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Abstract: Reviews on the clinical performance of vital pulp treatment strategies and 
capping materials repeatedly showed an insufficient grade of evidence concerning their 
therapeutic validity. The biological mechanisms underlying the regenerative potential of 
pulp-dentin complex have attracted much attention during the last two decades, since new 
pulp treatment modalities have been designed and tested at the preclinical level. It has been 
recognized that evaluation should be based on the specific ability of therapeutic 
interventions to signal recruitment and differentiation of odontoblast-like cells forming a 
matrix in a predentin-like pattern, rather than uncontrolled hard tissue deposition in a 
scar-like form. The aim of the present article was to critically review data from histological 
experimental studies on pulp capping, published during the last 7 decades. A 
comprehensive literature search covering the period from 1949 to 2015 was done using the 
Medline/Pubmed database. Inclusion of a study was dependent on having sufficient data 
regarding the type of capping material used and the unit of observation (human permanent 
tooth in vivo or animal permanent dentition; primary teeth were excluded). The 
post-operatively deposited matrix was categorized into three types: unspecified, osteotypic, 
or dentin-like matrix. One hundred fifty-two studies were included in the final evaluation. 
Data from the present systematic review have shown that only 30.2% of the 152 
experimental histological pulp capping studies described the heterogenic nature of the hard 
tissue bridge formation, including osteotypic and tubular mineralized tissue. Structural 
characteristics of the new matrix and the associated formative cells were not provided by 
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the remaining 106 studies. Analysis showed that more careful preclinical evaluation with 
emphasis on the evidence regarding the dentinogenic specificity of pulp therapies is 
required. It seems that selection of appropriate vital pulp treatment strategies and pulp 
capping materials would be further facilitated in terms of their therapeutic validity if 
international consensus could be reached on a select number of mandatory criteria for 
tissue-specific dentinogenic events. 

Keywords: histology of dental pulp; pulp capping; hard tissue bridge; reparative dentin; pulp 
capping materials; calcium hydroxide; Mineral Trioxide Aggregates (MTA); calcium silicate 

 

1. Introduction 

Pulpo-dentinal repair dynamics via tissue-specific mechanisms has provided operative dentistry with 
various treatment strategies to maintain pulp tissue in a healthy and functional state, whenever the  
dentin-pulp complex has been compromised by caries, trauma or restorative procedures. The techniques 
used for the treatment of pulp exposures in primary and permanent teeth are called direct pulp capping 
and pulpotomies (partial or superficial pulpotomy and full or pulp chamber pulpotomy). Direct pulp 
capping is indicated for small and short-term pulpal exposures of permanent teeth resulting from 
mechanical or traumatic injury, while partial pulpotomy is indicated for large mechanical or traumatic 
exposures. Full pulpotomy is the treatment of choice for long-standing exposures to the oral 
environment. Since both techniques share common objectives, i.e., to minimize reversible inflammatory 
reactions and to protect the pulp from the effects of further bacterial, chemical, and thermo-mechanical 
insults, the materials used are described as one group, pulp capping materials (PCM) in the literature, 
despite the fact that a few of them have only been proposed for pulpotomy situations (e.g., formocresol). 

Hundreds of experimental and observational studies over the last 6 decades have focused on 
evaluation of various vital pulp therapy (VPT) techniques and materials [1,2]. On the other hand, 
numerous attempts including novel biomaterials and tissue engineering approaches with stem cells or 
bioactive-molecule-based applications have been designed, and their preclinical testing has been 
undertaken. Today it is widely accepted that the most important determinant for the long-term prognosis 
of vital pulp therapy is the effective control of external stimuli that can affect the underlined pulp, with 
the recognition that the post-operative infection is of primary importance. The present article aims to 
critically review the therapeutic validity of PCMs and the reliability of the criteria used in their 
preclinical evaluation. 

