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Abstract
Population genetic theory posits that molecular variation buffers against disease risk. 
Although this “monoculture effect” is well supported in agricultural settings, its ap-
plicability to wildlife populations remains in question. In the present study, we exam-
ined the genomics underlying individual-level disease severity and population-level 
consequences of sarcoptic mange infection in a wild population of canids. Using gray 
wolves (Canis lupus) reintroduced to Yellowstone National Park (YNP) as our focal 
system, we leveraged 25 years of observational data and biobanked blood and tis-
sue to genotype 76,859 loci in over 400 wolves. At the individual level, we reported 
an inverse relationship between host genomic variation and infection severity. We 
additionally identified 410 loci significantly associated with mange severity, with an-
notations related to inflammation, immunity, and skin barrier integrity and disorders. 
We contextualized results within environmental, demographic, and behavioral varia-
bles, and confirmed that genetic variation was predictive of infection severity. At the 
population level, we reported decreased genome-wide variation since the initial gray 
wolf reintroduction event and identified evidence of selection acting against alleles 
associated with mange infection severity. We concluded that genomic variation plays 
an important role in disease severity in YNP wolves. This role scales from individual 
to population levels, and includes patterns of genome-wide variation in support of 
the monoculture effect and specific loci associated with the complex mange pheno-
type. Results yielded system-specific insights, while also highlighting the relevance of 
genomic analyses to wildlife disease ecology, evolution, and conservation.
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1  | INTRODUC TION

A classic paradigm in population genetics states that molecular di-
versity buffers against disease risk (Spielman, Brook, Briscoe, & 
Frankham, 2004). Host variation is thought to confer multiple de-
fense strategies, thus limiting a pathogen's ability to exploit common 
weaknesses at the individual and population levels (Bergstrom & 
Antia, 2006; Hedrick, 1999). Conversely, the absence of host varia-
tion is expected to increase a population's vulnerability to infection, 
leading to disease outbreaks. This phenomenon is well supported 
within agricultural settings (Reiss & Drinkwater, 2018) and has been 
termed the “monoculture effect” (Elton, 1958). However, the univer-
sality of this trend beyond the agricultural realm remains uncertain.

Elucidating the relationship between host genomic variation and 
wildlife disease remains a prominent goal of molecular and disease 
ecologies (Blanchong, Robinson, Samuel, & Foster, 2016; DeCandia, 
Dobson, & vonHoldt, 2018). This is particularly important for small, 
fragmented, or reintroduced populations, where genetic diversity 
loss may reduce evolutionary potential and threaten long-term vi-
ability (Frankham, 2005; Spielman, Brook, & Frankham, 2004). 
Regarding disease, the inability to cope with novel or enduring 
parasites can lead to increased morbidity among individuals, and 
ultimately precipitate population declines or local extirpation. This 
phenomenon remains understudied in wild populations, with little 
consensus between disparate host–parasite systems.

A recent meta-analysis found strong support for the monocul-
ture effect in wildlife by examining the effect of population-level 
heterozygosity on parasite success (Ekroth, Rafaluk-Mohr, & 
King, 2019). However, this study primarily focused on invertebrate 
hosts and included both laboratory- and field-based studies. Its 
focus on population-level heterozygosity further excluded consider-
ation of individual-level effects. Although relatively few in number, 
within-population studies in wildlife have reported an inverse rela-
tionship between genetic diversity and disease using neutral micro-
satellites (Coltman, Pilkington, Smith, & Pemperton, 1999; Townsend 
et al., 2018), immunogenetic markers (Brambilla, Keller, Bassano, & 
Grossen, 2018), and genome-wide datasets (Banks et al., 2020). In 
addition, morbidity has been associated with specific loci in multi-
ple host species (Batley et al., 2019; Donaldson et al., 2017; Elbers, 
Brown, & Taylor, 2018; Ellison et al., 2014; Margres et al., 2018). 
Considered together, these studies highlight the importance of char-
acterizing genetic variation within the context of wildlife disease, 
particularly for conservation-relevant species.

We contributed to these efforts by examining host genomic 
variation and infection severity in a wild population of canids: gray 
wolves (Canis lupus) inhabiting Yellowstone National Park (YNP). 
YNP wolves have been closely monitored for disease since their 
initial reintroduction in 1995 and 1996 (Phillips & Smith, 1997). To 
minimize risk, founders were screened for good health, vaccinated 
against numerous canine diseases, and treated with a broad-spec-
trum acaricide and anthelmintic (Almberg, Cross, Dobson, Smith, 
& Hudson, 2012). As a result, founders and their offspring initially 
bore low disease loads. Within a few generations, however, their 

light burden gave way to high exposure of canine adenovirus type-1, 
canine parvovirus, canine herpesvirus, and the protozoan Neospora 
caninum (Almberg, Mech, Smith, Sheldon, & Crabtree, 2009). These 
diseases were considered enzootic in the park's canids, and none ap-
peared to negatively impact individual fitness or population viability.

Conversely, canine distemper virus (CDV) and sarcoptic mange 
have been associated with morbidity, mortality, and reduced popu-
lation size in YNP (Figure 1; Almberg et al., 2012). Large-scale out-
breaks of CDV in 1999, 2005, and 2008 (with smaller outbreaks in 
2002 and 2017) infected multiple carnivore hosts in the Greater 
Yellowstone Ecosystem, leading to high levels of wolf-pup mortality 
(Almberg et al., 2009, 2011; Almberg, Cross, & Smith, 2010; Stahler, 
Macnulty, Wayne, vonHoldt, & Smith, 2013). While the effects of 
most outbreaks were short-lived, the 2008 outbreak coincided 
with the invasion of sarcoptic mange in YNP wolves. Combined 
with density-dependent mortality caused by interpack aggression 
(Cubaynes et al., 2014), the 2008 CDV outbreak and 2007 mange in-
vasion appeared to have regulated population size, which has stabi-
lized between 80 and 108 wolves since (Almberg et al., 2012; Smith 
et al., 2020).

Sarcoptic mange is caused by the ectoparasitic mite Sarcoptes 
scabiei and has been observed in YNP wolves every year since 
its invasion in January 2007 (Almberg et al., 2012, 2015; Pence 
& Ueckermann, 2002). Symptoms include pruritus, alopecia, eo-
sinophilia, hyperkeratosis, hyperpigmentation, and dermal in-
flammation (Almberg et al., 2012; Bornstein, Morner, & Samuel, 
2001; Nimmervoll et al., 2013; Oleaga, Casais, Prieto, Gortázar, 
& Balseiro, 2012). These symptoms are consistent with type IV 
(or delayed) hypersensitivity, which suggests that an ineffective 
immune response harms the host through chronic inflammation 
(Abbas, Lichtman, & Pillai, 2016). Yet, the severity of these symp-
toms varies widely among wolves. Some individuals develop minor 
symptoms, rapidly clear mites, and fully recover within months. 
Others quickly develop severe symptoms that worsen until death 
from mange or its associated dehydration, emaciation, secondary 
bacterial infection, or increased vulnerability to other causes such 
as intraspecific killings (Almberg et al., 2012; DeCandia, Leverett, 
& vonHoldt, 2019). As the source of this variability remains 

F I G U R E  1   Annual wolf counts recorded in December 1995 
through 2019 with years of CDV outbreaks, mange invasion, and 
maximum mange burden indicated (figure adapted from Almberg 
et al., 2012). Large circles represent large-scale CDV outbreaks, 
with smaller circles indicative of smaller outbreaks
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unknown, mange is considered a ubiquitous yet neglected dis-
ease (Hengge, Currie, Jäger, Lupi, & Schwartz, 2006; Walton, Holt, 
Currie, & Kemp, 2011).

