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Computational models of metaplasticity have usually focused on the modeling of single
synapses (Shouval et al., 2002). In this paper we study the effect of metaplasticity on
network behavior. Our guiding assumption is that the primary purpose of metaplasticity is
to regulate synaptic plasticity, by increasing it when input is low and decreasing it when
input is high. For our experiments we adopt a model of metaplasticity that demonstrably
has this effect for a single synapse; our primary interest is in how metaplasticity thus
defined affects network-level phenomena. We focus on a network-level phenomenon
called polychronicity, that has a potential role in representation and memory. A network
with polychronicity has the ability to produce non-synchronous but precisely timed
sequences of neural firing events that can arise from strongly connected groups of
neurons called polychronous neural groups (Izhikevich et al., 2004). Polychronous groups
(PNGs) develop readily when spiking networks are exposed to repeated spatio-temporal
stimuli under the influence of spike-timing-dependent plasticity (STDP), but are sensitive
to changes in synaptic weight distribution. We use a technique we have recently
developed called Response Fingerprinting to show that PNGs formed in the presence
of metaplasticity are significantly larger than those with no metaplasticity. A potential
mechanism for this enhancement is proposed that links an inherent property of integrator
type neurons called spike latency to an increase in the tolerance of PNG neurons to jitter
in their inputs.
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1. INTRODUCTION
The term metaplasticity describes the ability of neurons to mod-
ulate their overall levels of synaptic plasticity as a function
of recent inputs. Models of LTP/LTD induction that include
a metaplastic mechanism have been around for some time,
with the Bienenstock, Cooper and Munro (BCM) learning rule
and its sliding modification threshold being a significant early
influence (Bienenstock et al., 1982). The BCM rule provides a
rate-dependent model of the tipping point between LTD and
LTP induction based on instantaneous neural firing rates. More
recently, Izhikevich and Desai (2003) have combined the BCM
rule with spike-timing-dependent plasticity (STDP), a learning
rule that takes the precise spike timing of pre- and post-synaptic
neurons into account. The addition of a BCM sliding modifi-
cation threshold to an STDP learning rule has also been used
to explain experimental data showing hetero-synaptic LTD of
untetanized inputs in a model of a hippocampal dentate gran-
ule cell (Benuskova and Abraham, 2007). The precise mechanism
behind metaplasticity is still an open question despite receiv-
ing much recent attention (for a review see Abraham, 2008).
Intensive research into the cellular processes behind metaplas-
ticity has uncovered multiple mechanisms that both cooperate
and compete, with the balance between the various mechanisms
varying between different brain regions.

Models based on BCM define a modification threshold for
LTP/LTD induction that is dynamically altered as a function
of previous post-synaptic spike activity. When spiking activity
increases, the modification threshold is also increased and it
therefore becomes harder to induce subsequent LTP and easier to
induce LTD. A decrease in spiking activity produces the opposite
effect, with LTP induction becoming easier and LTD induction
becoming more difficult. The BCM learning rule defines a single
modification threshold, while later versions have defined sepa-
rate thresholds for LTP and LTD (Ngezahayo et al., 2000). In
one example of a single threshold model (taken from Benuskova
and Abraham, 2007), the relationship between the modification
threshold and synaptic change is defined as follows:

ALTP(t) = ALTP(0)(1/θM(t))

ALTD(t) = ALTD(0)(θM(t)) (1)

where θM(t) is the current value of the modification thresh-
old, ALTP(0) and ALTD(0) are the baseline amplitudes of synap-
tic change, and ALTP(t) and ALTD(t) are the new amplitudes.
Typically, these models assume that the metaplastic modification
threshold is determined primarily by the post-synaptic firing rate
(e.g., Beňušková et al., 2001), although this assumption is still
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open to debate (Hulme et al., 2012). Shouval et al. (2002) suggest
that the modification threshold is more directly set by the levels
of intracellular Ca2+ while (Izhikevich and Desai, 2003) suggest
that synaptic size might also be an influence.

In a synapse whose learning is governed by a spike-timing-
dependent plasticity (STDP) rule, the direction and magnitude
of neural plasticity is determined not only by factors that govern
the level of synaptic input, but also by the precise timing of pre-
synaptic and post-synaptic spikes. Changes in synaptic plasticity
cannot therefore be predicted from either the post-synaptic fir-
ing rate or the total synaptic input alone (Izhikevich and Desai,
2003). In this scenario, the conditions under which the modifi-
cation threshold should be modified relate to the consistency of
these timings in the recent history of the synapse. We use the
term synaptic drive to describe these conditions: strongly corre-
lated spike trains with pre- before post-synaptic spike timings are
defined as producing a positive drive on synaptic plasticity, whilst
post- before pre-synaptic spike trains with identical firing rates
are defined as having a negative synaptic drive.

In the current paper we define a model of metaplasticity that
is determined by the direction and magnitude of synaptic drive,
and also by the size of each of the synaptic connections onto
the cell (Delorme et al., 2001; Guetig et al., 2003). The model
is therefore both spike-timing-dependent and reactive to synap-
tic weight extremes i.e., it resists synaptic pruning and opposes
synaptic weights that grow too large. We have chosen to define the
metaplastic modification threshold in this model as a cell-level
property that integrates the changes in plasticity that are occur-
ring at each synapse. The choice of a cell-level property, rather
than defining a modification threshold at each synapse, allows
the metaplasticity model to be integrated into a larger model of
network behavior and is supported by a recent finding that meta-
plastic effects can be seen in non-primed dendritic compartments
(Hulme et al., 2012). Previous computational models of metaplas-
ticity have typically focused on the modeling of single synapses,
although reports on the effect of metaplasticity at network-level
have recently started to appear (Clopath et al., 2010; Zenke et al.,
2013). Like any computational model of the synapse, the model
of metaplasticity we use in our experiments is motivated by a
mixture of mechanistic and computational considerations. Some
components in the model aim to account for specific empirically
identified biological mechanisms in the synapse. Other compo-
nents are included to implement a particular theoretical claim
about the function of metaplasticity—namely that it serves to reg-
ulate synaptic plasticity, by increasing it when input is low, and
decreasing it when it is high (see e.g., Hulme et al., 2012; Zenke
et al., 2013). In both cases, the model we use is heavily based
on existing models of synaptic plasticity, though it also includes
novel mechanistic and novel functional components.