1.1. Clinical Variables in Direct Pulp Capping and Pulpotomy 

Numerous experimental and clinical studies have clearly shown that a successful outcome for vital 
pulp therapy is primarily dependent on the type of injury, though other variables related to the state of the 
dentin-pulp complex and the treatment modality have also been investigated. In general: 
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i. Among various clinical variables that have been accounted as factors playing a role in the 
outcome of the vital pulp therapy, the most important are issues related to case selection, which 
remains the most important parameter for the clinical success of exposed pulp treatment [1]. It is 
generally accepted that prognosis of direct pulp capping or pulpotomy therapies in teeth with pulp 
exposures remains as one of the most problematic and unpredictable methods of dental treatment. 
Horsted et al. 1985 reported that pulp survival rates of carefully selected cases treated with 
calcium hydroxide as capping agent was initially high (more than 80% after 5 years), but they are 
declining over time [3]. Pulpal exposure due to caries shows very limited potential for pulp 
survival due to bacterial infection of the pulp for a substantial period of time, which compromises 
the defense reaction [4]. In the case selection parameter, the different treatment goals of vital pulp 
therapy in primary and developing permanent teeth might be critically reviewed. Dental treatment 
of primary teeth must satisfy different goals than treatment for mature permanent teeth, due to the 
limited life span of primary teeth and their possible relationship to the permanent tooth successor. 
Although recent advances in primary tooth biology clearly demonstrated that these teeth have 
also a potential for wound healing with tertiary dentin formation [5], the criteria used for 
evaluation of PCM have not been re-evaluated and in many cases PCM with different properties 
are used. Similarly, dental treatment of immature permanent teeth must satisfy different goals 
than treatment for mature permanent teeth, due to the central role of the pulp in the physiological 
continuation of root development and in further deposition of primary dentin which strengthens 
the root dentinal walls. Thus, preservation of pulp vitality is particularly important in the 
immature permanent teeth, even with very different treatment indications. The absence of toxicity 
in PCMs and their further ability to minimize pulp inflammation and enhance pulp healing has 
been recognized as an important factor in the outcome of VPT [6–8]. 

ii. It has been recognized that dental pulp responds to external irritation with the set of stereotypic 
defensive mechanisms of the connective tissues. Whenever dentin and pulp is affected by caries, 
a network of inflammatory reactions of pulpal cells, micro-circulation and nerves, restorative 
procedures and trauma directly affects the outcome of the fundamental defensive mechanisms 
in the dental pulp. In patho-physiological terms the most significant difference between dental 
pulp and other connective tissues is the low compliance environment of the dentinal walls and 
the relatively constant pulp tissue volume [9]. Initial vascular reactions during pulp 
inflammation (vasodilatation and increased vessel permeability) taking place in the rigid 
enclosed pulp chamber create conditions of increased hydrostatic tissue pressure. Local reflex 
reactions due to activation of sensory nerve fibers and subsequent release of vasoactive peptides 
might be beneficial to the pulp organ under low-grade tissue irritations [10]. However, under 
prolonged irritation, and despite the oedema-preventing mechanisms [9], dental pulp pressure 
can quickly suffer irreversible damage. Thus dental pulp healing does not always follow the 
sequence of events taking place normally in other connective tissues. Since pulp repair is 
strongly dependent on a number of factors, exacerbation of an initial inflammatory reaction 
very often leads to general tissue necrosis. 

iii. It is well-known that pulpal wound healing depends largely on the extent to which infection can 
be avoided [2]. Control of pre-operative infection seems to be a prerequisite for the success of 
vital pulp therapy. Furthermore, the control of post-operative infection depends largely on the 
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integrity of restoration and the ability of healed dentin-pulp complex to withstand the leaking 
oral bacteria. Thus, the nature of the healing mechanism determines the therapeutic validity of 
each vital pulp treatment modality and the PCM used. The role of physico-chemical and/or 
biological properties of PCM in the effective control of post-operative infection still remain an 
unknown clinical concern. 

In order to explore our understanding of therapeutic validity of the PCM and its role in the 
successful outcome of a given treatment modality, the knowledge on the reparative potential of the 
treated dental pulp, the biology of tertiary dentinogenesis and regenerative dynamics of dentin-pulp 
complex are briefly reviewed. 