We hypothesized that host genomic variation contributes to 
differences in mange infection severity in YNP wolves. More spe-
cifically, we predicted that infection severity would inversely cor-
relate with genome-wide diversity. Through implementation of a 
family-based association study, we anticipated identification of 
associated loci with putative gene functions related to immunity, 
inflammation, and skin barrier integrity, highlighting the relevance 
of specific variants to the mange phenotype. As numerous factors 
are known to contribute to disease state in wildlife, we predicted 
that genetic variation would be one of several variables predictive 
of mange severity at the individual level, with environmental and 
pack-level variables also relevant. We further considered changes in 
genomic variation through time at the population level. Here, we an-
ticipated reductions of genome-wide variation since the initial rein-
troduction events in 1995–1996, as YNP typically serves as a source 
population for surrounding areas rather than a sink for dispersers 
(vonHoldt et al., 2010). We additionally predicted that mange-asso-
ciated alleles would reduce in frequency following the 2007 invasion 
of mange, as we hypothesized that severe infection exerts selective 
pressure on YNP wolves.

To test these hypotheses, we generated a genome-wide dataset 
of single nucleotide polymorphisms (SNPs) in a subset of YNP wolves 
exposed to sarcoptic mange for individual-level analyses. We then 
genotyped these same SNPs in all wolves with biobanked blood and 
tissue for population-level analyses. The availability of samples and 
detailed phenotypic data for YNP wolves uniquely enabled us to dis-
entangle genetic and environmental factors underlying this complex 
disease phenotype. As mange infects over one hundred mammal 
species worldwide including humans (Pence & Ueckermann, 2002), 
YNP wolves serve as a case study with important implications for 
mammals globally. This study advances our understanding of the 
genomics underlying mange in a free-ranging carnivore, while also 
providing insights and predictions applicable to diverse host–para-
site systems.

2  | METHODS

2.1 | Study area

YNP encompasses 8,991 km2 of protected land in north-western 
Wyoming and adjacent parts of Montana and Idaho in the western 
United States. YNP is mountainous (elevation range: 1,500–3,800 
m), and its steep gradients in elevation, soil, and climate contribute 
to varied land cover, including riparian vegetation, shrubland, grass-
land, alpine meadows, and mixed coniferous forests. We make refer-
ence to two regions of the park, the northern range and the interior, 
based on ecological and physiographical differences and variation 
in disease dynamics (see Almberg et al., 2009, 2012 for details). 
Importantly, the 1,000 km2 area of the northern range within YNP is 

characterized by lower elevations (1,500–2,200 m), serves as prime 
wintering habitat for the park's ungulates, and supports a higher 
density of wolves than the interior. In contrast, the interior (7,991 
km2) is higher in elevation (>2,500 m), receives higher annual snow-
fall, and generally supports lower densities of wolves and ungulates.

2.2 | Sample collection and mange classification

We used archived tissue and blood samples collected by the National 
Park Service (NPS) during field necropsies and annual helicopter 
capture and handling of YNP wolves conducted in accordance with 
NPS Institutional Animal Care and Use Committee (IACUC permit 
IMR_YELL_Smith_wolves_2012). Sample collection procedures were 
also reviewed and approved by the Princeton University Institutional 
Animal Care and Use Committee (Princeton IACUC #2009A-17).

Annually, both static and dynamic life history data were collected 
on YNP wolves. Static metadata included sex, coat color (gray or 
black), date of birth, natal pack, and date of death. Dynamic meta-
data included annual records of pack membership, age group, and 
social status. In cases where sex was undetermined (i.e., decom-
posed carcasses), we used a simple molecular assay of sex chromo-
somes to infer sex (DeCandia, Gaughran, Caragiulo, & Amato, 2016). 
Pack-level variables included location in the park (northern range or 
interior), pack size, and breeding status (i.e., whether the pack con-
tained a breeding pair that year).

Frequent observations of YNP wolves also resulted in the docu-
mentation of individual mange scores, which reflected the percent-
age of body area presenting symptoms, such as hair loss or lesions. 
On a 3-point scale, a score of 0 indicated no evidence of mange, 
1 indicated that ≤ 5% of the body was impacted by mange-related 
symptoms, 2 referred to 6%–50% of the body being symptomatic, 
and 3 referred to the most severe score where > 50% of the body 
was presenting symptoms (Almberg et al., 2012; Pence, Windberg, & 
Sprowls, 1983). Any field-based observation or annual capturing of 
animals by NPS resulted in a mange score assigned to the correspond-
ing individual. The frequent monitoring by NPS officials, consistent 
method of mange score assignment, and repeated observation of 
the same wolves maximized confidence in disease phenotypes. In 
downstream statistical analyses, we used the highest mange score 
documented per wolf for genetic analyses and mange score at the 
time of observation for mixed-effects modeling. Severity classes 
were coded “mild” for highest score 1, “moderate” for highest score 
2, and “severe” for highest score 3.

To estimate pack-level exposure, we used the dates of first and 
last mange observation for each pack. We then flanked these dates 
by one month to account for asymptomatic periods that can both 
precede and follow infection (Arlian, 1989; Samuel, 1981). This es-
tablished the mange exposure window for each member in the pack. 
We restricted our mange dataset to only include wolves that con-
tained three or more observations and were putatively exposed to 
mange, even if the animal was assigned a mange score of 0 (following 
vonHoldt et al., 2020).
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2.3 | DNA extraction and restriction site-associated 
DNA (RAD) sequencing

We extracted genomic DNA following the Qiagen DNeasy Blood 
& Tissue Kit standard protocol, quantified samples with the 
Quant-iT™ PicoGreen® dsDNA Assay Kit or QubitTM fluoromet-
ric quantitation, and standardized concentrations to 5 ng/μL. We 
additionally visualized DNA extractions on 1% agarose gels to 
identify and retain samples with high molecular weight for library 
preparation.