The primary focus of our study is the impact of metaplasticity
on an empirically observed property of spiking neural networks
called polychronicity. Polychronous neural groups (or PNGs) are
connected groups of neurons that can be activated together
to produce polychronization, a non-synchronous but precisely
timed sequence of neural firing events (Izhikevich et al., 2004).
These stimulus-specific firing signatures form reproducible pat-
terns that are observable in the firing data generated by the

network. Polychronization requires that the connection weights
between PNG neurons be adapted to support a sequential chain of
neural firing (Martinez and Paugam-Moisy, 2009). With an STDP
learning rule, this adaptation occurs readily when spiking neural
networks are exposed to repeated spatio-temporal stimuli. The
STDP rule combined with repeated stimulation potentiates intra-
group connection weights and prunes non-contributing connec-
tions, leading to the preferential selection of stimulus-dependent
polychronous groups (Izhikevich et al., 2004).

Given that polychronous groups evolve via selective enhance-
ment of the connections between PNG neurons, it is often
assumed that the stability of adapted PNGs over an extended
period requires that these same connections be maintained.
However, polychronicity requires only that the combined input to
PNG neurons be sufficient to produce firing within a precise tem-
poral window. Theoretically therefore, PNG neurons can remain
stable within the group even if the weight value on some of their
afferent connections wanders randomly, so long as other input
connections evolve their weights to compensate. This proposed
independence of PNG stability from the weight values of spe-
cific synapses leaves the weights free to support other aspects of
the network dynamics such as competing or co-activating PNGs,
the maintenance of the balance between excitation and inhibition
(van Vreeswijk and Sompolinsky, 1996; Vogels et al., 2005), and
mixture states of synchronization and desynchronization in the
network firing activity (Lubenov and Siapas, 2008).

Evidence for polychronicity in biological networks has been
technically difficult to establish, although precise spatio-temporal
firing patterns observed in rat and monkey cortical neurons pro-
vide some supporting evidence (Villa et al., 1999; Shmiel et al.,
2006). However, in simulated networks the process of isolat-
ing structural PNGS or detecting PNG activation is straightfor-
ward (e.g., Izhikevich et al., 2004; Martinez and Paugam-Moisy,
2009). We use a recently developed technique called Response
Fingerprinting to test whether polychronicity both persists and
is stable within our model metaplastic regime (Guise et al., 2014).

A modified STDP rule that includes a metaplastic mecha-
nism is likely to have a significant effect on PNG formation
and may also be more biologically plausible than existing STDP
rules. Lazar et al. (2007) report improvements in both network
performance and stability using a combination of intrinsic plas-
ticity with STDP to produce a reduction in synaptic saturation.
A metaplastic modification to the STDP rule has the poten-
tial to maintain synaptic weights more centrally in the range
and may therefore produce a similar performance advantage.
However, the formation of polychronous groups has a signif-
icant effect on synaptic weights, resulting in a characteristic
bimodal weight distribution that opposes this predicted centraliz-
ing effect. Polychronizing pathways are very dependent on strong
connections that support convergent input to PNG neurons,
and therefore any network mechanism that affects the synaptic
weight distribution is predicted to have a significant effect on
PNG formation. Given the opposing effects of PNG formation
and metaplasticity on synaptic weight distributions, it is not clear
whether PNG formation will be supported in networks with the
new metaplastic mechanism, and if it is supported, what the effect
will be on PNG size.
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2. METHODS
2.1. METAPLASTICITY MODEL
2.1.1. Methodological preliminaries
As mentioned in the introduction, the model of metaplasticity
we implemented in our experiments was designed to accommo-
date a mixture of mechanistic and computational considerations.
The computational considerations are uppermost: we assume that
the key purpose of the metaplastic mechanism we are modeling
is to regulate synaptic plasticity, by limiting the range of weights
within any given synapse, forcing weights away from both their
upper and lower extremes. Accordingly, a key design goal for our
computational model is that it produces this effect. At the same
time, we want the model to make as much reference as possi-
ble to empirically identified mechanisms in the synapse, so that
the regulatory effect can be linked as much as possible to phys-
iological processes. On both counts our model draws heavily on
existing models of metaplasticity. A useful point of reference is the
model of metaplasticity of Zenke et al. (2013). Like our model,
this model implements an assumption that the main purpose
of metaplasticity is to regulate synaptic plasticity. However, our
model incorporates a slightly different set of mechanistic com-
ponents to achieve this effect. We will draw attention to these
differences as the model is introduced.

One difference to mention straight away is that our model
defines a metaplastic modification threshold that is a neuron-level
property: the theshold value for a given neuron is computed from
a weighted average of the threshold values of its afferent synapses.
The model is therefore best described in two sections: a synapse-
level model that weights the size of each synapse according to
the current direction and magnitude of synaptic change (synaptic
drive); and a neuron-level model that is computed as a weighted
sum of the individual synaptic values.

2.1.2. Synapse-level model
The metaplasticity model at the level of each individual synapse is
defined by a weighting function that computes a weighted value
for each synapse. The weighting function takes values represent-
ing the current synaptic weight and synaptic drive as arguments,
and returns a weighted value representing the resistance to synap-
tic weight change. The synaptic drive is dependent on both the
level of synaptic input and the precise timing of that input relative
to a back-propagating dentritic signal. In our simulated network,
we approximate the synaptic drive with a synaptic derivative, an
instantaneous measure of the direction and magnitude of change
at each synapse that is an explicit value from the original network
simulation code (Izhikevich, 2006b).

