting in the ubiquitination of the
target protein (Ciechanover and Kwon, 2015). Two different
types of E3 enzymes are known: one type, the Homologous
to E6-associated protein C-terminus (HECT) binds the E2-
enzymes as well as the target protein and serves in this way
as an intermediate docking station for UBB. A second type of
E3-enzyme is the Real Interesting New Gene (RING) finger
containing E3-ligase. In this instance, UBB is transferred directly

from the E2-complex to the target protein by the RING-E3
ligase.

The multi-UBB chain linked with the lysine at position
48 (K48) has to be at least four residues long for efficient
proteosomal targeting (Thrower et al., 2000). UBB has seven
lysine residues indicating that diversity in polyubiquitin chain
topology exists in vivo (Peng et al., 2003). As mentioned, the
K48 bond involved in proteasome degradation is the most widely
known and used topology. However, also different linkages exist
like the K63 linkage which mediates non-proteolytic processes
(Hadian et al., 2011) or the K11 linkage used for cell-cycle
regulation and cell division (Matsumoto et al., 2010). The
target protein undergoes several rounds of ubiquitination and
in this way a polyubiquitin chain is formed (Ciechanover,
2014). Another, specialized type of E3 enzyme (E4, e.g.,
CHIP) is necessary for some substrates to be able to become
polyubiquitinated to the desired length (Koegl et al., 1999;
Hoppe, 2005).

UBB+1 is characterized as the first and only naturally
occurring ubiquitin fusion degradation (UFD) substrate, is
associated with neurodegeneration and ubiquitinated at K29 and
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FIGURE 4 | Assembly-line slippage. Loss of two bases [∆GU, ∆GA and
other ones (van Den Hurk et al., 2001)] in the mRNA garbles the rest of the
sequence (Vogel, 1998). Non-sense mRNA decay (NMD) requires a
downstream intron (Maquat, 2015) that is present in APP, Neurofilament H and
MAP2b genes. However, in the UBB gene, this downstream intron is lacking
and the misframed transcript apparently escapes NMD. As shown in Figure 3
thereby the essential C-terminus is lost. In (A–C) the resulting UBB+1

accumulation in neurofibrillary tangles (NFTs) (triangle) of the hippocampus of
an AD patient and a similar one in Pick’s disease (D,E) in Pick bodies of CA1
in the hippocampus is shown. Note in (A) the presence of neuritic plaques
(NPs) indicated by a star. (F,G) Neurofilament H transcripts apparently
undergo a similar process (exon 1. aa. VGAARDSRAA), the resulting NFH+1

protein accumulates in CA1 of the hippocampus of AD patients (triangle). A
similar reaction was found for MAP2B+1 (for details, see van Leeuwen et al.,
2000). Of course these immunohistochemical data require many controls to
avoid cross reactivity (Swaab et al., 1977) as was done for UBB+1. (A–C)
50 µm thick Vibratome sections, (D–F) 6 µm think paraffin sections.

K48 (Lindsten et al., 2002). UBB+1 is also ubiquitinated at K63
which opens the possibility of additional effects of UBB+1 (e.g.,
kinase activation; van Tijn et al., 2012). In summary, variation in
the length of the polyubiquitin chain and the ubiquitin linkage
location determine the fate of the ubiquitinated proteins, a
process that is most probably more complex than previously
assumed (Ciechanover, 2014; Ciechanover and Kwon, 2015).

Subsequently, the polyubiquitin-protein conjugate is
degraded by the 26S proteasome complex by an ATP-dependent

process (Peth et al., 2013; Figure 6). The abnormal protein
is cleaved into short peptide fragments of 6–10 amino acids
(Ihara et al., 2012) and the polyubiquitin chain is released. The
polyubiquitin chain is degraded by UCHL3 (Dennissen et al.,
2011) and further processed by de-ubiquitinating enzymes
(DUBs) into monomeric ubiquitin.

The Proteasome

Polyubiquitinated proteins are translocated to the 26S
proteasome which is described in detail in Figure 6. The
proteasome has to fulfill a whole range of specialized functions:
(1) cleavage of ubiquitin chains linked on the target protein;
coined deubiquitination; (2) recognition and binding selectively
to substrates prone to degradation; (3) chaperoning and
unfolding of these substrates; (4) opening of the gates on each
side of the 20S subunit; and (5) driving the substrate into the
proteolytic core center in the 20S cylinder (Wolf and Hilt, 2004).
We have performed an extensive immunohistochemical screen
of almost all subunits of the proteasome in the hippocampal
complex of AD and non-demented controls to see if a differential
expression pattern of these subunits could be related to UBB+1

(Zouambia et al., 2008). Therefore the proteasomal complex is
briefly introduced.