We used a modified restriction site-associated DNA sequenc-
ing (RADseq) protocol by Ali et al. (2016) to generate genome-wide 
SNP data. To summarize, we digested genomic DNA with the sbfI 
restriction enzyme prior to ligation of uniquely barcoded, bioti-
nylated adaptors. We then pooled barcoded samples (48 samples 
per pool) and randomly sheared DNA to 400 bp on a Covaris LE220. 
Sheared libraries were enriched for fragments containing the li-
gated adaptor using a streptavidin bead-binding assay (Dynabeads 
M-280, Invitrogen), with subsequent library preparation following 
the standard manufacturer protocol for the NEBNext Ultra II DNA 
Library Preparation Kit (New England Biolabs). We purified and se-
lected libraries for fragments 300–400 bp in size using Agencourt 
AMPure XP magnetic beads. Two libraries were pooled for each final 
sequencing library to contain 96 barcoded samples. Final libraries 
were then standardized to 10 nM before paired-end sequencing 
(2X150 nt) on an Illumina HiSeq 2500 or NovaSeq 6000.

We used a custom perl script (sbfI_flip_trim_150821.pl, see 
Appendix S1) to align all forward and reverse reads with the re-
striction enzyme cut site into one file. We then used STACKS v1.42 
(Catchen, Hohenlohe, Bassham, Amores, & Cresko, 2013) for 
the initial stages of data processing, in order to manually remove 
poor-quality samples from the dataset before paired-end mapping. 
We used process_radtags to demultiplex and filter reads for > 2bp 
barcode mismatches or quality scores below 90% using a sliding win-
dow (15% of the read), and removed PCR duplicates using default 
parameters in clone_filter.

We completed paired-end alignments to the reference dog 
CanFam3.1 genome (Lindblad-Toh et al., 2005) using STAMPY v1.0.21 
(Lunter and Goodson 2011) for samples with > 500,000 reads to 
maximize sequence coverage. SAM files were sorted and filtered for 
quality scores (MAPQ) ≥ 96 using Samtools v0.1.18 (Li et al., 2009), 
with a final conversion to BAM format. We subsequently used 
STACKS v2.2 to identify, genotype, and filter SNPs with gstacks and 
populations for paired-end data using the Marukilow model (Maruki 
& Lynch, 2017). As this model assesses the statistical likelihood of 
each genotype call, it reduces the need for subsequent coverage fil-
ters when paired with clone-filtering.

We implemented the populations module using all available 
samples and the flag–write_single_snp to retain only a single poly-
morphic site per read. When samples were replicated in the li-
brary preparation and sequencing process, we used PLINK (Purcell 
et al., 2007) to compare each of the replicates for proportion of 
missing loci and retained the sample with lower missingness. We 

excluded wolves with fewer than three observations and no history 
of mange exposure (based on pack membership and infection his-
tory), as it was impossible to assess mange severity class in individu-
als never challenged by mites. To complete the dataset with this final 
set of samples, we implemented the STACKS v2.2 populations module 
a second time with an additional filtering parameter (−r 0.9) to re-
tain loci genotyped in more than 90% of wolves. We used VCFtools 
v0.1.12b (Danecek et al., 2011) to remove singletons, doubletons, 
and sites found on the X chromosome, due to difficulties posed by 
chromosomal sex determination and X-inactivation to mixed-sex 
study designs (Clayton, 2009). This produced our final dataset of 
high-confidence autosomal SNPs for downstream analysis. For pop-
ulation-level analyses, we genotyped these same SNPs in all wolves 
(regardless of mange exposure history) with available biomaterial.

2.4 | Genetic diversity statistics

We hypothesized that genetic diversity would inversely correlate 
with mange infection severity, as coded into classes mild, moderate, 
and severe. We used STACKS v2.2 to examine patterns of genetic di-
versity between: (a) infected and uninfected wolves and (b) infected 
wolves with different mange severities. Diversity metrics included 
the percentage of polymorphic sites (%Poly), number of private al-
leles (PAS), minor allele frequency (MAF), observed heterozygosity 
(HO), expected heterozygosity (HE), and nucleotide diversity (π). We 
assessed the statistical significance of between-group differences 
in R. For binary mange presence, we used two-tailed Welch's t tests, 
as we assumed unequal variance between the two infection groups. 
For infection severity, we used analysis of variance (ANOVA), as this 
allowed for inclusion of all four mange severity groups in the same 
analysis.

We next used ADZE v1.0 to estimate rarefied metrics of allelic 
diversity (Szpiech, Jakobsson, & Rosenberg, 2008). As allelic rich-
ness (AR), private allelic richness (PAR), and shared PAR are heavily 
influenced by sample size, adoption of a rarefaction approach en-
ables cross-group comparisons when sample sizes differ. Using this 
approach, AR, PAR, and shared PAR are estimated by averaging subsa-
mples of each group at standardized sample sizes. We set the miss-
ing data tolerance to 25% and calculated mean AR, PAR, and shared 
PAR between infection severity groups.

2.5 | Mixed-effects modeling

We used mixed-effects modeling to contextualize genetic diversity 
within the broad range of factors that may influence infection sever-
ity in YNP wolves. Input data were derived from annual observa-
tions conducted in YNP between 2007 and 2019, and included both 
static and dynamic life history variables for infected wolves (mange 
status of 1, 2, or 3). Mange status at the time of observation served 
as the response variable, and both random and fixed effects were 
considered during model selection. Individual wolves appeared in 
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the dataset multiple times, with their static life history variables un-
changed and their dynamic life history variables sometimes differing.

To control for repeated measures, random-effects variables 
included individual identifier, pack membership at the time of ob-
servation, and year observed. Individual identifier controlled for 
nonindependence between repeated measures of the same wolf, 
whereas pack membership and year observed controlled for shared 
environmental effects present within each pack (Almberg et al., 2015; 
Brzeski et al., 2015) and observation year (Stahler et al., 2013). As 
numerous wolves changed pack membership across years, we fitted 
these variables as partially crossed random intercepts.

Fixed effects included environmental (season and location in the 
park), pack-level (breeding status and size of the pack), and individ-
ual-level (sex, coat color, age group, social status, and standardized 
observed heterozygosity or HO) variables. To determine season, we 
assigned observations obtained during October through March as 
“winter,” and those obtained during April through September as 
“summer.” For each observation, we used pack membership to de-
termine location in the park (northern range or interior), estimated 
pack size (range 1–18), and pack-level breeding status (yes or no) for 
that observation year. Sex (male or female), coat color (gray or black), 
age group (yearling or adult), and social status (subordinate or alpha) 
were assigned at each observation, with missing data interpolated 
using adjacent observations and YNP Annual Reports (2007–2019). 
To account for genetic diversity, we standardized HO calculated for 
each wolf by subtracting the mean and dividing by standard devia-
tion. We chose this measure to represent genetic diversity as stan-
dardized HO provided the most inclusive estimate of genome-wide 
variation without overparameterizing candidate models. We then 
formulated a priori hypotheses about how each variable may af-
fect mange infection severity based on existing literature (Table S1; 
Almberg et al., 2012, 2015; Candille et al., 2007; Cross et al., 2016; 
DeCandia et al., 2018; Fazal, Cheema, Maqbool, & Manzoor, 2014; 
Feather, Gough, Flynn, & Elsheikha, 2010; Mech & Boitani, 2003; 
Oleaga et al., 2011; Pence et al., 1983; Spielman, Brook, Briscoe, 
et al., 2004; Stahler et al., 2013).

