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ABSTRACT Genetic resources are an important source of genetic variation for plant breeding. Genome-
wide association studies (GWAS) and genomic prediction greatly facilitate the analysis and utilization of
useful genetic diversity for improving complex phenotypic traits in crop plants. We explored the
potential of GWAS and genomic prediction for improving curd-related traits in cauliflower (Brassica
oleracea var. botrytis) by combining 174 randomly selected cauliflower gene bank accessions from
two different gene banks. The collection was genotyped with genotyping-by-sequencing (GBS) and
phenotyped for six curd-related traits at two locations and three growing seasons. A GWAS analysis
based on 120,693 single-nucleotide polymorphisms identified a total of 24 significant associations for
curd-related traits. The potential for genomic prediction was assessed with a genomic best linear un-
biased prediction model and BayesB. Prediction abilities ranged from 0.10 to 0.66 for different traits and
did not differ between prediction methods. Imputation of missing genotypes only slightly improved
prediction ability. Our results demonstrate that GWAS and genomic prediction in combination with GBS
and phenotyping of highly heritable traits can be used to identify useful quantitative trait loci and
genotypes among genetically diverse gene bank material for subsequent utilization as genetic resources
in cauliflower breeding.
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Wild ancestors, landraces, old varieties, andbreeding stocks of cropplants
that are preserved in ex situ gene banks are an important resource of
genetic diversity for introducing favorable alleles into modern cultivars.
Adaptation to unfavorable environmental conditions, disease resistance,
and nutritional value are traits for which new alleles can be found in
genetic resources (Hawkes 1991). The improvement of quantitative traits

such as yield with genetic resources is more challenging because of
deleterious alleles and missing adaptation to modern agricultural prac-
tices. However, new improvement strategies may be used for such traits
(Longin and Reif 2014). Molecular breeding methods such as association
mapping and genomic selection combined with current sequencing tech-
nology offer new possibilities for an efficient utilization of genetic resources
(Tester and Langridge 2010; Bevan et al. 2017).

Cauliflower (Brassica oleracea var. botrytis, 2n = 2· = 18) is an impor-
tant vegetable crop, owing to its high nutritional value (Picchi et al. 2012).
With an annual production area of �1.4 million ha and 24 million tons
harvested in 2014 (http://faostat.fao.org/), cauliflower is of great economic
importance, particularly in Asia. The most important trait and yield de-
terminant is the cauliflower curd (edible, often white inflorescence meri-
stem; Li et al. 2017), but response to vernalization is also an important
agronomic trait, and genotypes with obligate and facultative vernaliza-
tion requirements have been identified (Matschegewski et al. 2015).

Genome-wide association studies (GWAS) have been carried out in
major cereal crops, including maize (Li et al. 2012), rice (Norton et al.
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2014), barley (Gawenda et al. 2015), and wheat (Edae et al. 2014). In
Brassicaceae, GWAS have mainly been conducted in rapeseed (Brassica
napus) to dissect the genetic basis of disease resistance (Jestin et al.
2011), seed oil content and quality (Zou et al. 2010; Rezaeizad et al.
2011), seed weight and quality (Li et al. 2014), seed glucosinolate
content (Hasan et al. 2008), and several morphological and pheno-
logical traits (Cai et al. 2014). Recently, GWAS was used in cauli-
flower to identify flowering-related quantitative trait loci (QTL)
(Matschegewski et al. 2015), which are useful for breeding varieties
adapted to different temperature regimes. For example, expression
analysis identified a homolog of the Arabidopsis thaliana CDAG1
(Curd Development Associated Gene 1) gene in cauliflower, whose
overexpression increased curd yield (Li et al. 2017).

In addition to genetic mapping, genomic selection (Meuwissen
et al. 2001) has become an important method in plant breeding
(Schmid and Thorwarth 2014). Genomic selection is based on the
prediction of breeding values based on marker information alone. A
training population with genotypic and phenotypic information is
used to estimate marker effects with a statistical model, which is
then applied to calculate the breeding values of the potential selec-
tion candidates in the breeding population (Heffner et al. 2009).
Cross-validation allows selection of the best model for a certain
population, trait, and genetic architecture (Crossa et al. 2010). Ge-
nomic selection provides several benefits in both animal and plant
breeding (Hayes et al. 2009; Heffner et al. 2009; Jannink et al. 2010),
including more rapid breeding cycles and fewer field trials, leading
to increased genetic gain per time unit at a lower cost (Schaeffer
2006; König et al. 2009; Heffner et al. 2010). Genomic prediction has
been successfully applied in wheat (Poland et al. 2012b), maize
(Crossa et al. 2013), and soybean breeding (Jarquín et al. 2014).
In Brassicaceae, one study investigated the potential of genomic
selection in rapeseed (Würschum et al. 2014) and concluded that
it is a promising method for rapeseed breeding.