1.2. Dentinogenesis in Health and Disease 

Only the cells of the embryonic precursor of dental pulp, the dental papilla, possess the ability to 
differentiate into odontoblastic cells forming primary dentin [11]. No other population of adult 
mesenchymal cells has the ability to differentiate into odontoblasts and this specific ability seems to be 
acquired by morphogenic influences during tooth development [12,13]. Odontoblasts physiologically form 
a dentin matrix during tooth development (primary dentin) and post-developmentally throughout of their 
lifespan (secondary dentin). Odontoblasts are further able to respond to exogenous stimuli, forming the 
reactionary type of tertiary dentin. After the destruction of primary odontoblasts, pulp cells which 
become new odontoblasts (odontoblast-like cells) form the reparative type of tertiary dentin. Tertiary 
dentin of both types, forming as a part of the wound healing mechanism in the pulp environment or in 
response to specific molecular signal, repairs the pulp-dentin complex in a specific spatial 
pattern [14,15]. This seems to be in line with the critical biological validity of a modality used in VPT. 
The other types of mineralized matrices in the repairing pulp environment, named fibrodentin or 
osteodentin, might be distinguished from tertiary dentin [16]. Apparently, these products represent 
defensive matrices of atypical scar-like form rather than pulp-specific tissues. However, the stereotypic 
processes taking place in defensive mechanisms cannot be clinically controlled and their end-result 
cannot be predicted [17]. Atypical hard tissue barriers are characterized by their unspecific nature and 
their porosity due to the osteotypic appearance of the secreted matrix. Both outcomes might be 
recognized as potential failures of the VPT. The atypical hard tissue has no barrier effect; it is formed at 
the expense of the dental pulp leading to pulp obliteration, and it is not effective in protecting the pulp 
from leaking bacterial threats. 

1.3. The Reparative and Regenerative Potential of Traumatized Dentin-Pulp Complex 

The irritation of the traumatized dental-pulp complex due to acute physical or mechanical trauma, 
including the trauma of pulp exposure, usually causes reversible pulpal damage. In the absence of 
chronic irritation, the dental pulp can be recovered [18]. As has been already stated, contamination of the 
amputated pulp with oral bacteria has been widely recognized as the most critical factor for continuing 
pulp inflammation and necrosis [4]. Subsequently, the ability of PCM to provide an effective barrier 
effect able to oppose the external irritation of the pulp-dentin complex must be directly associated with 
its therapeutic validity. From the first introduction of pulp capping as a treatment alternative for the 
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exposed dental pulp, the main interest has been focused on the dentinogenic potential of pulp cells and 
how the PCM can release morphogenetic factors from the dentin matrix [19] and/or induce cell 
proliferation, migration, adhesion and differentiation, i.e., the formation of a dentinal barrier at the 
exposure site. It might be noticed here that many observational and experimental studies have 
documented that the exposed dental pulp can survive even in the absence of dentinal barrier [1]. Taking 
this into consideration, the ability of dental materials to provide the necessary barrier effect through 
“hermetic” sealing of the exposure site has been also investigated as the basic criterion for the therapeutic 
validity of a given pulp treatment modality, despite the fact that many investigators stated that in this 
case the risk for pulp infection, inflammation and necrosis is extremely high. Of course, it is reasonable 
to conclude that combination of the dentino-inductive and sealing properties in one PCM should 
represent the ideal solution. In any case, the inductive properties seem to be among the primary 
requirements from the PCM. 

The nature of the dentinal barrier has been progressively recognized as a further criterion in 
evaluating the reliability of PCM, which needs to be further specified. Most investigations have 
documented that whenever the basic structure of pulp periphery is destroyed, hard tissue formation 
takes place as a part of the wound healing mechanism. However, clinical data showed that despite the 
presence of hard tissue barrier, treatment failed due to a secondary pulp infection. Experimental 
approaches showed that hard tissue which is formed as a part of the healing process results in 
formation of dentinal bridges with numerous tunnels and defects. Since pulp cells express a wide 
spectrum of mineralized matrices, it is crucial to distinguish the various types of hard tissue barriers 
formed in various pathological conditions at the pulp-dentin complex [16]. 