We used cumulative link mixed models (CLMM) implemented 
in the R package ordinal v2019.12-10 to test these hypotheses 
(Christensen, 2019). A type of generalized linear mixed-effects 
model, CLMMs are optimized for ordinal response variables and 
employ a maximum-likelihood framework for parameter estimation 
using the Laplace approximation. We initiated model selection by 
constructing a null model (no fixed effects) and a global model (all 
nine fixed effects). We used the saturated model to check for collin-
earity between fixed effects using the check_collinearity function in 
the R package performance v0.4.5 (Lüdecke, Makowski, Waggoner, 
& Patil, 2020). We then implemented a stepwise model reduction 
procedure, where we sequentially removed the nonsignificant term 
with the highest p-value in each CLMM (Stahler et al., 2013). We 
compared sequential models using the likelihood-ratio test (lrt) for 
cumulative link models, and halted the reduction process when 
removal of the next fixed effect variable led to significantly worse 
model fitting. We reconsidered dropped terms by adding them to 

the reduced model one at a time and implementing lrts to assess sig-
nificance. We performed a similar procedure for pairwise interaction 
terms between fixed effects contained in the reduced CLMM to see 
whether their inclusion significantly improved model fitting. We cal-
culated Akaike information criterion adjusted for small sample (AICc) 
using AICcmodavg v2.2-2 (Mazerolle, 2019) and weighted AICc using 
MuMIn v1.43.15 (Bartoń, 2019).

2.6 | Identifying outlier loci

We implemented a univariate linear mixed model in GEMMA to 
identify outlier loci associated with infection severity (Zhou & 
Stephens, 2012, 2014). We included sex and coat color as covari-
ates in the model to account for static life history variables, and 
used a pairwise relatedness matrix to account for familial structure 
within the dataset. As our dataset included wolves with unknown 
pedigree relationships, we calculated a centered pairwise related-
ness matrix using the -gk 1 flag in GEMMA. We excluded natal pack 
as a covariate, as the pairwise relatedness matrix accounted for all 
possible relatives, rather than relying on inferred relations sharing 
a natal pack. We adjusted the lrt p-values obtained using a modified 
false discovery rate (FDR) procedure (Benjamini & Yekutieli, 2001), 
and used an in-house python script (vonHoldt, Heppenheimer, 
Petrenko, Croonquist, & Rutledge, 2017) to annotate significant out-
liers as intronic, exonic, intergenic, or within 2Kb of a promoter in 
the reference dog genome (Lindblad-Toh et al., 2005). We predicted 
functional relevance using the Ensembl Variant Effect Predictor 
(VEP) web interface (McLaren et al., 2016) and queried genic sites 
in the Ensembl, Online Mendelian Inheritance in Man (OMIM, 2018), 
and GeneCards (www.genec ards.org) databases. Finally, we used 
G:GOST in G:PROFILER to conduct gene ontology analyses (Raudvere 
et al., 2019). We searched annotated genes for all available anno-
tations (including molecular functions, cellular components, and 
biological processes) and assessed statistical significance using the 
Benjamini–Hochberg FDR of 0.05 (Benjamini & Hochberg, 1995; 
vonHoldt et al., 2020). Although this analysis may be underpowered 
due to sample size constraints, we adjusted significance thresh-
olds to account for multiple testing and decrease the likelihood of 
false positives (following DeCandia, Brzeski, et al., 2019; vonHoldt 
et al., 2020).

2.7 | Population-level analyses

We next considered changes in genetic variation through time in all 
YNP wolves with available biomaterial, regardless of mange expo-
sure history. Using static metadata, dynamic observations, and YNP 
annual reports, we determined which wolves were alive in each ob-
servation year between 1995 and 2019. We then used ADZE v1.0 
to estimate annual mean allelic richness, while controlling for sam-
ple size differences between years. For these analyses, we used the 
missing data tolerance of 100% to ensure that the same loci were 

http://www.genecards.org
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analyzed in each year's calculation. To account for the breeding 
structure of YNP wolves, we performed these analyses a second 
time using only known breeders. Here, we considered breeding sta-
tus to be a static life history variable, in order to increase annual sam-
ple sizes. As such, each year's calculation included all living breeders 
regardless of their reproduction status in that particular year.

Following examination of genome-wide allelic richness, we ex-
plored the change in per-locus allele frequencies through time. For 
this analysis, we binned loci into three categories based on the asso-
ciation of the focal allele (typically the minor allele) with mange se-
verity in GEMMA. Categories included (a) no association, (b) positive 
association (where increased allele frequency was associated with 
more severe mange), and (c) negative association (where increased 
allele frequency was associated with milder mange). We constructed 
a mixed-effects model with a Gaussian likelihood and weakly reg-
ularizing skeptical priors in the R package brsm (Bürkner, 2017) to 
assess whether positive and negative association with mange sever-
ity influenced changes in per-locus allele frequency through time. 
In this model, standardized allele frequency was regressed on the 
fixed effects of year, association with mange, and the interaction 
between them, while controlling for the locus ID of each allele as a 
random effect. To improve MCMC convergence times, we included 
all positively and negatively associated alleles but only a randomly 
selected subsample of 500 nonassociated alleles. For each subset of 
alleles, the model was run twice: once for the years 1995–2006, and 
once for the years 2006–2019, to assess changes in allele frequency 
before versus after the 2007 mange invasion of YNP. The approach 
was repeated four times to confirm that results were consistent 
across independent subsamples of nonassociated alleles and across 
independent Markov chains.

3  | RESULTS

3.1 | RAD-sequencing

Our first implementation of populations catalogued 214,762 variant 
sites in 510 samples. After removing duplicates, wolves with fewer 
than three observations, and putatively unexposed individuals, we 
implemented populations a second time to create a mange-relevant 
dataset with an additional filtering parameter that removed SNPs 
genotyped in < 90% of individuals. This resulted in 106,936 SNP loci 
genotyped in 117 wolves. We then filtered SNPs to remove single-
tons, doubletons, X chromosome sites, and loci missing allelic depth 
information. The final dataset retained 76,859 SNPs genotyped in 
117 wolves, with 49 uninfected and 68 infected individuals. Within 
the infected group, wolves exhibited mild (n = 29, highest mange 
score 1), moderate (n = 26, highest mange score 2), and severe 

(n = 13, highest mange score 3) symptoms (Figure S1). For popula-
tion-level analyses, we genotyped these same 76,859 SNPs in 408 
unique individuals, regardless of mange exposure history.