Advances in sequencing technology allow the detection of single-
nucleotide polymorphisms (SNPs) from large and diverse germplasm
collections (Crossa et al. 2013). Genotyping-by-sequencing (GBS) gen-
erates tens of thousands of molecular markers at low cost (Elshire et al.
2011; Poland et al. 2012b; Sonah et al. 2013) and is an efficient tool for
plant genetics and breeding (Poland and Rife 2012; Fu et al. 2014;
Tardivel et al. 2014). It has been successfully used for genomic selection
in wheat, maize, and soybean (Poland et al. 2012a; Crossa et al. 2013;
Jarquín et al. 2014), and in GWAS of morphological traits and flavo-
noid pigmentation in maize and sorghum, respectively (Romay et al.
2013; Morris et al. 2013). Recently, Zhao et al. (2016) used specific-
locus amplified fragment sequencing to create a genetic map of cauli-
flower. One disadvantage of GBS is a high proportion of missing data,
which may be alleviated by genotype imputation (Poland and Rife
2012), although the value of imputation for association mapping and
genomic prediction is debated (Marchini and Howie 2010; Rutkoski
et al. 2013).

In this study, we combined GBS with a phenotypic analysis of
cauliflower genetic resources to investigate the potential ofGWAS for
the identification and genomic prediction for the selection of useful
genetic variation in cauliflower breeding. More specifically, the main
objectives of this study were (1) to identify SNP markers that are
associated with phenotypic variation in curd-related traits using
GWAS, (2) to quantify the predictive ability of genomic prediction
models for curd-related traits in diverse cauliflower genotypes
obtained from ex situ gene banks, and (3) to evaluate the effect
of data imputation on association mapping and genomic predic-
tion. We show that GWAS identifies genomic regions harboring

potentially useful variation and that genetic resources are suitable
for genomic prediction of phenotypic variation in highly heritable
traits.

MATERIALS AND METHODS

Plant materials and phenotyping
A total of 192 cauliflower accessions representing a wide range of
morphological diversity and geographical origins were obtained from
thegenebanksof theUnitedStatesDepartmentofAgriculture (USDA)and
fromtheLeibniz-Institut fürPflanzengenetikundKulturpflanzenforschung
(IPK) Gatersleben, Germany. Detailed information about accessions is
given in Supplemental Material, Table S1 in File S1. All accessions were
phenotyped for curd-related traits in replicated field trials at two
locations (experimental stations: Heidfeldhof and Kleinhohenheim
in Stuttgart, Germany), for three successive growing seasons (June
2011, April 2012, and August 2012). The field experiment was con-
ducted in randomized complete block design with two replications
(Yousef et al. 2015). Five ripened curds were harvested from each
plot and used to measure six traits that reflect various aspects of curd
development and morphology according to Lan and Paterson
(2000).

1. Curd width (cm): width of the curd.
2. Cluster width (cm): width of the largest floral cluster.
3. Number of branches: number of branches within the curd that

originated from the main stem.
4. Apical shoot length (cm): stem length from the apical meristem to

where the closest first-rank branch originated from the main stem.
5. Nearest branch length (cm): length of the branch that is nearest to

the apical meristem.
6. Days to budding: number of days from planting to appearance of

the first floral bud.

Genotyping and marker imputation
We genotyped the material with the original GBS protocol using the
ApekI restriction enzyme (Elshire et al. 2011). The sequencing and
bioinformatic analyses of our material are described in Yousef et al.
(2017). Briefly, 192 genotypes were sequenced as two sequencing li-
braries of 96 individuals on an Illumina HiSeq 1000, using a set of
in-house scripts and public sequence analysis tools including bwa (Li
and Durbin 2009) and FastQC (http://www.bioinformatics.babraham.
ac.uk/projects/fastqc/). Eighteen genotypes with ,300,000 reads were
excluded from further analyses, which resulted in a total sample of
174 accessions for further analyses. The preprocessed reads were
aligned to the genome of B. oleracea sp. capitata (Liu et al. 2014) using
bwa. SNP calling was performed with SAMtools (Li and Durbin 2009),
bcfutils, vcfutils, and custom Python scripts. The vcf file was parsed to
retain only SNP positions with a coverage of $30, and $10 reads
confirming the variant nucleotide. In the end, 120,693 SNPs were de-
tected with 19.02–76.73% of missing values per genotype (File S2).

We imputedmissinggenotypeswith fastPHASE(Scheet andStephens
2006) and BEAGLE (Browning and Browning 2007); both use a hidden
Markov model to cluster haplotypes but they differ in the underlying
model. The fastPHASE method uses an expectation–maximization al-
gorithm for parameter estimation and fixes the number of haplotype
clusters in the model. By contrast, BEAGLE uses empirical frequen-
cies and allows the cluster number to be changed at each locus for a
better fit to the localized linkage disequilibrium (LD) (Pei et al. 2008).
We used fastPHASE as the main imputation method because we
expected it to perform better than BEAGLE with our data set, which
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is characterized by a low LD, small sample size, and high marker
density. The advantages of imputation methods under different sce-
narios were described by Browning and Browning (2011). We in-
cluded BEAGLE for comparison for some analyses, but used only
fastPHASE-imputed data for the GWAS to keep the number of anal-
yses manageable. SNP markers with minor allele frequency (MAF)
, 0:05 and any missing values were excluded from further analyses,
which resulted in a total of 675 markers (unimputed data set). Next,
SNP alleles were imputed with fastPHASE (Scheet and Stephens
2006) andmarkers with a MAF , 0:05 were excluded, which resulted
in a total of 64,372 SNPs (imputed data set with fastPHASE). Geno-
mic prediction was conducted with a third data set, in which SNP
alleles were imputed with BEAGLE 4 (Browning and Browning 2007)
and markers with a MAF , 0:05 were excluded, which resulted in a
total of 62,566 SNPs (imputed data set with BEAGLE).