The desired weighting function needs to exert little influence
when synaptic weights are within bounds, but must step in with
increasing resistance as the weights approach the upper or lower
weight limits. One possibility, that we use throughout this paper,
is as follows:

f (di, wi) = rep(map(di))(wi−min) − rep(10−map(di))(max−wi) (2)

where:

p = precision

r = resistance

min = minimum soft limit

max = maximum soft limit

di = derivative of synapse i, di = lim�t→0
�wi
�t

wi = weight of synapse i

map(x) =

⎧⎪⎨
⎪⎩

0 if 0.5(x + 10) < 0

10 if 0.5(x + 10) > 10

0.5(x + 10) if 0 ≤ 0.5(x + 10) ≤ 10

The map function maps the normal range of synaptic derivative
values (−10 to +10) into the range 0–10, and clips values out-
side of this normal range. The precision (p) and resistance (r)
parameters control the curvature and amplitude of the function.
The weight limits are determined by the parameters min and max
that specify uncapped soft limits rather than capped hard limits
on synaptic weights. Figure 1A shows the full picture for both
parameters (di and wi) over the weight range 0–10 and limiting
the range of the synaptic derivative to ±10. Most combinations of
di and wi generate a weighting term that is close to zero, and the
resulting surface is therefore largely flat for these combinations.
However, the surface exponentially rises and falls in opposing
corners, producing maximum resistance to increases in synap-
tic weight when the synaptic drive is positive and the weight is
already large, and maximum resistance to decreases in synap-
tic weight when the synaptic drive is negative and the weight is
already small. However, the function generates little resistance to
large weights if the synaptic drive is negative, or to small weights
if the synaptic drive is positive, providing no impediment to
migration of synaptic weights away from the weight limits.

2.1.3. Neuron-level model
The modification threshold (θM) in this model is a neuron-level
property that determines the ease of subsequent synaptic change.
Unlike previous models, the modification threshold is dependent
on synaptic drive and therefore only indirectly dependent on the
post-synaptic spike rate or the total input. When synaptic drive
is strongly positive, θM increases, and subsequent LTP induction
becomes harder (and LTD induction becomes easier). A negative
synaptic drive produces the opposite effect by causing θM(t) to
decrease.

The modification threshold is computed as a range-limited
average of the weighting function output for each of the afferent
synaptic connections. The weighting function outputs represent
a weighted synaptic derivative for each synapse, and the aver-
age therefore represents the integrated synaptic drive across all
synaptic inputs. The weighting mechanism assumes that a global
metaplastic signal interacts with the local conditions (particularly
the synaptic size) at each synapse.

Given a weighting function f(di, wi), the modification thresh-
old is computed as follows:

θM(t) = tanh
(

I

∑n
i = 1 f (di, wi)

n

)
(3)

where:
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FIGURE 1 | Metaplasticity model for a single synapse showing the

weighting function and an example of some computed output

values. (A) A symmetrical weighting function based on Equation (2) with
parameters (r = 0.1, p = 0.05) (B) Data generated over 100 s from an
implementation of the neuron-level metaplasticity model with a single
synapse. The model consisted of two excitatory RS-type Izhikevich
neurons (Izhikevich, 2006a) with a single synaptic connection (delay =

1 ms; initial weight = 6.0 mV; max. synaptic weight = 15.0 mV). Both
neurons were directly stimulated with two evenly-spaced bursts of six
pulses at 5 Hz delivered every second, with each pre-synaptic pulse
leading the post-synaptic pulse by 5 ms (producing positive synaptic
drive). Weighting function parameter values (Equation 2) were (r = 0.1, p
= 0.05). SD, synaptic derivative; θM (t), metaplastic modification threshold;
SW, synaptic weight (mV).

I = inertia

n = number of synapses

f(di, wi) = a weighting function

The hyperbolic tangent limits the range of the modification
threshold to ±1, while the inertia parameter controls the rate of
change of θM i.e., the sensitivity of the modification threshold to
small changes in the average weighted synaptic derivative. Here
we are assuming a biophysical process that maps a wide input
range into a narrower response range such as in the proposed
power-law relationships between stimulus strength and perceived
intensity (MacKay, 1963).

Equations (2) and (3) are novel elements in a model of meta-
plasticity, in that they assume a generalized postsynaptic activity
function rather than the ‘spike counter’ assumed by existing mod-
els (see e.g., Benuskova and Abraham, 2007; Zenke et al., 2013).
However, this departure is justified in the light of recent evi-
dence that synaptic plasticity can be homeostatically regulated
by the cell-wide history of synaptic activity through a calcium-
dependent but action potential-independent mechanism (Hulme
et al., 2012).

Given the modification threshold, the amplitudes of synaptic
change in LTP and LTD can now be calculated as follows:

ALTP(t) = ALTP(0) − (
ALTP(0)θM(t)

)
(4)

ALTD(t) = ALTD(0) + (
ALTD(0)θM(t)

)
(5)

The two equations in (4) are symmetrical by design: if θM(t)
is positive then the LTP amplitude (ALTP) decreases, and the
LTD amplitude (ALTD) increases by the same proportion. Unlike
the equation described by (Benuskova and Abraham, 2007) (see
Equation 1), the LTP and LTD amplitudes in Equation (4) are
modified in direct proportion to the modification threshold (θM)
and the current baseline amplitudes. In contrast, each of the
amplitudes of synaptic change in the equation of Benuskova and

Abraham (2007) differ in their relationship to the modification
threshold: ALTP is inversely proportional to θM , while ALTD is
directly proportional. If spike activity is low but consistent, the
equation of Benuskova and Abraham (2007) has the potential to
create a dramatic imbalance between ALTP and ALTD that allows
synaptic weight to increase without limit. Clopath et al. (2010)
and Zenke et al. (2013) introduced models in which only the
LTD amplitude is metaplastically modified and the LTP ampli-
tude stays constant. However, we do not have any neurobiological
evidence why only LTD would be subject to homeostatic control
and LTP not, therefore we assume that magnitudes of both are
metaplastically modified.