The proteasome is a cylindrical complex of 2.5 MDa which
consists of two 19S caps and a proteolytic 20S core (Bedford
et al., 2010; Ciechanover and Kwon, 2015). The 20S core
complex has a barrel shape comprised of four rings and each
ring includes seven subunits. The outer two rings are made
up by 7 α-subunits facilitating docking of the 19S caps. The
proteolytic chamber is composed of two inner rings consisting
of β-subunits where β1, β2 and β5 show proteolytic active sites.
The proteolytic activity can be specified in peptidyl-glutamyl-
like (β1), trypsin-like (β2) and chymotrypsin-like (β5) activity.
Alternatively, β1i, β2i and β5i can substitute for β1, β2 and β5
causing a different composition of the 20S complex which result
in the immunoproteasome. These substitutions can be induced
by pro-inflammatory (e.g., interferon-γ) cytokines resulting in
immunoproteasomes, responsible for the generation of antigenic
peptides presented by the MHC class I complex (Wolf and Hilt,
2004).

The 19S activator complexes consist of a base and a lid and
are linked to each other via subunit regulatory particle non-
ATPase 10 (Rpn10; S5a in mammals, please note that here the
yeast nomenclature is used whereas aliases for the same subunit
can be found at sites such as Online Mendelian Inheritance in
Man (OMIM) or Genecards). The base consists of 6 ATPases
of the AAA-family of proteins called Regulatory particle triple
A proteins 1–6 (Rpt1–Rpt6), 3 additional non-ATPase subunits
Rpn1 and Rpn2; and Rpn10/S5a (Zouambia et al., 2008;
Ciechanover, 2014). Rpt 5 binds the ubiquitinated substrate. The
lid on top of the base is built up out of eight different subunits
(Rpn3, Rpn5 to Rpn9, Rpn 11 and Rpn12). Rpn11 contains
a conserved metallo-isopeptidase motif which is necessary for
deubiquitylation and proteolysis of substrates. It is responsible
for the deubiquitination of the targeted substrate after this has
been threaded into the 20S unit; for details, see Tsakiri and
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FIGURE 5 | Schematic representation of the UPS. The degradation
process by the UPS can be divided into five steps. (a) Beginning with
monomeric ubiquitin (orange circles). Ubiquitin becomes activated in an
ATP-dependent manner by E1. (b) Activated ubiquitin (red circles) is
conjugated by E2 enzymes. (c) Thereafter, UBB is transferred to an
internal lysine of the target protein by E3 ligases. Following, activated and
conjugated ubiquitin binds to the abnormal protein forming the

polyubiquitin-protein conjugate. (d) Subsequently, the polyubiquitin-protein
conjugate is degraded by the 26S proteasome complex (Figure 5) by an
ATP-dependent process (Peth et al., 2013). The abnormal protein is
cleaved into short peptide fragments (orange pointed bars) and the
polyubiquitin chain is released (yellow circles). (e) The polyubiquitin chain
is split by de-ubiquitination enzymes into monomeric ubiquitins. For
details, see Layfield et al. (2005).

Trougakos (2015). It has been shown in immunohistochemical
experiments that the Rpt3 subunit of the base is activated at
the transcript level and colocalizes with UBB+1 in NFT of
tauopathies including AD but not in synucleinopathies. This
upregulation and colocalization of Rpt3 (or subunit 6b; human
alias) with UBB+1 suggests a neuronal reaction to compensate for
an increased need to degrade aberrant proteins (Zouambia et al.,
2008).

Ultimately, as stated above, the proteasome degrades the
substrate into short peptides and, thereby, reusable ubiquitin
is released by DUBs. This deubiquitination process is tightly
regulated by enzymes called deubiquitinating enzymes (at least
183 DUBS are known) which are partly essential for neuronal
functioning. These DUBs can be subdivided into five different
classes: (1) the UCHs; (2) the ubiquitin specific proteases
(USPs); (3) the ovarian tumor proteases (OTUs); (4) the
Machado-Joseph Disease protein domain proteases (MJDs); and
(5) the JAB1/MPN/Mov34 metalloenzymes (JAMMs; Todi and
Paulson, 2011). DUBs are responsible for cleaving ubiquitin
precursors, rescuing target substrates from degradation, cleaving
the ubiquitin chain at the proteasome entrance, controlling
epigenetic mechanisms by deubiquitinating histones, and for

disassembly of unanchored ubiquitin chains generating single
ubiquitin moieties (Komander et al., 2009). Since ubiquitination
is a reversible process, DUBs are responsible for maintaining the
balance between free UBB and processed UBB (de Vrij et al.,
2004; Dennissen et al., 2012). Recently it turned out that extended
ubiquitin species like UBB+1 are potent DUB inhibitors leading
to accumulation of proteins (Krutauz et al., 2014). This suggests
that downregulation of UBB+1 is an attractive strategy to restore
neuronal function.