Analysis of phenotypic variation
The effects of the genotype and environment (environment was treated
as the combination of location and season) and their interactions with
phenotypic variation were evaluated using analysis of variance with the
aov function of R (R Core Team 2015). Details of the phenotypic data
analysis are described in Yousef et al. (2015). A mixed-effects model
was fitted using restricted maximum likelihood (REML) with the lmer
function from the R package lme4 (version 1.0-5) (Bates et al. 2014):

yij ¼ mþ Gi þ Ej þ GEij þ eij; (1)

where yij are the adjusted means of the ith genotype in the jth environ-
ment,m is the overall mean,Gi is the effect of the ith genotype, Ej is the
effect of the jth environment, and GEij the genotype · environment
interaction. All effects were considered as random, except the intercept,
which was treated as a fixed effect. Variance components of this model
were used to calculate broad sense heritability for each trait according
to Nyquist and Baker (1991) as

H2 ¼ s2
g

s2
g þ

s2
ge

e þ s2
e
re

; (2)

whereH2 is the broad sense heritability, s2
g is the genetic variance, s

2
ge

is the genotype-by-environment variance, s2
e is the error variance, r is

the number of replications, and e is the number of environments. Best
linear unbiased predictors (BLUPs) for the genotypic effects were
extracted frommodel (1) and used to calculate the genetic correlation
(rG) among all traits. The genetic and phenotypic correlation coeffi-
cients are based on the Pearson correlation coefficient.

Population structure and LD
We used a discriminant analysis of principle components (DAPC) to
infer clusters of genetically related individuals by using a k-means
algorithm as implemented by Jombart and Ahmed (2011). LD between
adjacent markers was calculated and the LD decay over distance for
each chromosome was assessed. To identify differences in LD levels
between the complete sample and the clusters identified by k-means, we
used PLINK (Purcell et al. 2007) to calculate LD as:

r2¼
�
pab2papb

�2
pa
�
12 pa

�
pb
�
12 pb

�; (3)

where pab is the frequency of haplotypes with allele a at one locus and
allele b at the other locus (VanLiere and Rosenberg 2008). The extent

of background LD was estimated as the correlation of the 95% per-
centiles of all pairwise markers between chromosomes (Breseghello
and Sorrells 2006). Additionally, we analyzed the persistence of link-
age phase between DAPC-inferred clusters and the whole sample to
validate whether a marker effect estimated in one cluster will contrib-
ute to the prediction ability in other clusters. Persistence of linkage
phase is calculated as correlation coefficient r by:

r ¼ Dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pa
�
12 pa

�
pb
�
12 pb

�q (4)

whereD ¼ pab 2 papb:As ameasure of LD, r ranges from21 to 1 (De
Roos et al. 2008). Persistence of linkage phase is expressed as corre-
lation of r between the same chromosomes of each cluster. The num-
ber of markers differed between clusters; therefore, we averaged the
correlation of r values between clusters over groups of 50 markers.

Association mapping
GWASwasperformedwith theR (RCoreTeam2015) implementations
of the Efficient Mixed Model Association eXpedited (EMMAX; Kang
et al. 2010) and the Multi Locus Mixed Model (MLMM Segura et al.
2012) methods. The MLMM analysis was conducted with R scripts
available at https://github.com/Gregor-Mendel-Institute/mlmm.EMMAX
is a method that uses a linear model in combination with a marker-
derived relationship matrix to correct for population structure. The
linear model has the form:

y ¼ Xbþ Zuþ e; (5)

where y is the vector of phenotypes; X is a matrix containing the
markers; b is the vector of fixed-effects coefficients; Z is an incidence
matrix; u is the random effect, where Var uð Þ ¼ s2

aK , with K repre-
senting the relationship between genotypes inferred from genetic
markers; and e is the residual effect with e � Nð0; s2

e IÞ. Additive
genetic variance (s2

a) and environmental variance (s2
e ) are derived

from the REML estimates. Variance components are only calcu-
lated once and are taken as fixed in EMMAX, which speeds up
computation (Kang et al. 2010). MLMM uses the same linear
model as EMMAX, but additionally includes significant SNPs as
covariates in the model by using a forward–backward stepwise
algorithm with reestimation of variance parameters (s2

a and s2
e )

at each step.
Following Utz et al. (2000), the proportion of phenotypic variance

explained by a QTL was calculated as:

R2
adj ¼ R2 2

z
N2 z2 1

� �
12R2
� �

; (6)

where R2 is the coefficient of determination, z is the number of pre-
dictors (number of significant SNPs in GWAS), and N is the number
of observations. The proportion of genotypic variance explained was
calculated as:

r̂ ¼
R2
adjbH2 ; (7)

where bH2
is the heritability of a given trait as defined in equation (2).

Confounding effects due topopulation structurewere evaluatedwith
the inflation factor l, which is the ratio of the observed median to the
expected median of a test statistic distribution (Devlin and Roeder
1999). Values close to 1 indicate no inflation. The significance threshold
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was set for the unimputed and imputed data for each trait separately
using the false discovery rate (FDR; Benjamini and Hochberg 1995),
where FDR values are computed from the P-values. The FDRwas set to
0.2 for all data sets.