Metaplasticity models based on post-synaptic spike rate
restrict the modification threshold to positive values. However,
in the current model (based on synaptic drive) and in mod-
els based on post-synaptic membrane potential, both positive
and negative values are allowed (Ngezahayo et al., 2000). We
limit the range of the modification threshold to ±1 (above)
so that both the LTP and LTD amplitudes have the range 0–2
times the baseline amplitudes, and have default values of ALTP(0)
and ALTD(0) respectively. Although there is no explicit limit on
synaptic growth in Equation (4), the symmetry between the equa-
tions for LTP and LTD limits the degree of imbalance between
the two.

It is worth emphasizing that because the metaplastic mod-
ification threshold is calculated from an average of the val-
ues returned by the weighting function, the resistance to
synaptic weights that near the limits also applies only on aver-
age. Therefore, individual synapses are allowed to grow with-
out limit so long as the average across all synaptic inputs is
within the allowed weight range. Synaptic pruning can still
therefore occur, even if the value for weight limit resistance
in Equation (2) is large. Likewise, while individual synapses
are allowed to grow large, they will increasingly dominate the
weighted average as they grow, providing an implicit limit to their
growth.
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2.2. NETWORK SIMULATIONS
2.2.1. Networks
For network simulations we use a spiking neural network plat-
form we have developed called Spinula (Guise et al., 2013) that is
based on the reference implementation from Izhikevich (2006b).
Twenty different networks were generated for these experiments,
with each network composed of 1000 Izhikevich neurons (800
excitatory RS type and 200 inhibitory FS type). Within each net-
work each simulated neuron was connected to 100 randomly
selected post-synaptic neurons with the restriction that inhibitory
neurons were connected to excitatory neurons only. Inhibitory
connections were assigned a 1 ms conduction delay while excita-
tory connections were randomly assigned a delay in the range 1–
20 ms. Connection weights were initialized to the values +3.0 mV
(for excitatory weights) and −2.0 mV (for inhibitory weights).
Each network was then matured for 2 h by exposure to a 1 Hz
random input under the influence of a spike-timing-dependent
plasticity (STDP) rule. The STDP rule was temporally asymmet-
ric and with parameters as in (Izhikevich, 2006a) i.e., A+ = 0.1
and A− = 0.12. Random input was generated by an independent
Poisson process on each neuron.

2.2.2. Training
Networks were trained on a 5 Hz stimulus with a 1 Hz random
input for 180 s (internal simulation time). Guise et al. (2014)
have previously reported that PNG size reaches a plateau within
around 2 min with this training protocol. Each stimulus was com-
posed of forty firing events arranged in an ascending pattern (see
Figure 2 for an example of the Ascending pattern, and Guise et al.,
2014, for further details). Metaplasticity-related parameters were
r = 0.1; p = 0.5; inertia = 0.2; maximum synaptic weight =
10.0 mV (hard limit). Following training, synaptic weight dis-
tributions were generated from the saved synaptic weights for
each network. The number of neurons participating in PNG
activation was assessed by generating a Response Fingerprint for
each network.

2.2.3. Response fingerprinting
The effect of the metaplasticity model on large networks of
100,000 synapses was examined using a technique we have
recently developed called Response Fingerprinting (Guise et al.,
2014, for implementation details see Guise et al., 2013a). A
Response Fingerprint is a probabilistic representation of PNG
activation that describes the spatio-temporal pattern of firing
within a network in response to an input stimulus. It consists of a
set of time windows within which specified neurons are likely to
fire with empirically determined probabilities; information can
be combined across time windows using Bayesian techniques to
derive an aggregate estimate of the likelihood of the stimulus. The
effect of metaplasticity on the ability of a network to polychronise
was assessed by comparing the Response Fingerprints gener-
ated by the network with and without metaplasticity enabled.
Response Fingerprints were generated by profiling the firing event
data in the presence of a 1 Hz random background and identify-
ing peaks in the histograms using a final consistency threshold
of 0.75, a measure of the consistency of spiking within each peak
region.

2.2.4. Connection activation
The presentation at fixed intervals of a known stimulus (one on
which a network has been trained) produces a regular pattern of
firing reflecting the activation of a PNG. The network connec-
tions can be partitioned into those that are regularly activated
by the stimulus and those that are not, allowing an examina-
tion of the differential effect of metaplasticity on connections that
participate in PNG activation vs. non-participating connections.
The partitioning procedure involves attempting a fit for each of
the 100,000 connections in each network to firing data generated
from the network in response to the stimulus: for each connec-
tion and each pair of firing events in the firing data, we label
the connection as active if connection length ≤ time difference ≤
connection length+jitter, otherwise the connection is labeled non-
active i.e., if the time difference between firing events is longer

FIGURE 2 | Examples of stimuli and the stimulus response. (A) The
Ascending pattern as a 1 Hz or 4 Hz stimulus. (B) The response to a 4 Hz
stimulus. A network trained on the Ascending pattern was repeatedly
presented with the same pattern at 4 Hz with a 1 Hz random background. The
figure shows a randomly selected response frame between t = 2000 and

t = 2250 ms. The input pattern can also be seen as an ascending sequence
of firing events in the first 40 ms of the frame. The network responds to this
pattern with an avalanche-like burst of activity, that builds as the signal
arrives, and then terminates quite suddenly when activity in the pool of
inhibitory neurons reaches a critical threshold.
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than the connection length by some small amount then the pre-
synaptic spike was probably a contributor to the post-synaptic
firing event and can be considered to be a part of the PNG
activation. The allowed variation or jitter is typically set to 2 ms.