3.2 | Genetic diversity

Regarding susceptibility (i.e., binary mange presence), infected 
wolves (inf) exhibited higher levels of genetic diversity than wolves 
with no detected infection (uninf) across several diversity metrics 
(Table S2). This relationship was statistically significant for observed 
(two-sided t test; HO, inf = 0.1986 ± 0.0006, uninf = 0.1942 ± 0.0006, 
t153650 = −5.110, p < .001) and expected (two-sided t test; HE, 
inf = 0.1874 ± 0.0005, uninf = 0.1856 ± 0.0005, t153720 = −2.367, 
p = .018) heterozygosity, but not for minor allele frequency (two-
sided t test; MAF, inf = 0.1249 ± 0.0005, uninf = 0.1239 ± 0.0005, 
t153710 = −1.521, p = .128) or nucleotide diversity (two-sided t test; 
π, inf = 0.1888 ± 0.0005, uninf = 0.1876 ± 0.0006, t153710 = −1.623, 
p = .105). Although the number of private alleles was higher in the in-
fected group, sample size differences likely contributed to this result. 
We therefore used rarefaction to estimate mean allelic richness (AR) 
and mean private allelic richness (PAR) across standardized sample 
sizes in infected and uninfected wolves. We found that uninfected 
wolves exhibited higher levels of allelic variation across both diver-
sity metrics (AR, inf = 1.9276 ± 0.0007, uninf = 1.9431 ± 0.0007; PAR, 
inf = 0.0498 ± 0.0006, uninf = 0.0653 ± 0.0007; Table S3).

When grouped by infection severity (uninfected, mild, moderate, 
and severe), we consistently observed significant differences be-
tween severity groups across diversity metrics, including observed 
(ANOVA; HO, F1,307434 = 7.970, p = .005) and expected (ANOVA; HE, 
F1,307434 = 558.900, p < .001) heterozygosity, minor allele frequency 
(ANOVA; MAF, F1,307434 = 73.280, p < .001), and nucleotide diversity 
(ANOVA; π, F1,307434 = 283.700, p < .001). Notably, within the in-
fected groups (mild, moderate, and severe), we observed decreasing 
genetic diversity with increasing infection severity across all met-
rics (Figure 2a–f). Uninfected wolves had the largest percentage of 
polymorphic loci and number of private alleles, but were otherwise 
intermediate when compared to other severity classes (Table S2; 
Figure S2).

Similar patterns emerged when controlling for sample size. 
Mean allelic richness was highest in mildly infected wolves 
(AR = 1.7360 ± 0.0011), intermediate in moderately infected wolves 
(AR = 1.7059 ± 0.0012), and lowest in severely infected wolves 
(AR = 1.6347 ± 0.0016; Figure 2g, Table S3), with nonoverlapping 
standard errors between all estimates. Regarding mean private al-
lelic richness, mildly infected wolves harbored the most unique 
alleles (PAR = 0.0425 ± 0.0004), with moderately infected wolves 
intermediate (PAR = 0.0323 ± 0.0003) and severely infected wolves 

F I G U R E  2   Genetic diversity statistics for mange-infected wolves grouped by mild (highest mange score 1), moderate (highest mange 
score 2), and severe (highest mange score 3) infection severity. Metrics include the following: (a) percentage polymorphic loci, (b) number of 
private alleles, (c) observed heterozygosity, (d) expected heterozygosity, (e) minor allele frequency, (f) nucleotide diversity, (g) rarefied mean 
allelic richness, and (h) rarefied mean private allelic richness
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possessing the fewest (PAR = 0.0195 ± 0.0003; Figure 2h, Table 
S3). Uninfected wolves exhibited the second highest allelic rich-
ness (AR = 1.7190 ± 0.0011) and possessed the most unique alleles 
(PAR = 0.0469 ± 0.0004; Table S3; Figure S2).

We additionally examined private allelic richness shared be-
tween pairwise combinations of infection groups (Figure 3, Table 
S4). In general, similar groups (where highest mange score was off-
set by one) shared more unique alleles than disparate groups (where 
highest mange score was offset by two or three), with the exception 
of the uninfected–moderate pair. As such, uninfected and mildly in-
fected wolves shared the most alleles (0.0438 ± 0.004), followed by 
mildly and moderately infected wolves (0.0312 ± 0.003). In contrast, 
uninfected and severely infected wolves shared the fewest alleles 
(0.0155 ± 0.0002), with alleles shared by mildly and severely in-
fected wolves similarly low (0.0192 ± 0.002). Within the pairs offset 
by one mange score, we observed an inverse relationship between 
infection severity and shared private allele richness. For example, 
the moderate–severe pair (0.0221 ± 0.0003) shared fewer alleles 
than both the uninfected–mild (0.0438 ± 0.0004) and mild–moder-
ate (0.0312 ± 0.0003) pairs. This trend also occurred for pairs offset 
by two mange scores.

3.3 | Mixed-effects modeling

After constructing our null and global CLMMs, we calculated the vari-
ance inflation factor (VIF) for each fixed effect variable included in 
the saturated model. We observed low collinearity between predictor 
variables (VIF range 1.18–3.13; Table S5) and initiated our stepwise 

model reduction procedure. The most parsimonious model contained 
environmental, pack-level, and individual-level variables (Figure 4; 
Table S6). More specifically, season (β = 0.9485, Z = 3.166, p = .002), 
breeding status of the pack (β = −2.0258, Z = −2.584, p = .010), and 
age group (β = 1.1769, Z = 2.016, p = .044) exhibited significant ef-
fects, with standardized HO approaching significance (β = −0.8434, Z 
= −1.911, p = .056; Table 1). These four variables appeared in all six 
models with ΔAICc < 2, with all other variables appearing in only one 
of six top models (Table S6). Parameter estimates for these variables 
suggested that wolves experienced more severe mange in winter 
(environment: season) and in nonbreeding packs (pack level: breed-
ing status). Regarding individual-level variables, adult wolves (age 
group) and individuals with reduced genetic variation (standardized 
HO) also experienced more severe mange. Removal of standardized HO 
from the reduced model resulted in significantly worse model fitting 
(p = .041), and subsequent addition of omitted and pairwise interac-
tion terms did not significantly improve AICc (p > .05). We therefore 
retained the reduced model as our most parsimonious CLMM. This 
model excluded location, pack size, coat color, sex, and social status as 
significant predictors of mange severity at the individual level.