Genomic prediction
We evaluated three different genomic prediction methods, namely
genomic BLUP (GBLUP), ridge regression BLUP (RRBLUP), and
BayesB. The GBLUPmodel uses a realized relationship calculated from
genetic markers (Habier et al. 2013) and is defined as:

y ¼ 1mþ Zg þ e; (8)

where g is an n · 1 vector of random effects and Z is the designmatrix.
Genetic values are modeled as random effects with g � Nð0;Gs2

gÞ;
with sg as the genetic variance and G the realized relationship
matrix.

AnRRBLUPmodel (Meuwissen et al. 2001)was used to estimate the
marker effects and to calculate the prediction ability. The model is of
the form:

y ¼ 1mþ Xbþ e; (9)

where y is the vector of n phenotypic records, m is a vector of fixed
effects that represents the overall mean,b is an n · 1 vector of random
effects, and X is the marker matrix. The residuals follow a normal
distribution e � Nð0; Is2Þ; where I is the identity matrix. The
GBLUP and RRBLUP implementations of the synbreed R package
(Wimmer et al. 2012) were used.

Additionally, a BayesB (Meuwissen et al. 2001) model as imple-
mented in the BGLR R package (Pérez and de los Campos 2014) was
used to estimate marker effects and to calculate prediction ability.
BayesB uses the same linear model as RRBLUP, but a prior for the
marker effects is modeled as mixture of a point of mass at zero and a
slab that has a scaled-t density. Following Pérez and de los Campos
(2014), the notation of the prior distribution is:

p bj;s
2
b;p

� �
¼

Y
k

pN bjk 0;s2
b

���� �
þ 1-pð Þ1 bjk ¼ 0

� �h i(

3 x-2 s2
bjk

dfb
�� ; Sb

� �)
B p p0;p0jð Þ ·GðSb r; sj �

;

(10)

where b represents the vector of regression coefficients and s2
b is the

respective variance. Parameter p is the proportion of nonzero effects
and follows a b prior distribution, which implies the possibility of

variable selection. N bjk 0;s
2
b

���� �
, x-2 s2

bjk
dfb
�� ; Sb

� �
, B p p0;p0jð Þ, and

GðSb r; sj Þrepresent the normal, chi-squared, b, and g density distri-
butions, respectively (Pérez and de los Campos 2014). BayesB was
chosen over other Bayesian models such as BayesA and BayesC be-
cause it assumes an a priori distribution of marker effects following a
mixture distribution with point mass at zero and a scaled-t slab sim-
ilar to BayesA, and utilizes both shrinkage and variable selection,
similar to BayesC (Pérez and de losCampos 2014). The hyper-parameters
were chosen according to the default values in BGLR.

Since population structure can inflate prediction ability (Guo et al.
2014), we estimated the effect of population structure on prediction
ability by directly correcting the kinship matrix in the GBLUP model

for confounding effects of population structure (Thorwarth et al. 2017).

The corrected kinship matrix was calculated with PC-Relate (Conomos

et al. 2016). Prediction ability was defined as correlation between ob-

served phenotypic and predicted genotypic values [corðy; ĝÞ] and was
calculated by a five-fold cross-validation with 10 replications for each

trait. To test whether genotypic effects in the genomic prediction and
GWAS were caused by the same QTL, the position of SNPs with the
greatest effects in genomic prediction models were compared with the
most significant SNPs in the GWAS.

Data availability
Raw sequence data have been submitted to the Sequence Read Archive
under accession number PRJEB8701. SNP calls are available on figshare
at https://doi.org/10.6084/m9.figshare.5709784. Best Linear Unbiased
Estimators (BLUEs) of phenotypic data are provided as supplementary
material (File S2).

RESULTS

Phenotypic analysis of the six yield-related traits
The 174 gene bank accessions were evaluated for six curd-related traits
and exhibited a large phenotypic variation in all traits (Yousef et al.
2015). For example, number of days to budding ranged from 45 to
118 d with an average of 75:24611:68 d, and curd width ranged from
11.11 to 15.29 cm with an average of 13:5260:73 cm (Table S2 in File
S1). Analysis of variance showed that all traits were strongly affected by
genotype (G), environment (E) and genotype by environment interac-
tion (G · E; P, 0:001). Broad-sense heritability (H2) differed strongly
between traits. The traits of cluster width and number of days to
budding showed moderate (56%) and high (94%) heritabilities, re-
spectively. Furthermore, the traits of curd width and cluster width
showed high phenotypic (rp ¼ 0:69) and genotypic (rg ¼ 0:59) cor-
relations (Table S3 in File S1), as did apical length and nearest branch
length (rp ¼ 0:79 and rg ¼ 0:71). Number of days to budding was
negatively correlated with number of branches (rp ¼2 0:22 and
rg ¼2 0:23).

Analyses of population structure and LD decay
We inferred five genetic clusters (Figure 1A) by k-means clustering
(Figure S1 in File S1). The clusters are differentiated by geographic
origin and flowering time. Cluster 1 (n = 25) consists of geograph-
ically diverse accessions (Table S4 in File S1) without a distinct
geographic origin, but differs from the other clusters by its high
average time to flowering (Figure 1B). Clusters 2 (n = 56) and
4 (n = 40) consist of predominately European accessions that differ
by their mean time to budding. Clusters 3 (n = 24) and 5 (n = 22)
consist mainly of Asian accessions that also differ by mean time to
budding.