2.2.5. Input space response
The Input Space Response (ISR) of a neuron is produced by vary-
ing the firing times of each of the afferent neurons over a defined
range and recording which of the resulting spatio-temporal pat-
terns produces consistent firing of the post-synaptic neuron. This
input space of potential firing patterns has the same dimension as
the number of inputs to the target neuron, and the active input
space is the subset of the input space that produces firing of the
target. For example, neuron 4 in Figure 8 has three input neu-
rons. If the firing times of 1, 2 and 3 are systematically varied
over the range 1–20 ms (keeping connection delays fixed) then the
combination of all inputs produces a 20 × 20 × 20 cube of spatio-
temporal patterns, only some of which produce firing of neuron
4. With just three inputs the cube may conveniently be flattened
to two dimensions by taking the difference between each pair of
firing times i.e., (t1 − t2) and (t2 − t3), where (t1, t2, t3) are the
firing times of neurons 1, 2, and 3. Only two difference pairs are
required as the remaining difference (t1, t3) is constrained by the
other two. This 2D projection has the additional benefit of remov-
ing redundancies, as many of the patterns in the original cube are
just shifted versions of the same spatio-temporal pattern.

3. RESULTS
The intention of the metaplasticity model was to force the synap-
tic weight values away from the extremes and toward the middle
of the weight range. However, in networks with many afferent
connections we might expect this effect to be diluted by the
large number of synaptic inputs onto each neuron. Nevertheless,
the metaplasticity model attempts to maintain a central weight
for each synapse on average, and might therefore be expected to
increase the number of non-saturated weights in the network.
Significantly, this predicted effect opposes the bimodal weight dis-
tributions observed during PNG formation. It is unclear which
of these effects will be stronger, the PNG-formation effect that
moves synaptic weights toward the limits through STDP, or the
metaplasticity effect that moves weights toward the center of the
range.

3.1. OVERALL EFFECTS
3.1.1. Weight distributions
The results on twenty large networks of 100,000 synapses each
are shown in Figure 3. Metaplasticity was found to have a signif-
icant effect on the distribution of excitatory synaptic weights in
each network (inhibitory weights are non-plastic and are there-
fore not shown in Figure 3). For convenience, each of the eighty
thousand excitatory connections was categorized into just one
of three weight groups as follows: synaptic connections with
zero weight (pruned synapses); connections with the maximum

FIGURE 3 | The effect of metaplasticity on twenty large networks

showing the change in PNG size (A), or changes in synaptic weight

distributions (B–D) with metaplasticity either enabled or disabled.

The boxes in each box-and-whisker plot show the location of the middle
50% of the data, while whiskers show either the maximum (minimum)
value or 1.5 times the interquartile range (IQR). Outliers that are outside
1.5 times the IQR are shown as circles (Crawley, 2012). A. Change in the
average number of PNG neurons (PNG size). (B–D) Change in average
synaptic weight distributions. Each of the 80,000 excitatory connections
in each network was assigned to one of the following categories: Pruned

(synaptic weight of zero), Saturated (maximum synaptic weight), Other
(non-zero and non-saturated synaptic weight). Data: PNG Size = (means:
with metaplasticity = 493, no metaplasticity = 426) (paired t-test: t =
15.0106, p < 0.001 (2-tailed), d.f. = 19). Pruned = (means: with
metaplasticity ≈ 69400, no metaplasticity ≈ 71000) (paired t-test: t =
18.0874, p < 0.001 (2-tailed), d.f. = 19). Saturated = (means: with
metaplasticity ≈ 9300, no metaplasticity ≈ 8300) (paired t-test: t =
20.4666, p < 0.001 (2-tailed), d.f. = 19). Non-saturated = (means: with
metaplasticity ≈ 21300, no metaplasticity ≈ 20800) (paired t-test: t =
8.2596, p < 0.001 (2-tailed), d.f. = 19).
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synaptic weight (saturated synapses); and the remaining con-
nections that were neither pruned or saturated (non-saturated
connections). The overall effect of metaplasticity on these net-
works was a shift in the weight distribution toward larger weights
when metaplasticity is enabled.

Pruned synapses were particularly affected (see Figure 3B).
The number of pruned synapses dropped significantly when
metaplasticity was enabled relative to the number with meta-
plasticity disabled, producing an increase in the number of effec-
tive connections (i.e., those with non-zero weight). On average,
around 1500 additional connections were added to the net-
work when metaplasticity was enabled and these were distributed
between both saturated and non-saturated connections, affect-
ing the counts for these weight groups. The number of saturated
connections was therefore significantly increased with approx-
imately 1000 additional connections becoming saturated when
metaplasticity was enabled (see Figure 3C). There was also a sig-
nificant increase in the number of non-saturated connections
(Figure 3D): around 500 additional non-saturated connections
were observed with metaplasticity enabled, relative to a network
with no metaplasticity as originally predicted from the single
synapse model.

3.1.2. PNG Size
Of particular relevance to the focus of this paper, metaplastic-
ity also produced a significant increase in the average PNG size
across networks (see Figure 3A): the number of PNG neurons was
significantly higher with metaplasticity enabled than with meta-
plasticity disabled. There was also a significant increase in the
excitatory firing rate measured at the end of the training period

when networks were trained with metaplasticity enabled [t =
17.7123, p < 0.001 (2-tailed), d.f. = 19; mean (enabled) = 6.0;
mean (disabled) = 5.1] (results not shown).

3.2. EFFECTS ON PNG CONNECTIONS
Given the observed increase in PNG size when metaplasticity is
enabled, it is worth considering the differential effect of meta-
plasticity on the weight distributions of connections that do or
do not participate in PNG activation. This entails detecting those
connections that are regularly activated by the stimulus, allowing
the network connections to be partitioned into PNG connections
(i.e., those that participate in PNG activation) and non-PNG
connections (i.e., those that do not).