3.4 | Identifying outlier loci

We identified 410 autosomal sites significantly associated with 
mange severity after applying BY-modified FDR correction 
(p < .004). Frequency of the mange-associated allele was positively 
associated with mange severity at 224 sites and negatively asso-
ciated with mange severity at 186 sites. Across all 410 sites, the 
mange-associated allele was typically found in the heterozygous 
state (Table S7). Site annotations included 12 exonic, 171 intronic, 
17 near promoters, and 257 intergenic sites, with VEP annotations 
including 20 low, four moderate, and 847 modifier effects (N.B., 
many sites had multiple annotations). We identified 42 gene onto-
logical categories that passed the FDR threshold set in G:PROFILER 
(Table S8). Categories included four molecular functions, 16 cellular 
components, and 22 biological processes (Figure S3a). The major-
ity of categories involved cell barrier function and flexibility (n = 11), 
cell–cell and cell–substrate junctions (n = 6), and cell differentiation 
and development (n = 19).

Genic sites queried in the Ensembl, OMIM, and GeneCards data-
bases returned putative functions related to innate and adaptive im-
munity, autoimmunity and inflammation, cell barriers and adhesion, 
and skin development and disorders. For example, hematopoietic 
prostaglandin D synthase (HPGDS) has been implicated in the resolu-
tion of delayed-type hypersensitivity responses (Trivedi et al., 2006). 
Similarly, protein tyrosine phosphatase, nonreceptor type 6 (PTPN6) 
has been linked to heightened inflammation characterized by edema, 
sustained inflammatory infiltrate, and the delayed wound healing 
(Lukens et al., 2013). Both loci exhibited decreasing minor allele fre-
quency with increasing infection severity (Figure S3b).

Additional genes were associated with chronic skin disorders, 
such as psoriasis and peeling skin disease (corneodesmosin, CDSN; 

F I G U R E  3   Rarefied private allelic richness shared between 
mange severity classes
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Matsumoto et al., 2008; Oji et al., 2010), inflamed skin lesions called 
hidradenitis suppurativa (nicastrin, NCSTN; Pink et al., 2011), inelas-
tic skin termed cutis laxa (Elastin, ELN; Hadj-Rabia et al., 2013), 
ichthyosis (scaly skin) associated with Refsum disease (peroxiso-
mal biogenesis factor 7, PEX7; van den Brink et al., 2003; Schmuth 
et al., 2013), palmoplantar keratoderma (thickening of the skin 
around hands and feet) and alopecia (SAM and SH3 domain con-
taining 1, SASH1; Courcet et al., 2015), and epithelial cell growth 
and thickening, termed hyperplasia and hyperkeratosis (SMAD 
family member 7, SMAD7; He et al., 2002). These loci exhibited 
negative (ELN, SASH1, and SMAD7) and positive (CDSN, NCSTN, and 
PEX7) relationships between minor allele frequency and infection 
severity, with no overarching pattern evident in control loci lacking 
association with mange severity (Figures S3 and S4; Table S9).

3.5 | Population-level analyses

We analyzed 76,859 SNPs in 408 unique individuals observed in 
YNP between 1995 and 2019. Annual datasets ranged from 22 

wolves in 2019 to 122 wolves in 2003 (median = 73). Rarefied 
mean allelic richness decreased through time, with the high-
est values calculated for 1995 (AR = 1.7456 ± 0.0011) and 1996 
(AR = 1.7476 ± 0.0011) and the lowest values calculated for 2017 
(AR = 1.6926 ± 0.0012), 2018 (AR = 1.7017 ± 0.0013), and 2019 
(AR = 1.6891 ± 0.0014; Figure 5). Analysis of breeding individuals 
was restricted to 1995–2016 due to small sample sizes in 2017–
2019. These datasets ranged from 17 wolves in 2016 to 67 wolves 
in 2003 (median = 41). Although the overall trend was similar, 
breeding individuals exhibited higher mean allelic richness than 
the census population in all years except 2001–2003. The highest 
values were calculated in 1995 (AR = 1.7579 ± 0.0011) and 1996 
(AR = 1.7570 ± 0.0011), with the lowest values occurring in 2001 
(AR = 1.7149 ± 0.0011), 2002 (AR = 1.7104 ± 0.0011), and 2003 
(AR = 1.7076 ± 0.0011; Figure 5).

Allele frequency analyses included three bins of loci: (a) no as-
sociation, (b) positive association, and (c) negative association be-
tween the focal allele (typically the minor allele) frequency and 
mange severity. The majority of mange-associated loci (n = 399/410) 
had both alleles present in YNP since 1995–1996, with the minor 

F I G U R E  4   Fixed effects included 
environmental, pack-level, and individual-
level variables. Asterisks indicate variables 
included in the final model. Figure created 
with BioRender

Mange Score 

*Season 
Location 

*Breeding Status 
Pack Size 

*Age Group 
*Standardized HO 

Sex 
Coat Color 

Social Status 

Response Environmental Pack-Level Individual-Level 

~ + + 

Explanatory 
variable β SE Z-score p-value CI (2.5%) CI (97.5%)
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Breeding status 
(yes)
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Standardized HO −0.8434 0.4413 −1.911 .056 −1.7083 0.0216

TA B L E  1   Parameter estimates (β), 
standard error, Z-score, p-value, and 
95% confidence intervals for variables 
contained in the most parsimonious model 
predicting mange severity at the individual 
level

F I G U R E  5   Mean allelic richness 
rarefied to 20 individuals for all wolves 
(black solid line) and all known breeders 
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allele emerging for the remaining 11 loci between 1997 and 2003 
(Table S10). All mange-associated alleles were therefore pres-
ent in the population as standing variation in January 2007, when 
mange invaded the park. We tested for selection by constructing 
a mixed-effects model to estimate whether the average change in 
allele frequency through the years 2006–2019 depended on mange 
association. As expected, randomly subsampled nonassociated al-
leles did not significantly change in frequency on average during 
this time frame (β = 0.003, 95% credible interval [−0.009,0.002]; 
Figure 6a). Conversely, alleles positively associated with mange se-
verity significantly decreased in frequency on average (β = −0.041, 
95% credible interval [−0.049, −0.034]; Figure 6a), while alleles neg-
atively associated with mange severity significantly increased in fre-
quency on average (β = 0.010, 95% credible interval [0.002,0.018]; 
Figure 6a). Critically, these significant changes in allele frequency 

were restricted to the years after mange invaded YNP. From 1995 to 
2006, none of these three bins of loci exhibited significant changes 
in frequency on average (nonassociated, β = −0.004, 95% credible 
interval [−0.007, 0.0001]; positively associated, β = 0.000, 95% cred-
ible interval [−0.006, 0.005]; negatively associated, β = 0.000, 95% 
credible interval [−0.007, 0.006]; Figure 6b). These results were con-
sistent across four independent subsamples of nonassociated alleles 
(Figure S5).