We next tested whether the five clusters also differ by the extent of
genome-wide LD, whichmay reflect differences in the breeding history.
Based on the method described by Breseghello and Sorrells (2006), we
estimated background LD as r2 ¼ 0:17 intersecting with the nonlinear
regression curve at�151 kbp (Figure 2). The extent of LD is influenced
by population structure and history, and we therefore calculated LD
parameters for each cluster. Clusters 1, 3, and 5 show a rapid decay
in comparison with the whole population, with an average back-
ground LD of r2 ¼ 0:20; 0:20, and 0.24, extending to�98, �83, and
�41 kbp (Figure 2). Clusters 2 and 4 have lower background LD
values of 0.17 and 0.16, but higher long-range LD with averages
of �280 and �231 kbp.
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The average persistence of linkage phase is moderate between all
clusters except for cluster 5, which reaches the expectation value of
independent segregation (50%) for unlinked markers between clusters
already at close distances in comparison with cluster 2 and cluster
4 (Figure S2 in File S1), indicating a stronger differentiation between
those clusters.

GWAS of six yield-related traits
Since the accessions show a strong population structure, we conducted
aGWASwithmodels that correct for population structure and used thel
parameter to assess how well a correction was achieved. Overall, both
GWASmethods showed l values close to 1 (reflecting a good correction)
for all traits and data (imputed vs. unimputed; Table S5 in File S1), which
shows that the twomethods account sufficientlywell for population structure.

In total, 24SNPsareassociatedwithat leastoneof the sixcurd-related
traits (Figure S3 in File S1; FDR¼ 0:2).With EMMAX, six of 675 unim-
puted SNPs were associated with the traits of curd width, cluster width,
number of branches, and number of days to budding. Only three SNPs
of the imputed data set were associatedwith number of days to budding
using EMMAX. Significant SNPs between the imputed and unimputed
data sets differ from each other; using the imputed SNPs we identified
an additional putative major QTL on chromosome O6 (Figure S4 in
File S1 and Table 1). MLMM identified nine SNPs associated with
apical length, number of branches, nearest branch length, or number
of days to budding using the unimputed data set, whereas in total six
SNPs from the imputed data set were associated with either apical
length or number of days to budding (Table 1).

Of the 24 SNPs significantly associated with the six traits, six QTL
were identified by EMMAX and by MLMM. Moreover, one SNP
(C02:5063181) was associated with both curd width and cluster width.
Another SNP (C07:41524584) was associated with number of days to
budding and number of branches (Table 1). We identifiedminor-effect
QTL related to apical length, number of branches, and nearest branch
length. Taken together, the results indicate that the imputation slightly
increased the number of significantly associated SNPs.

Further, we tested whether SNPs identified as significantly associated
withphenotypic variationalso contribute topopulation structure (expressed
as high DAPC loadings using only the imputed data; Figure S5 and S6 in
File S1). For the traits of curd width and cluster width, no significant SNP
detected by the GWAS was linked to a SNP with a high DAPC loading
(Figure S5 in File S1), but for number of days to budding the significant
association detected on chromosome O6 is located close to SNPs with

highDAPC loadings (Figure S6 in File S1). This suggests that SNPs linked

with flowering time variation also contribute to population differentiation.

Genomic prediction with GBLUP and BayesB
Finally, we tested whether genomic prediction of phenotypic traits can
be carried out with genetically diverse gene bank accessions to select

new genetic resources for breeding purposes. The average prediction

ability for each trait was calculated using five cross-validations with

10 replications; it ranged from0.13 to 0.65withGBLUP (Table 2) and
from 0.09 to 0.66 with BayesB (Table 3) for the different traits and
data sets. The prediction ability for RRBLUPwas the same as for GBLUP,
and we used RRBLUP estimates of marker effects for comparison with
GWAS results. For all traits and both methods (GBLUP and BayesB),
average prediction abilities were higher with imputed than with unim-
puted data, but the differences were minor (0.42 vs. 0.39).

With BayesB, prediction ability ranged from 0.09 to 0.66 (Table 3).
Imputation resulted in slightly higher prediction abilities for all
traits, except for number of days to budding. The prediction ability
of fastPHASE was slightly higher than with BEAGLE for all traits
except number of days to budding and apical length (Table 3). To
compare the GWAS with the genomic prediction results, we ranked
the marker effects estimated by RRBLUP and BayesB in descending
order and compared them with the 24 significant associations detected
by EMMAX and MLMM. Of these 24 SNPs, 18 also produced the
largest marker effects and were among the top eight SNPs with the
highest P-values in the GWAS (Table 1).

We assessed the influence of population structure on prediction
ability using cross-validation. A correction for population structure
resulted in a minor decrease in prediction ability for most traits, except
curdwidth.Thedecrease inpredictionabilitywas substantial fornumber
of days to budding (0.64 to 0.39; Table 2). To test the influence of
population structure on prediction ability, we randomly sampled subsets
of markers and observed fairly high prediction abilities for small marker
numbers (,100; Figure 3). Another approach to characterize the effect of
population structure on prediction ability is to estimate the phenotypic
variance explained by the first three principal components of a principal
component analysis (Table S6 in File S1). According to this analysis,
population structure had a strong effect on the genomic prediction ability
of cluster width (40.01% variation explained by principal component 1),
curd width (16.37% by principal component 1), and number of days to
budding (27.66% by principal component 2). The variance explained by
principal components was marginal for the other traits.