3.2.1. Weight distributions
The effect of metaplasticity on the proportion of PNG vs. non-
PNG connections in each of the weight groups of Figure 3 can
be seen in Figure 4. There is a significant interaction between
the metaplasticity status of the networks and the PNG partici-
pation of the connections for some but not all of these weight
groups. Saturated weights increase for PNG connections when
metaplasticity is enabled, but not for non-PNG connections. For
the non-saturated weight group both PNG and non-PNG con-
nections increase in numbers when metaplasticity is enabled, but
with no significant interaction for this weight group. Particularly
notable is that, despite the overall decrease in pruned weights
observable in Figure 4, the number of pruned weights in the PNG
group actually increases when metaplasticity is enabled. These
effects of metaplasticity are small, but given the strongly recur-
rent structure of these networks, they might still have important
consequences on the network dynamics.

FIGURE 4 | The effect of metaplasticity on the proportion of PNG vs.

non-PNG connections. Connections were assigned to three categories as in
Figure 3. In each weight category, connection numbers were counted for
each combination of PNG participation and metaplasticity status i.e.,
PNG/with metaplasticity, PNG/no metaplasticity, non-PNG/with
metaplasticity and non-PNG/no metaplasticity. Each of the four plotted values
in each graph represents the mean over twenty different networks with
metaplasticity enabled or twenty networks with metaplasticity disabled. The
vertical bars on each plotted value represent one standard deviation above
and below each plotted mean. However, for the Pruned data the activated vs.
non-activated values are too far apart to be seen clearly using this plotting
method. The Pruned data is therefore plotted as two boxplot graphs

representing the activated vs. non-activated values, with each boxplot
representing the mean and range for the same twenty networks with
metaplasticity either enabled or disabled. The interaction between PNG
participation and metaplasticity status is significant for the Saturated and
Pruned groups but not for the Non-saturated group. Data: Saturated =
(means: PNG/no metaplasticity 4595; PNG/with metaplasticity 5662;
non-PNG/no metaplasticity 3658; non-PNG/with metaplasticity 3601).
Non-Saturated = (means: PNG/no metaplasticity 294; PNG/with
metaplasticity 532; non-PNG/no metaplasticity 512; non-PNG/with
metaplasticity 781). Pruned = (means: PNG/no metaplasticity 1038;
PNG/with metaplasticity 1533; non-PNG/no metaplasticity 69903;
non-PNG/with metaplasticity 67891).
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3.2.2. PNG Size
The results in Section 3.1.2 show a significant increase in the
number of neurons involved in PNG activation when metaplas-
ticity is enabled. A technique for partitioning connections allows
an alternative view of PNG activation size in terms of the number
of participating connections. Figure 5 shows the effect of meta-
plasticity on PNG connection counts for each of the 20 indepen-
dent networks in Figure 3. Unsurprisingly, given the previously
observed increase in the number of PNG neurons, enabling meta-
plasticity produces a significant increase in the total number of
PNG connections in each network. Interestingly, most of this
increase comes from additional excitatory connections that are
recruited into the PNG activation when metaplasticity is enabled.

3.3. EFFECTS OF VARIATION IN THE METAPLASTICITY PARAMETERS
All of the effects reported above used the same values for the resis-
tance (r) and precision (p) metaplasticity parameters (r = 0.1
and p = 0.5). In this section we briefly discuss some experiments
with alternative parameter values. Figure 6 shows the effect of a
random selection of alternative values on the PNG size distribu-
tions. The size distribution with metaplasticity disabled is shown
on the left for comparison. These results allow a few preliminary
observations. Firstly, there is a strong interaction between the two
metaplasticity parameters: for instance setting r to very small val-
ues has the same effect as disabling metaplasticity, regardless of
the value of p. Secondly, metaplasticity certainly has a positive
effect on PNG size over a considerable range of values of r and
p, so the effects we observed are not due to fortuitous or carefully
tweaked settings of these parameter values.

3.4. A ROLE FOR SPIKE LATENCY?
A particularly interesting direction of research has been the inter-
action of metaplasticity with a rarely studied phenomenon called
spike latency that is an intrinsic property of the integrator type
neurons employed as excitatory cells in this study (Izhikevich,
2007). Spike latency is the delay in spike generation that occurs
when a neuron is stimulated at near threshold levels. A simple

FIGURE 5 | The effect of metaplasticity on the the number of PNG

connections. Left: Connection counts for excitatory PNG connections.
Middle: Connection counts for inhibitory PNG connections. Right: Total
connection counts. Data: Excitatory = (means: +meta ≈ 7730 −meta ≈
5930) (paired t-test: t = 27.5989, p < 0.001 (2-tailed), d.f. = 19) Inhibitory =
(means: +meta ≈ 6120 −meta ≈ 5730) (paired t-test: t = 7.2883,
p < 0.001 (2-tailed), d.f. = 19) Total = (means: +meta ≈ 13900 −meta ≈
11700) (paired t-test: t = 23.1757, p < 0.001 (2-tailed), d.f. = 19).

demonstration can be seen in Figures 7A,B. Figure 7A shows a
small network of four neurons in which neurons 1, 2, and 3 pro-
vide input to neuron 4. In Figure 7B we see the effect of varying
levels of stimulation on the firing time of neuron 4 as the con-
nection weights are incremented together in fixed-sized steps. If
the input level is barely superthreshold (at 17 mV), neuron 4
spikes at around 30 ms (including connection delays). However,
as the input level is increased the firing time of neuron 4 migrates
backwards until all three connection weights are saturated.

Spike latency can explain some unusual results in the dynamics
of connection weights. If a network such as the one in Figure 7A is
repeatedly stimulated with a firing pattern that is congruent with
the connection delays then the interaction of STDP with the con-
vergent impulses arriving on neuron 4 produces a strong positive
synaptic drive that causes the weights on all three connections to
increase to saturation and stay there. However, small changes in
the network parameters can produce the effect demonstrated in
Figure 7C in which the weight of Connection C first increases
and then decreases. This effect was engineered by decreasing the
initial weight on C and making the Connection C delay just a lit-
tle longer than the delays on A and B. In the first 5 s of training
the spike arrival time on C occurs before spiking of neuron 4, as
is also true of Connections A and B. However, as the combined
connection weights increase causing the firing time of neuron 4
to migrate backwards, the spike arrival time on C occurs after
neuron 4 firing, producing synaptic depression on C.