UPS in AD

There is compelling evidence that the UPS is impaired in many
tauopathies such as AD and is involved in the accumulation
of ubiquitinated proteins in AD brains (de Vrij et al., 2004;
Ciechanover and Kwon, 2015). UBB+1 is formed during the
transcription of the UBB gene by a mechanism that still has to be
elucidated, but widespread DNA-RNA sequence differences do
occur of which the mechanism is becoming clear (van Leeuwen
et al., 1998; Gerez et al., 2005; Li et al., 2011, 2012; Wang
et al., 2014). This process was coined molecular misreading by
our group or RNA-DNA differences (RDD) by Cheungs group.
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FIGURE 6 | A representation of the 26S proteasome complex based on
Kostova and Wolf (2003). The lid consists of eight non-ATP-ase subunits,
the base consists of 6 ATP-ase and 3 non-ATP-ase subunits. Please note here
that the yeast nomenclature is used. The catalytic core (blue) is a barrel-like
structure and consists of four stacked heptameric rings. The function of many
of the lid, base and ATPase ring subunits such as Rpt3 (red); Rpt 5 (purple);
Rpn 11 (blue) have been described. For details, see text, Tsakiri and
Trougakos (2015).

UBB+1 accumulation is found in the neurons of all AD patients
and it colocalizes with markers like MC1 and CP13 for NFTS,
‘‘kinky and curly’’ fibers, NTs and dystrophic neurites in plaques
(van Leeuwen et al., 1998).

UBB+1 mRNA was present in all tested brain specimens
of non-demented controls, tauo- and synucleinopathies, while
the aberrant protein specifically accumulates not not only in
all tauopathies investigated so far (e.g., AD; Fischer et al.,
2003) but also in polyglutaminopathies (de Pril et al., 2004).
Interestingly, the accumulation of the UBB+1 protein seems not
to be initiated by an increase in molecular misreading, as the
UBB mRNA concentration measured in cells from temporal
cortices of AD patient aged between 54–88 is not increased,
nor is it in non-demented controls aged between 38–90 (Gerez
et al., 2005). So, question like the driving force of this process,
the mechanism of molecular misreading and the difference in
protein expression between tauopathies and synucleinopathies
remain to be determined. A mechanism to check for errors in
mRNAwas described by the group ofMaquat (Nagy andMaquat,
1998). Apparently UBB+1 transcripts escape mRNA surveillance
as a downstream intron (>50 nucleotides downstream the
mutation) is required which lacks in the UBB gene. This process

is also called non-sense mediated RNA decay (NMD; Maquat,
2015).

So UBB+1 accumulates specifically in tauo- and
polyglutaminopathies. Apparently, the UPS partly contributes to
these phenomena:

a. Ubiquitination of UBB+1 is mediated by the enzymes E2-25K
(Ko et al., 2010) and E3 ligases TRIP12 and HUWE1 (Park
et al., 2009; Poulsen et al., 2012). E2-25K has an important role
in providing a functional interaction between UBB+1 and Aβ

toxicity (Ko et al., 2010).
b. UBB+1 chains seem to be resistant to disassembly by the DUB

isopeptidase T, as UBB+1 lacks the C-terminal glycine residue
(Lam et al., 2000).

c. Another explanation for UBB+1 accumulation is that it may
be due to the inefficient hydrolysis of the C-terminus of
UBB+1 by the DUB. UCHL3, possibly of the oxidative stress
in neurodegenerative diseases (Dennissen et al., 2011).

d. Furthermore it has been shown that UBB+1 is a few amino
acids too short to be efficiently degraded by the proteasome
(Verhoef et al., 2009).

e. At low levels, the UBB+1 protein will be polyubiquitinated and
degraded by the proteasome itself. However, at higher levels
it will act as an inhibitor of the proteasome (right panel of
Figure 3; van Tijn et al., 2007). Decreased proteasome activity
has been shown in affected brain areas (e.g., hippocampus
and cortex) of AD patients (Keller et al., 2000). The UPS
exhibited a failure in proteasomal activity in cortical brain
areas in AD (López Salon et al., 2000; Zouambia et al., 2008).
Interestingly, the accumulation of Aβ in extracellular plaques
may have an additional UPS inhibition, an effect shown in
a cell free system (Gregori et al., 1995), in neuronal primary
cultures (Lopez Salon et al., 2003) and in several AD tg mouse
models (Almeida et al., 2006; Tseng et al., 2008). In addition,
paired helical filaments (PHFs) isolated from AD brains are
able to inhibit the proteasome via the 20S core (Keck et al.,
2003). Moreover, the UPS inhibition not only increases the
accumulation of UBB+1, but it also increases the deposition
of hyperphosphorylated tau in NFTs (Morishima-Kawashima
et al., 1993; Hol et al., 2005).