Figure 1 (A) Discriminant analysis of principal components plot for the five inferred clusters using the k-means algorithm (Jombart and Ahmed
2011). (B) Boxplots for number of days to budding for each DAPC-inferred cluster. Letters above boxplots display Tukey-test results. Clusters with
the same letter are not significantly differentiated from each other. Values within boxplots display the mean time to budding for each cluster.
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DISCUSSION

Phenotypic variation
Our sample of cauliflower accessions could be grouped into distinct
genetic clusters that also differed in phenotypic traits. Heritability
estimates of the traits of cluster width, curd width, and number of days
to budding were similar to previous studies (Lan and Paterson 2000;
Matschegewski et al. 2015) and indicate a sufficient quality of the field
trial data for GWAS and genomic prediction. Heritabilities for number
of branches, apical length, and nearest branch were very low, which
reflects a low data quality or a more complex genetic architecture.

Strong population structure and differences in LD decay
A comparison of the population structure inferred by genetic markers
and the passport data indicates limitations of available passport data.
Among the93USDAaccessions in the sample,49have aEuropeanorigin
according to their passport data. Of these, 24 (49%) cluster with the
European accessions from IPK and the remaining 25 (51%) are distrib-
uted between cluster 1 (late flowering, geographically diverse accessions)
and cluster 5 (predominatelyAsianaccessions).This is unexpectedunder
the assumption of a strong correlation between geographic origin and
genetic relationship, but may be explained by incomplete passport data.
Data about the seed donor but not the collection site were available for
79 of 93 USDA accessions (85%), and in these cases the true geographic
origin could not be verified. For this reason, the analysis of genetic
relationship allows a putative geographic origin of accessions to be
assigned and can be used to complement missing passport data.

Genome-wide LD levels in the complete sample, whichwemeasured
as LD decay, were fairly high for an outcrossing species. The maximum
physical distance for genetic linkage is reachedat 151kbpusing thewhole
population. This value is comparable with that of self-fertilizing species,
but lower than a previous estimate for cauliflower of up to 400 kbp
(Matschegewski et al. 2015). A comparison of LD decay and background
LD for the complete sample and each inferred cluster revealed differ-
ences between these groups. For example, the high LD in clusters 2 and
4 that consist mainly of European cultivars suggests that breeding and
small population size likely contributed to the observed differences.

The highest level of long-range LD is located on chromosomeO4 in
accessions of clusters 2 and 4 (data not shown). This chromosome
harborsmultiple paralogs of the BolbZIP gene family, which is involved
into cold stress tolerance (Hwang et al. 2016). Although this trait was
not evaluated in our field trials, we hypothesize that selection for cold
tolerance in European varieties may explain the higher level of LD.

Finally, we compared the persistence of linkage phase between clusters
(Figure S2 in File S1). The proportion ofmarkers in the same linkage phase
was moderate between most clusters, but slightly lower between clusters
2 and 5 and clusters 4 and 5,which indicates that genomic prediction ability
is mainly influenced by the genetic relationship of individuals and not by a
persistent linkage of marker alleles with causal QTL in different clusters.

Significant marker–trait associations in a GWAS of traits
with a high heritability
The phenotypic differences in flowering time and curd width between
genetic clusters suggest a genetic basis for these differences.Weused two

Figure 2 LD decay in the whole
population (A) and clusters 1–5
(B–F). The dashed horizontal line
indicates the average background
LD of all chromosomes of a re-
spective population. The dashed
vertical line indicates themaximum
distance between linked markers
and is used as reference point
for the LD decay.
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GWAS methods for the imputed and unimputed SNP data to map
QTL controlling these traits and identified 24 SNPs that were associated
with at least one of the six phenotypic traits. The genomic locations of
SNPs associated with flowering time (e.g., time to budding) coincide
well with QTL regions identified in previous studies. For example, a
SNP on chromosome O6 explained 26.8% of variation and was close to
a QTL detected by Hasan et al. (2016). Another SNP found on chro-
mosome O2 explains 16.4% of the phenotypic variation for the same
trait and maps to a known QTL (Okazaki et al. 2007; Uptmoor et al.
2008; Matschegewski et al. 2015). The last of these studies also dem-
onstrated the influence of QTL on chromosome O2 on time to flower-
ing. The QTL region harbors a homolog of the A. thaliana Flowering
Locus C (FLC) gene, which controls vernalization and has a major
influence on flowering time.

A third SNP on chromosome O1 explained 13.5% of genetic
variation. It is located in a genomic region that harbors an ortholog
to the A. thaliana the flowering time gene VRN1 (Matschegewski et al.
2015). Additional SNPs that explain a minor proportion of the genetic
variation for flowering time are located on chromosome O7 but have
not been described in literature.

TheGWAS also identified three polymorphisms on chromosome
O2 that are associated with curd width and cluster width. Strongly
associated polymorphisms overlapped for these traits, which can be
explainedby the fact that the two traits are highly correlatedwith each
other (Table S3 in File S1). The SNPs explain between 27.4 and
34.1% of the genetic variation and therefore seem to be linked to a
major QTL. These SNPs are located in genes whose A. thaliana
orthologs regulate response to heat stress, which is consistent with
the observation that temperature has a strong effect on cauliflower
curd development (Matschegewski et al. 2015). Hasan et al. (2016)
identified a QTL on the same chromosome (O2), which was only
expressed under high-temperature conditions (27�).