4  | DISCUSSION

In the present study, we characterized the relationship between 
host genomic variation and disease severity in a wild population 
of reintroduced canids. Through use of biobanked samples and 

F I G U R E  6   Posterior predictions 
of the average changes in frequency 
through time for alleles not associated, 
positively associated, and negatively 
associated with mange severity, with 
95% credible intervals surrounding the 
mean. Nonassociated alleles comprise 
a randomly selected subset of 500 loci. 
The same analysis was repeated to assess 
changes in allele frequency (a) after mange 
invasion of YNP and (b) before mange 
invasion of YNP

(a)

(b)
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detailed phenotypic records, we calculated summary statistics of 
genome-wide variation and performed a family-based association 
study to identify genomic variants linked with mange infection se-
verity. We contextualized genomics within the broad range of fac-
tors influencing disease state in YNP, and considered changes in 
genomic variation through time at the population level. Through 
these analyses, we found evidence of selection acting on mange-
associated loci following the 2007 invasion of S. scabiei mites in YNP. 
Although numerous studies have catalogued immunogenetics in ca-
nids (Aguilar et al., 2004; Arbanasić et al., 2013; Galaverni, Caniglia, 
Fabbri, Lapalombella, & Randi, 2013; Hedrick, Lee, & Garrigan, 2002; 
Hedrick, Lee, & Parker, 2000; Kennedy et al., 2011; Marshall, 
Langille, Hann, & Whitney, 2016), this study was among the first 
to explore genome-wide variation within the context of disease se-
verity in a wild canid population. This allowed us to test whether 
host genomic variation was predictive of disease severity, as sug-
gested by the monoculture effect observed in agricultural settings 
(Ekroth et al., 2019). Results yielded system-specific insights, while 
also contributing to the larger-scale effort of applying genomic tech-
niques to wildlife disease ecology (Blanchong et al., 2016; DeCandia 
et al., 2018).

We hypothesized that host genomic variation would predict 
mange infection severity rather than susceptibility, given the mode 
of transmission and pathology of sarcoptic mange. Transmission of S. 
scabiei mites occurs upon contact with an infected individual or fo-
mite, such as a mange-infected den (Montecino-Latorre et al., 2019; 
Pence & Ueckermann, 2002). Presumably, exposed wolves have an 
equal probability of infection regardless of their genomic diversity. 
Inter-individual differences subsequently emerge due to the immune 
response mounted by the host (Nimmervoll et al., 2013; Oleaga 
et al., 2012), which is likely to be under genetic control (Steinke, 
Borish, & Rosenwasser, 2003). In the present study, we observed 
an inverse relationship between host genomic variation and mange 
infection severity in YNP wolves. This supports the paradigm that 
genetic variation plays an important role in wildlife disease (King & 
Lively, 2012; Lively, 2010; Luong, Heath, & Polak, 2007; Spielman, 
Brook, Briscoe, et al., 2004). Additional evidence includes heterozy-
gous house finches (Carpodacus mexicanus) that exhibited reduced 
disease severity and mounted stronger immune responses than ho-
mozygous finches after experimental inoculation with Mycoplasma 
gallisepticum (Hawley, Sydenstricker, Kollias, & Dhondt, 2005). 
Similarly, outbred guppies (Poecilia reticulata) exhibited lower 
Gyrodactylus turnbulli parasite intensities and shorter infection dura-
tions when compared to inbred individuals (Smallbone, Oosterhout, 
& Cable, 2016). Here, YNP wolves exhibiting mild mange symptoms 
possessed higher levels of genome-wide variation than wolves ex-
hibiting more severe symptoms.

Patterns of genome-wide variation suggested that host diver-
sity was an important predictor of mange severity in YNP wolves. 
However, wildlife disease dynamics are known to be impacted by 
host environment, demography, and behavior, as well (Ezenwa 
et al., 2016; Parratt, Numminen, & Laine, 2016; Silk et al., 2019). We 
therefore used mixed-effects modeling to quantitatively assess the 

role of genetic diversity in shaping the landscape of mange infection 
severity at the individual level. The most parsimonious model high-
lighted the multifactorial nature of disease state in wildlife through 
inclusion of genetic (standardized HO), environmental (season), and 
demographic (breeding status of the pack and individual age) vari-
ables. Critically, we found model support for an inverse relationship 
between genetic diversity and mange severity. This result confirmed 
the relevance of genome-wide variation in predicting mange sever-
ity in YNP wolves alongside environmental, behavioral, and demo-
graphic factors.

To build upon this result and capture the complex nature of dis-
ease, we explored other model relationships associated with mange 
severity. Regarding season, we found evidence that wolves presented 
more severe mange in winter, when cold ambient temperatures ren-
der thermoregulation more difficult. This result supports previous 
studies examining mange prevalence (Almberg et al., 2012), mortality 
risk (Almberg et al., 2015), and energetics (Cross et al., 2016) in YNP 
wolves and other species impacted by mange (Martin et al., 2018). 
Season may also contribute to our finding that nonbreeding packs 
were more likely to present severe mange. Breeding season for YNP 
wolves (mid-February mating; mid-April birth) directly follows the 
mean severity window for infected packs (September 2–February 
2; Almberg et al., 2015). Mangy individuals may exhibit poor body 
condition during breeding season, reducing breeding likelihood and 
efficacy (Stahler et al., 2013), as seen in other host–parasite systems 
(Holand et al., 2015; Marzal, De Lope, Navarro, & Møller, 2005; 
Møller, 2002; Sarasa et al., 2011). Poor body condition may also 
be influenced by age, as adult wolves exhibited worse mange than 
yearlings. This finding is consistent with reports for age/mange re-
lationships in Iberian wolves and coyotes (Oleaga et al., 2011; Pence 
et al., 1983), and divergent from reports in red foxes and dogs (Fazal 
et al., 2014; Feather et al., 2010; Newman, Baker, & Harris, 2002). 
These differences in the literature, and our study in particular, may 
result from the demographics of the dataset. For example, we ex-
cluded any wolf that had fewer than three observations, which may 
have systematically excluded fatal mange infections in pups, as seen 
in the Silver pack in 2010 (Smith et al., 2011). We therefore recom-
mend further study of age-specific outcomes with mange infections 
in both wolves and canids, more broadly.