f. Earlier it was reported that UBB+1 causes neuritic beading,
impairment of mitochondrial movements, mitochondrial
stress and degeneration of primary neurons (Tan et al., 2007).
The underlying mechanism may be due to mitochondrial
dysfunction as we showed in a yeast strain that UBB+1

disturbs the UPS which causes mitochondrial stress and
apoptosis. An unexpected enhancement of basic amino acid
synthesis (arginine, ornithine and lysine) at mitochondria was
induced by the expression of UBB+1 and this increase was
identified as the decisive toxic event. This could be reversed
by Cdc48/Vms1-mediated proteolysis which propose this
pathway as a novel target for preventing neuronal dysfunction
in AD (Braun et al., 2015).

g. It was shown that UBB+1 expression induces expression of
heat-shock proteins (HSPs). This priming of the chaperone
system promotes a subsequent resistance to oxidative stress
(Hope et al., 2003).
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These data suggest that the UPS is a central component in the
pathogenesis of AD, a hypothesis recently firmly supported by
other studies [Manavalan et al., 2013; International Genomics of
Alzheimer’s Disease Consortium (IGAP), 2015].

To elucidate the effects of UBB+1 accumulation in the
brain, we generated a tg mouse line (line 3413/donated to
Jackson #008833) which shows overexpression of human UBB+1

in neurons of the postnatal brain, with strongest neuronal
expression in the forebrain. In in vivo studies, a different
behavioral phenotype from wild-type controls was found in
the 3413 tg mice showing deficits in spatial memory retention
in the Morris water maze (MWM) as well as deficits in
context-dependent fear conditioning (FC) compared with WT
mice. The proteome also showed changes compatible with AD
(Fischer et al., 2009). Furthermore an unexpected result of
line 3413 were changes in spontaneous breathing patterns and
an altered response to hypoxic conditions as revealed in a
functional analysis in the GermanMouse Clinic. These data were
anatomically supported by strong UBB+1 immunoreactivity in
NFTs in brainstem regions of tg mouse line 3413 and validated in
the same human AD brainstem regions such as the parabrachial
nucleus (PBN) and the nucleus of the solitary tract (NTS; Irmler
et al., 2012). It is suggested that brainstem dysfunction (e.g.,
respiration problems) is an early symptom as a result of UPS
dysfunction. Indeed our data are consistent with respiratory
symptoms also observed in AD patients (for details, see Irmler
et al., 2012). This study confirms the power of a complete
phenotypic screening of a tg line, such as was performed by
the German Mouse Clinic. The focus in AD research has so far
been on the entorhinal cortex, temporal cortex and hippocampus
while the brainstem has been under investigated. Very recently,
a study appeared showing significant total volume reduction and
deformations in the brainstem of AD patients (Lee et al., 2015).
These data together (e.g., cognitive and respiratory dysfunction)

highlight the pivotal role of UBB+1 in basic mechanisms like
homeostasis and breathing. According to Maslow’s hierarchy
(Maslow, 1943), these basal levels needs to be fulfilled to jump
to the next level of satisfaction.

Suggestions for Experimental Follow
Up Work

The topographic mapping of UBB+1 in the brain of mouse
line 3413 with most intense site of UBB+1 accumulation in the
forebrain and brainstem, show that line 3413 is not only useful
for AD research (Gentier et al., 2015a) but also for studying other
conformational diseases like HD and Familial encephalopathy
with neuroserpin inclusion bodies (FENIB; Schipanski et al.,
2014). This FENIB tg line was crossed with line 3413 and resulted
in an effect on endoplasmic reticulum associated degradation
(ERAD). Line 3413 was also useful when crossbred with mouse
Line 85 [carrying the Swedish double mutation (K594M/N595L)]
and human PS1 with a deletion of exon 9 (APPPS1; Jankowsky
et al., 2004) regarding the modulation of the Aβ42 plaque load
at younger age and the unexpected rise in γ-secretase activity
(Gentier et al., 2015b).

The contribution of the UPS compounds with regard to
degrading UBB+1 can be addressed in yeast around three
objectives. (1) Which are the lethal variants of UBB+1? (2) What
is the role of the AAA-ATPases Cdc48/VCP and Rpt1–6 in
degradingUBB+1? and (3)What is the role of DUBs inmodifying
UBB+1 and modulating its cytotoxicity?
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