We hypothesize that spike latency is involved in the underlying
mechanism that supports the stability of polychronization, and
hence in the ability of PNGs to extend. In large networks with
recurrent connections, the effect of recurrent input and other
factors such as random firing influence the firing probabilities
of PNG neurons in response to subsequent activating stimuli,
resulting in complex and unpredictable dynamics. Nevertheless,
PNGs are able to exist and even extend, despite this input variabil-
ity that threatens their stability. The neurons in a polychronous
group are exposed to a wide range of spatio-temporal input pat-
terns that we refer to as an input space. Individual PNG neurons
fire in response to only some of these input patterns, and this
subset of the input space we term the active input space. Input pat-
terns of particular significance in the active input space are those
that result from polychronization in neighboring PNG neurons.
However, even these polychronising input patterns can occur with
considerable jitter in impulse arrival times due to the complex
dynamics of the network. It therefore seems to us that a mecha-
nism that expands the size of the active input space (i.e., the range
of patterns that produce neural firing) will increase the firing
probability of each PNG neuron in response to the current wave
of polychronization. Expansion of the active input space should
therefore increase the stability of polychronization, resulting in
extended polychronization and an increase in PNG size.

Spike latency allows the precise firing timing to be a function
of the level of afferent input, potentially allowing an increase in
the range of inputs that produce firing. Our current hypothesis
is that spike latency allows increased flexibility in the precise tim-
ing of neural firing, producing an expansion of the input space
for each PNG neuron. To see how this might work, consider the
network shown in Figure 8A. This potential polychronous group
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FIGURE 6 | Changes in the distribution of PNG sizes produced using

different values for the metaplasticity parameters r and p. Each
boxplot shows the mean and distribution of PNG sizes produced from
twenty different networks using the specified values for resistance and
precision. The two left-most plots are taken from Figure 3A: the first
shows the PNG sizes produced with metaplasticity disabled and the
second shows the PNG sizes produced with the original metaplasticity
parameters (r = 0.1; p = 0.5). The remaining five boxplots show the

effect of other parameter values on the PNG size distribution. The
significance of these effects are as follows: r = 0.0001 and p = 0.1: no
significance; r = 0.001 and p = 0.12 (mean = 456: paired t-test: t =
7.319, p < 0.001 (2-tailed), d.f. = 19); r = 0.1 and p = 0.05 (mean =
459: paired t-test: t = 7.0517, p < 0.001 (2-tailed), d.f. = 19); r = 0.5 and
p = 0.01: no significance; r = 100.0 and p = 0.5 (mean = 488: paired
t-test: t = 11.2943, p < 0.001 (2-tailed), d.f. = 19). The value of the
inertia parameter was 0.2 in all cases. ∗∗∗p < 0.001.

FIGURE 7 | The effect of spike latency. (A) The network topology: three
neurons providing input to a single output neuron. (B) Near threshold inputs
produce a delayed spiking response. The firing time of neuron 4 decreases as
the combined synaptic weights of each of the three inputs is increased.
Weights on connections A, B, and C were incremented together in steps of
1 mV in the range 17–30 mV. Connection delays were randomly chosen for

each experiment. (C) Spike latency explains the switch in synaptic drive that
is observed with some combinations of delays on connections A, B, and C.
Here a switch in synaptic drive on connection C during training produces an
initial increase in synaptic weight followed by a decrease. The training
stimulus involved repeatedly firing neurons 1, 2, and 3 together at 5 Hz.
Connection parameters (A, B, C): delays = 10; 10; 15; weights = 8.0; 8.0; 6.0;.

is composed of six neurons and is derived from the four neuron
network of Figure 7. Varying the firing times of the initial three
input neurons (1, 2, and 3) produces a wide range of spiking pat-
terns on neuron 4 that together define the input space. With three
inputs, this input space is a three dimensional cube that includes
the subset of patterns that produce firing of neuron 4.

Figure 8B shows the input space of neuron 4. For conve-
nience, the three-dimensional input space has been flattened to
two dimensions by taking the difference between each pair of fir-
ing times for the three input neurons. Nevertheless, the figure
represents the entire input space i.e., all possible spatio-temporal
patterns onto neuron 4 that can be generated if each input neu-
ron is allowed to independently vary its firing time in the range

0–20 ms. Each circle in Figure 8B represents a pattern, with filled
circles denoting those patterns that produce firing of neuron 4
(the active input space). The larger the proportion of the avail-
able input space that is consumed by the active input space, the
more flexible the neuron is to jitter in its spatio-temporal inputs.

We can also examine the active input space of neuron 6 rela-
tive to these same three input neurons (1, 2, and 3) as shown in
Figure 9. The active input space for neuron 6 determines the fir-
ing probability of neuron 6 under variable conditions, and hence
determines the ability of the potential PNG in Figure 9A to extend
beyond neuron 4. The left column of Figure 9 (Non-optimized)
shows changes in the input space as the phase is shifted through
each of four different delays on the 4–6 connection. Importantly,
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FIGURE 8 | The neural input space. (A) A potential polychronous group
consisting of six neurons. (B) The input space of neuron 4, showing the
patterns that produced firing of neuron 4 as filled circles and patterns that
failed to produce firing as unfilled circles. Neurons 1, 2, 3, and 4 have the
same topology as in Figure 7. The two axes represent the firing time
differences (t1 − t2) and (t2 − t3), where (t1, t2, t3) are the firing times of
neurons 1, 2, and 3. All connection weights are initially set to the maximum

synaptic weight of 10 mV. Neuron 4 therefore requires at least two
convergent inputs to reach firing threshold. The ability of each firing time
combination to produce firing of neuron 4 is tested over 400 trials in
fixed-sized 250 ms test frames. Consistent firing requires that neuron 4 fire in
at least 100 of the 400 test frames. When weights are saturated, just two of
the three inputs are required for firing of neuron 4, producing the arms in the
input space diagram.

the active input space for many of these phases can be expanded
by shifting the firing time of neuron 4 to a time that is congruent
with the 4–6 and 5–6 connection delays [right column of Figure 9
(Optimized)]. These shifts in neuron 4 firing time are produced
by changes in the connection weights of the three input neurons
(1, 2, and 3) and the effects of spike latency. For now we have
performed this optimization for each pattern in the input space
by trialing each of ten weight steps on the input neuron connec-
tions and selecting weights that produce firing of neuron 6 (if
any). An important research question, and one that has yet to be
resolved, is whether the interaction of any of the known biologi-
cally plausible mechanisms such as metaplasticity and STDP can
produce stability enhancement of polychronous groups through
a mechanism that optimizes the active input space of each PNG
neuron.