Following our findings that genome-wide variation significantly 
predicts mange severity, we discovered specific loci associated with 
the highest mange score recorded per wolf. These loci were found 
in genes related to innate and adaptive immunity, autoimmunity and 
inflammation, cell barriers and adhesion, and skin development and 
disorders. For example, reduced minor allele frequency was asso-
ciated with severe mange in genes HPGDS and PTPN6, which have 
been previously linked to immunopathology, inflammation, and de-
layed wound healing in mice (Lukens et al., 2013; Trivedi et al., 2006). 
Additional loci were discovered in genes related to chronic skin 
conditions. Associated genes included CDSN (psoriasis and peeling 
skin disease; Matsumoto et al., 2008; Oji et al., 2010), NCSTN (hi-
dradenitis suppurativa; Pink et al., 2011), ELN (cutis laxa; Hadj-Rabia 
et al., 2013), PEX7 (ichthyosis; van den Brink et al., 2003; Schmuth 
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et al., 2013), SASH1 (palmoplantar keratoderma and alopecia; 
Courcet et al., 2015), and SMAD7 (hyperplasia and hyperkeratosis; 
He et al., 2002). These annotations and skin conditions matched 
symptoms of severe mange across host taxa (Almberg et al., 2012; 
Little et al., 1998; Niedringhaus, Brown, Sweeley, & Yabsley, 2019; 
Oleaga et al., 2012; Pence & Ueckermann, 2002), and were consis-
tent with inflammation-induced immunopathology and hypersensi-
tivity presented in allergic and autoimmune disorders (Barker, 2001; 
Barnes, 2010; Bin & Leung, 2016; Esaki et al., 2015; Liang, Chang, & 
Lu, 2016; Nattkemper et al., 2018; Quraishi et al., 2015; Rodríguez 
et al., 2014; Sonkoly et al., 2010). While it is possible that mange-as-
sociated alleles may also influence individual-level risk during CDV 
outbreaks, annotations more closely matched the pathology of 
mange. Overall, these results mirror other wildlife studies that un-
covered disease-relevant genes in diverse host–parasite systems 
(Batley et al., 2019; Donaldson et al., 2017; Elbers et al., 2018; Ellison 
et al., 2014; Margres et al., 2018).

The relevance of host genomics to disease risk is not restricted 
to the individual level. Many of these processes scale to inform pop-
ulation-level dynamics through time. In YNP wolves, temporal anal-
yses confirmed our hypothesis that genomic variation has decreased 
since the initial reintroduction event, despite ephemeral fluctuations. 

Although some fluctuations coincide with CDV outbreaks, the in-
consistent pattern suggests that disease was not the primary driver 
of long-term decreases in genome-wide variation. Instead, this pat-
tern may result from YNP’s status as a source population for the 
surrounding Greater Yellowstone Ecosystem, as few wolves suc-
cessfully disperse into the park (vonHoldt et al., 2010; vonHoldt 
et al., 2008). Notably, the mating structure of wolves precludes all 
individuals from reproducing (Mech & Boitani, 2003), thereby reduc-
ing the effective population size (vonHoldt et al., 2008). While the 
overall pattern of diversity was consistent between all wolves and 
known breeders, reproductive individuals exhibited higher levels of 
genome-wide variation in all years except 2001–2003. This upward 
shift may slow the pace of genomic diversity loss through time, al-
though further study is needed on mate choice and its long-term 
effects on variation in YNP.

Decline in genome-wide variation at the population level may 
increase the prevalence of severe mange infections in the future, 
given the inverse relationship observed at the genomic scale. While 
higher levels of diversity maintained by breeders may ameliorate 
this risk, mange can still negatively affect YNP wolves. For example, 
mange has been implicated in the dissolution of previously stable 
packs, such as the Druid Peak pack (Figure 7; Almberg et al., 2012). 

F I G U R E  7   Sarcoptic mange was implicated in the dissolution of the Druid Peak pack in late 2009 and early 2010, when numerous pack 
members became infected. This pedigree contains a subset of Druid wolves shaded to indicate mange infection severity. Genotype at the 
mange-associated locus contained in gene PTPN6 is indicated, when available, to illustrate how family-based association links genotypes 
with phenotypes while controlling for relatedness. Similar analyses were conducted for all loci analyzed by GEMMA. Dashed lines connect 
the same individual to parentage events occurring in different parts of the pedigree
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Although two litters were born in April 2009, Druid wolves began 
to exhibit symptoms of mange infection soon after. By the end of 
October, the pack had lost alpha female 569F to intraspecific con-
flict, numerous wolves to dispersal or death, and all pups to mange 
or its associated symptoms (Smith et al., 2009). Surviving members 
fragmented into smaller groups in early 2010, and the exceptionally 
long tenure of the Druid Peak pack was over by year's end (Smith 
et al., 2011). Similar stories emerged from the Leopold, Everts, and 
Silver packs (Almberg et al., 2012Yellowstone National Park Wolf 
Project Annual; Smith et al., 2011), emphasizing the scaling effects 
of mange infection on individuals, packs, and the greater YNP wolf 
population.

As exemplified by the Druid Peak case study, mange-mediated 
mortality and pack dissolution can impose strong selective pressures 
on YNP wolves. Consistent with our expectations, analyses of allele 
frequency through time revealed signatures of selection acting on 
mange-associated loci. Similar effects have been seen in response 
to Mycoplasma galliseptum (Bonneaud et al., 2011), devil facial 
tumor disease (Epstein et al., 2016), and chytridiomycosis (Savage & 
Zamudio, 2016). In the present study, we observed significant reduc-
tions in the average frequency of alleles positively associated with 
mange severity between 2006 and 2019 (after mange invaded the 
park), with no change evident between 1995 and 2006. We addi-
tionally observed evidence of selection increasing alleles negatively 
associated with mange severity between 2006 and 2019; however, 
credible intervals overlapped with the nonassociated group, which 
exhibited no change between 1995 and 2006 and between 2006 
and 2019. Considered together, these results suggested that there 
are stronger selective pressures acting to remove alleles associated 
with severe mange (i.e., positively associated alleles) than to increase 
the frequency of alleles associated with mild mange (i.e., negatively 
associated alleles).

The observed relationship between host genomic variation and 
disease severity in YNP wolves at the individual and population lev-
els highlights the relevance of molecular variation to wildlife popula-
tions (Frankham, 2003). This is particularly important for host species 
threatened by disease, whether through epizootic outbreaks or the 
slow invasion of enzootics (Daszak, Cunningham, & Hyatt, 2000). 
These results support the paradigm that host genomic variation 
can buffer against disease risk, as seen in agriculture's monocul-
ture effect. They further emphasize the importance of considering 
genome-wide variation and disease-relevant loci when studying 
host–parasite dynamics, particularly in longer-evolved systems. 
Using YNP wolves as an example, declines in genome-wide variation 
through time may increase the likelihood of severe mange infections. 
However, removal of harmful mange-associated alleles may coun-
teract that risk. Monitoring summary metrics of diversity alongside 
disease-associated loci will enable more accurate risk assessment 
and outbreak predictions, although YNP wolves are not currently 
treated or vaccinated against disease. In more heavily managed 
wildlife systems, similar analyses can directly inform conservation 
action. While further studies are needed to assess the universality 
of these trends, we posit that the maintenance of genetic variation 

should remain a priority during founder selection, reintroduction, 
and subsequent population management of at-risk populations. For 
species harboring inbred genomes, we further recommend explora-
tion of additional molecular mechanisms that may influence disease 
risk in the absence of genomic variation (such as gene regulation or 
the host-associated microbiome). The integration of molecular and 
disease ecologies presents a powerful opportunity to elucidate the 
factors underlying disease risk, as well as the evolutionary effects of 
disease on wildlife. These insights can then inform best practices for 
disease management and wildlife conservation.
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