The differences between the two GWAS methods (EMMAX and
MLMM) may result from the small sample size. Sample size has a
great influence on detection power for complex traits in GWAS
(Korte and Farlow 2013). However, small samples are sufficient to
detect major QTL, because simulations show that QTL explaining
10% of genetic variance can be identified in a sample of 100 geno-
types (Gawenda et al. 2015). As an example, a flowering time QTL
caused by variation in the vernalization response gene FRIGIDAwas
found in a sample of only 107 natural accessions of A. thaliana
(Atwell et al. 2010). We therefore consider our sample of 174 indi-
viduals sufficiently large to reliably detect major QTL for highly
heritable traits such as flowering time regulation, curd width, and
cluster width.

Evaluation of genomic prediction in cauliflower
genetic resources
Genomic prediction is a useful method for characterizing gene bank
accessions, because itmay allow phenotyping to be restricted to a subset
of accessions in order to predict trait values for the complete collection.
WeusedGBLUPandBayesB forprediction, because thesemodels havea
good performance, stable prediction ability, and are suited for different
genetic architectures (Meuwissen et al. 2001; Heslot et al. 2012). Ge-
nomic prediction worked best for traits with a high heritability such as
number of days to budding and cluster width, and less well for the traits
of apical length and length of nearest branch (Table 2 and Table 3). In
addition to a low heritability, the precise phenotyping of the latter two
traits is challenging, and measurement errors result in biased estimates
of variance components and adjusted means that affect prediction
ability.

Since this is the first study that uses genomic prediction in cauli-
flower, we can only compare our results with those for other Brassica
species. Prediction abilities for number of days to budding and curd
width are similar to those for flowering time (0.70) and grain yield
(0.50) in rapeseed (B. napus) (Würschum et al. 2014), a close relative
of B. oleracea, which suggests that genomic selection is a robust and
promising breeding method for Brassica species. Prediction ability is
influenced by the presence of population structure (Thorwarth et al.
2017). If both training and validation sets for genomic selection show
a population structure, a correction for structure reduces prediction
ability (Guo et al. 2014). The effect of population structure on pre-
diction ability depends on the trait. For the trait days to budding, pre-
diction ability decreased from 0.64 to 0.39 after correction, whereas a
correction had no effect on prediction ability of the other five traits.

The strong effect of structure correction on prediction ability for
flowering is consistent with our observation that this trait differs
significantly between genetic clusters. Mainly loci close to the putative
QTL on chromosome O6 seem to contribute to population differenti-
ation (measured as high loading values in the DAPC analysis) and are
close to SNPs linked toflowering timeQTL in theGWAS. This indicates
that selection for different flowering time or adaption to different areas
contributed to the genetic population structure (Matschegewski et al.
2015). For the other traits such as curd with or cluster width there is no
such overlap, which may be explained by a more complex genetic
architecture of these traits.

Genomic prediction models simultaneously utilize all SNPs for
calculating the breeding value. RRBLUB and BayesB estimate marker
effects, which can be used for comparison with GWAS models that
consider each SNP separately. We found strong overlaps of significant
SNPs in the GWAS, with the highest marker effects obtained from the
genomic predictionmodels (Table 1). This overlap reflects the similarity
of the statistical models used for GWAS and genomic prediction, and

n Table 2 Prediction ability for six curd-related traits with different data sets using GBLUP

Imputed Data

Trait Unimputed Data BEAGLE fastPHASE Corrected Mean

Curd Width 0.38 0.45 0.45 0.45 0.43
Cluster Width 0.62 0.65 0.65 0.59 0.63
Number of Branches 0.34 0.38 0.38 0.31 0.35
Apical Length 0.13 0.13 0.14 0.08 0.12
Nearest Branch 0.22 0.27 0.28 0.21 0.25
Number of Days 0.63 0.63 0.64 0.39 0.57
Mean 0.39 0.42 0.42 0.34 0.39

Unimputed: prediction ability using 675 SNPs. Imputed: prediction ability using BEAGLE and fastPHASE imputed data. Corrected: prediction ability for the GBLUP
model with a realized relationship matrix corrected for population structure.
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suggests that these SNPs are linked to robust QTL. In summary, a
comparison of putative causal SNPs identified by GWAS, the estima-
tion of marker effects in genomic prediction, and the analysis of allele
contribution to population structure (DAPC loading) may be consid-
ered as validation of significant marker–trait associations and provides
useful information to improve genetic analysis (Spindel et al. 2016; Bian
and Holland 2017).

The success of genomic prediction depends on the method used and
the size of the training set. We observed only minor differences between
GBLUP and BayesB regarding their mean prediction ability over all traits
and data sets (Table 2 and Table 3). This observation confirms earlier
work that Bayesian models do not outperform GBLUP (Bao et al. 2014).
Since GBLUP is computationally less expensive and much simpler to
implement than BayesB, our results suggest that GBLUP can be recom-
mended for genomic selection in cauliflower breeding. The size of the
training set is another point to consider, because larger training sets
improve prediction ability and allow a robust estimation ofmarker effects
(Windhausen et al. 2012). We provide a first assessment of genomic
prediction in a small sample of genetically diverse cauliflower gene bank
material, but larger training sets are required, especially for traits with a
complex genetic architecture (.1000; Thorwarth et al. 2017).