The cellular events taking place after direct pulp capping treatment have been studied by using 
calcium hydroxide-based materials. Initially the pulpal cells proliferate and elaborate a collagenous 
matrix in close proximity to a firm zone of destroyed pulp due to the trauma and the high alkalinity of 
the capping material. Mineral salts precipitating in that necrotic zone and the newly produced collagen 
form the first zone of calcified matrix around the treated pulp area. Morphologically this zone is called 
fibrodentin, and very often it has osteotypic appearance and does not include any tissue specific 
cytodifferentiative event [16,20]. If subsequent reactions lead to wound healing, the dentinogenic 
potential of pulpal cells can be expressed. Cells migrate toward the superficial calcified zone, attach 
and display the cytological characteristics of odontoblastic lineage forming a tubular mineralized 
matrix in a polar predentin-like pattern [7,20]. It seems that the primitive calcified matrix plays a role 
in differentiation of odontoblast-like cells, and this action calls to mind the role of the basement 
membrane during primary odontoblast differentiation in mediating epithelial-mesenchymal 
interactions [11]. It offers a mechanical support for immobilization of pulpal cells, though 
accumulation of endogenous extracellular matrix molecules (fibronectin and TGFβ1 among others) 
playing a role in the terminal odontoblast-like cell differentiation has been also suggested [14,21]. In 
any case, fibrodentin/osteodentin matrix formation seems to be an intermediate step during the onset of 
reparative dentinogenesis as a part of the wound healing process. 

In conclusion, the clinical exploitation of dentinogenic potential of pulp cells represent the rational 
basis of evaluating biological reliability of PCM [8]. It is now a necessity to put the evaluation of PCM 
into a broader perspective. The therapeutic validity of a given pulp treatment strategy has to be 
associated with two main biological properties of the PCM: 
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- Biocompatibility, defined as the absence of toxic effects which can interfere with the overall 
outcome of the inflammatory process in the pulp, and  

- Biological specificity, defined as the ability to signal odontoblast-like cell differentiation and 
reparative dentin formation instead the indirect stimulation of wound healing with hard  
tissue formation. 

The aim of the present article is to perform a literature review on the therapeutic validity of various 
materials used in vital pulp therapy over the last 6 decades, as is indicated by their specific dentinogenic 
activity. Since the detailed pulp response to the capping materials, including both newly formed 
mineralized tissue and the associated formative cells characterization, requires evaluation at the light or 
transmission electron microscopic level, the relative histological studies were only reviewed. 

2. Data Sources and Resources Selection 

This critical review is based on a comprehensive literature search using the Medline/Pubmed data 
base covering the period from 1949 to early 2015. The database search was performed using the 
keywords “pulp capping histology”, “pulpotomy histology”, “reparative dentin” and “osteodentin and 
pulp cup or pulpotomy”. Eligible for inclusion in this study were scientific articles that were published in 
the English language, with no limitations implemented by country of origin. The relevant papers 
included the abstracts and full text of clinical trials (original articles) that met the eligibility criteria. 
Unpublished research and studies that were reported only in abstract form editorials, review articles, 
letters to the Editor, clinical guidelines, in vitro studies and case reports were not considered for inclusion. 

Titles and abstracts were screened and then full texts of all potentially relevant publications were 
obtained and reviewed by two independent reviewers (X, Y). Full paper copies of peer-reviewed 
papers were acquired electronically and cross references were further screened to identify relevant 
studies. Both reviewers were blinded to authors, journal and results. Any disagreements on study 
inclusion and exclusion criteria were discussed and resolved either by consensus or by consulting a 
third reviewer. 

Inclusion of a study was dependent on having sufficient data regarding the type of the capping 
material used and the unit of observation (human permanent tooth in vivo or animal permanent 
dentition; primary teeth were excluded). The searches were also confined to articles presenting either 
clinical/radiographic data and/or histologic/histomorphometric evaluations of the post-operatively 
deposited tissue related to the material tested. The post-operatively deposited matrix was named with 
various terms, which were categorized into three types as follows: 

Unspecified matrix, where the type of newly formed mineralized matrix was characterized as hard 
tissue/matrix, mineralized tissue/matrix, calcified tissue/matrix or dentin bridge. 
Osteotypic matrix, where the type of newly formed mineralized matrix was characterized as 
osteodentin, fibrodentin, osteotypic hard tissue/matrix, atubular dentin or reparative dentin without 
any indication of tubular structure, and  
Dentin-like matrix, where the type of newly formed mineralized matrix was characterized by its 
tubular structure and was named as reparative dentin, tertiary dentin, new dentin, dentin-like or 
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tubular mineralized tissue/matrix, with indication of presence of elongated formative cells, or 
odontoblast-like cells or new odontoblasts. 