4. DISCUSSION
The BCM model famously introduced the idea of a sliding modi-
fication threshold in which the tipping point for LTP/LTD induc-
tion is determined by the average of recent spiking activity in
the post-synaptic cell. Many subsequent models of metaplastic-
ity have followed the BCM model in defining a spike-activity-
dependent modification threshold, although these models are
typically independent of synaptic size and are not able to prevent
synapses from becoming arbitrarily large. In the current study
we employ a model of metaplasticity in which the modification
threshold (θM(t)) is not spike-activity-dependent but is instead
set more directly from the current synaptic weight and the level of
a spike-timing-dependent variable, the synaptic drive. An imple-
mentation of this model was shown to have a significant effect
on the size of polychronous groups in large recurrent networks.
An understanding of the underlying mechanism for this enhance-
ment is likely to shed light on the principles of PNG formation
and perhaps therefore also on the processes of memory formation
and storage.

A spike-timing-dependent learning rule appears to be a signif-
icant contributor to synaptic plasticity in many parts of the brain.
As shown by (Izhikevich and Desai, 2003), BCM-like behavior
can be reproduced with an STDP learning rule using uncorre-
lated or weakly correlated firing of pre- and post-synaptic cells,
provided that the spike interaction model conforms to a vari-
ant of nearest-neighbor. Biologically realistic spiking patterns
are likely to have both weakly correlated and strongly corre-
lated components, with polychronous firing patterns providing
an important example of the latter. With strongly correlated spik-
ing patterns the direction and magnitude of synaptic plasticity
is no longer determined by the post-synaptic spike rate alone:
spike trains with pre- before post-synaptic spike timings pro-
duce an upwards or positive drive on synaptic plasticity, whilst
post- before pre-synaptic spike trains with identical firing rates
produce the opposite effect, a downwards or negative synaptic
drive.

As discussed in Section 2.1.2, our metaplastic mechanism was
found to maintain the weight of a single synapse within prede-
fined limits without reaching maximum capped values. However,
when translated into a large scale network composed of one
hundred thousand synapses this moderating influence was con-
siderably diluted and capping at the global weight limits was no
longer achieved. Nevertheless, our modeling results show that
metaplasticity has a small but significant effect on the distribu-
tion of synaptic weights in the network, producing an overall
shift toward larger weights. Networks with metaplasticity show a
decrease in the number of pruned synapses, and an increase in the
number of saturated and non-saturated synapses (Figure 3). This
trend toward stronger weights is particularly noticeable within
the PNG connection group where there is a significant preference
for saturated weights relative to the non-PNG connection group.
However, there is also a significant increase in pruned synapses
within this group, in contrast to the overall trend observed in
Figure 3.
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FIGURE 9 | Optimization of spike latency produces expansion of the

input space, potentially allowing a nascent PNG to extend. The
optimization involves systematically varying the weight on connection 1–4
over the range 0–10 mV in order to shift the firing time of neuron 4. Neuron 5
has a fixed 1 ms conduction delay and is fired at a fixed offset of 19 ms relative
to the current test frame. The input space of neuron 6 is shown, both with and
without optimization and at one of four different delays on the 4–6
connection. There is a phase shift in the input space of neuron 6 as delays
increase from 2 to 5 ms (left column). Optimization of neuron 4 spike latency
produces an expansion in the input space of neuron 6 (right column).

Other effects of metaplasticity include an increase in the
excitatory firing rate, and an increase in the number of PNG
connections. Much of the increase in the size of the PNG con-
nection group is due to an increase in participating excitatory
connections, although both excitatory and inhibitory connections
show an increase in participation with metaplasticity (Figure 5).
Perhaps the most interesting finding from the current study was
the sensitivity of PNG size to these small metaplasticity-induced
changes in network parameters. Small changes in weight distri-
butions produced a 16% increase in PNG size, suggesting that
factors that alter the network connectivity have a strong influence

on the stability of neural circuits based on polychronization. A
more refined version of the current metaplastic model with care-
fully tuned parameters might therefore substantially influence the
efficiency of polychronization.

Together these results suggest that neurons that participate in
polychronization prefer a smaller number of stronger afferent
connections relative to non-participating neurons. A high level
account of the effects of metaplasticity on PNG size might there-
fore be constructed by observing the overall match between the
effects of metaplasticity on the synaptic weight distribution (i.e.,
more saturated and non-saturated weights), and the preference of
PNG connections for saturated weights. However, a deeper expla-
nation is required that describes the underlying mechanism whilst
accounting for the pruning of PNG connection weights. To this
end we have explored a number of avenues such as the effect of
metaplasticity on the temporal firing precision, or on the evo-
lution of synaptic weights over time. The effect of spike latency
on the active input space of PNG neurons has been a particu-
larly interesting research direction. Initial results show that spike
latency allows increased flexibility in the precise timing of neu-
ral firing, and that expansion of the active input space for each
neuron can be achieved by optimization of spike latency. We spec-
ulate that a mechanism that optimizes the active input space of
each PNG neuron might produce stability enhancement of poly-
chronous groups through the interaction of metaplasticity with a
biologically plausible learning rule such as STDP.
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