Imputation effect on GWAS and genomic
prediction results
Although GBS is an efficient method for obtaining large numbers of
polymorphisms, the resulting data have a high proportion of missing
values. Imputation of missing data may be used to overcome this
limitation. In our GWAS analysis, we obtained fewer significant
associations (10) with the imputed data than with unimputed data (14;
Figure S3 in File S1). However, imputation may improve the power of
GWAS because in the imputed data only we identified one additional
QTL for flowering time on chromosome O6, which was also found by
Hasan et al. (2016). However, several QTL observed in the unimputed
data were not identified in the imputed data. One explanation for this
discrepancy is significance levels that are based on marker number. For
quantitative traits that are influenced by QTL with small effects, a
Bonferroni correction of P-values in GWAS may be too conservative
and result in a high proportion of false negatives (Perneger 1998).
Therefore, we used the FDR, which is the expected proportion of sig-
nificant associations that are false positives. It is defined as i

n ·Q, where
i is the rank of the ascending P-values, n is the number of markers
(tests), and Q is the FDR (Benjamini and Hochberg 1995). We used a
FDR of 0.05, which implies that 20% of the observed significant asso-
ciations are false positives. A smaller or higher Q value will lead to a
more stringent or a more relaxed threshold, respectively. For example,
with an FDR value 5% we observed 10 and with an FDR of 30% we
obtained a total of 35 significant associations with EMMAX and
MLMM. It should be noted that FDR thresholds are specific for each
combination of traits and data sets, and for this reason the identification
and implementation of optimal significance thresholds is still debated
(Sham and Purcell 2014). Thus, a careful assessment of different thresh-
olds together with the ranking of marker effects and a comparison of
the DAPC loadings can help to improve the conclusions drawn from
GWAS studies and validate the robustness of putative QTL.

The difference in the number of significant associations between the
unimputed and imputed data sets is also influenced by the imputation
method.The fastPHASEmethod is notwell suited forGBSdata, because
a parameter vector of allele frequencies has tobe estimated for eachSNP.

Figure 3 Effect of increasing the
number of markers, included in
a five-fold cross-validation with
10 replications using a standard
GBLUP model, on prediction abil-
ity. Values represent averages of
100 runs. 10, 25, 50, 100, 250 and
500 markers, respectively, were
sampled randomly for each run.

n Table 3 Prediction ability for six curd-related traits with
different data sets using BayesB

Imputed Data

Trait Unimputed Data BEAGLE fastPHASE Mean

Curd Width 0.35 0.40 0.44 0.40
Cluster Width 0.60 0.64 0.66 0.64
Number of Branches 0.38 0.35 0.41 0.38
Apical Length 0.09 0.12 0.10 0.10
Nearest Branch 0.23 0.28 0.29 0.26
Number of Days 0.66 0.66 0.61 0.64
Mean 0.39 0.41 0.42 0.40

Unimputed: prediction ability using 675 SNPs. Imputed: prediction ability using
BEAGLE and fastPHASE imputed data.
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As fastPHASE performs best with SNPs genotyped inmany individuals
(Scheet and Stephens 2006), the high proportion of missing data re-
duces the average number of individuals available per SNP. As the
second imputation method, we used BEAGLE, which performs well
with medium to large sample sizes (.1000 individuals), but not as well
as fastPHASE when compared for small samples of 100 individuals, as
demonstrated by Browning and Browning (2011). The clustering ap-
proach of BEAGLE flexibly changes cluster numbers to better accom-
modate local LD patterns, but in general neither method can cope very
well with a large amount ofmissing data as observed in this study (Yang
et al. 2014; Xavier et al. 2016).

The imputation of missing markers slightly improved prediction
ability for most traits, consistent with previous studies that revealed
only minor advantages of imputation, particularly in self-fertilizing
crops with a slow LD decay (Rutkoski et al. 2013; Poland et al.
2012a; Jarquín et al. 2014). Prediction ability is mainly determined by
relatedness and less by linkage between marker and QTL, as indicated
by the linkage phase analysis. For this reason, imputation has little
influence on prediction ability, because small numbers of high-quality
SNPs are sufficient to capture the relationship structure among
individuals.

In summary, there was only a minor advantage of imputation for
GWAS and genomic prediction with our sample. However, the rapid
development of genome sequencing technologies and rapidly de-
creasing costs will alleviate the problem of missing data for genomic
prediction, as genome resequencing will uncover most genetic vari-
ation, in particular for crops with small genome sizes such as B. oleracea
(Golicz et al. 2016).

Implications for the utilization of genomic resources
Breeding populations of cauliflower are characterized by a low genetic
diversity (Golicz et al. 2016), which limits the potential for improving
varieties that meet the expectations of growers and consumers. We
showed that both GWAS and genomic prediction contribute to the
genetic analysis of complex traits and to the identification of novel
and potentially useful genetic variation in gene bank material (Yu
et al. 2016). Our study also provides a perspective with respect to the
utilization of ex situ conserved gene bank accessions. Our sample was
randomly selected and represents a broad genetic and geographic di-
versity. We achieved reasonable genomic prediction abilities, although
genetic clustering inflates prediction ability if the cluster structure is
correlated with trait distribution. For this reason, genotyping whole
collections of gene bank accessions and the phenotyping of a suffi-
ciently large subset allows the prediction of relevant phenotypic traits
in the whole collection and the subsequent selection of accessions for
further use as genetic resources. This will contribute to an efficient
description and utilization of ex situ conserved germplasm resources.
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