Review 

One hundred fifty two studies were included in the final evaluation. In Table 1 the studies are shown 
with their reference data, species, capping material(s) used and the type of mineralized tissue(s) formed 
according to the categorization mentioned above. 

Table 1. The 152 studies which have been included in the present systematic review. Data 
concerning the used experimental model(s), capping material(s) and the type of newly 
formed mineralized tissue(s) are shown. Abbreviations: CH calcium hydroxide-based 
material, MTA mineral trioxide aggregates-based material, PC Portland cement-based 
material, BD biodentine, CP calcium phospate-based material, HA hydroxyapatite-based 
material, BG bioactive glass-based material, EMP enamel matrix protein-based material, 
FS ferric sulphate, FC formocresol, BMA bioactive molecule-based application, ZOE zinc 
oxide & eugenol-based material, RS glass ionomer and resin-based materials, U 
unspecified mineralized tissue, OSD osteotypic matrix, DL dentin-lik matrix. 

References Model Capping Material(s) 
Type of 

Matrix 

Zhang et al. [22] Rat MTA, PC DL 

Cannon et al. [23] Monkey RS, PC U 

Swarup et al. [24] Human CP, MTA, CH DL 

Han et al. [25] Rat MTA DL 

Tziafa et al. [26] Pig MTA, BD OSD + DL 

Obeid et al. [27] Dog MTA, CP, Other U 

Nowicka et al. [28] Human BD, MTA OSD + DL 

Hutcheson et al. [29] Human MTA U 

Omar et al. [30] Dog FS, Other U 

Sushynski et al. [31] Human FS, MTA DL 

Nowicka et al. [32] feline  RS, CH DL 

Cardoso-Silva et al. [33] Human  MTA U 

Fransson et al. [34] Human BMA, CH OSD + DL 

Shahravan et al. [35] Human MTA U 

Zarrabi et al. [36] Human MTA, other DL 

Shayegan et al. [37] Pig HA,CH, FC U 

Zealand et al. [38] Human FC, MTA U 

Zarrabi et al. [39] Human MTA, other DL 

Parolia et al. [40] Human Other, MTA, CH DL 

Sakai et al. [41] Human MTA, PTC U 

Shayegan et al. [42] Pig CP, CH, MTA, PTC U 

Accorinte et al. [43] Human MTA U 
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Table 1. Cont. 

References Model Capping Material(s) 
Type of 

Matrix 

Kiatwateeratana et al. [44] Human EMP, CH DL 

Accorinte et al. [45] Human MTA, CH U 

Accorinte et al. [46] Human MTA, CH U 

Moretti et al. [47] Human MTA, CH, FC U 

Sawicki et al. [48] Human MTA, CH U 

Nair et al. [49] Human MTA or CH U 

Lu et al. [50] Human RS, CH DL 

Min et al. [51] Human MTA, CH DL 

Fernandes et al. [52] Human CH, RS DL 

Qudeimat et al. [53] Human MTA, CH U 

Tziafas et al. [54] Dog RS, CH, Other U 

Elias et al. [55] Human CH, RS DL 

Iwamoto et al. [56] Human MTA, CH U 

Caicedo et al. [57] Human MTA  U 

Silva et al. [58] Human RS, CH DL 

Piva et al. [59] Human CH OSD + DL 

Olsson et al. [60] Human EMP, CH U 

Markovic et al. [61] Human FC,CH U 

Koliniotou & Tziafas. [62] Dog RS, CH U 

Maroto et al. [63] Human MTA U 

Suzuki et al. [64] Rat RS, Other DL 

Accorinte et al. [65] Human CH, RS DL 

Menezes et al. [66] Dog MTA, PTC U 

Agamy et al. [67] Human MTA, FC DL 

Iohara et al. [68] Pig BMA DL 

Nakashima et al. [69] Dog BMA DL 

Salako et al. [70] Human BG, MTA, FS, FC DL 

Hörsted-Bindslev et al. [71] Human RS, CH DL 

Scarano et al. [72] Human RS, CH, other DL 

Tziafas et al. [73] Dog MTA OSD + DL 

Tziafas et al. [74] Dog BMA, Other OSD + DL 

Kitasako et al. [75] Monkey RS, CH DL 

Murray et al. [76] Monkey CH, RS DL 

Hafez et al. [77] Monkey RS, CH DL 

Six et al. [78] Rat BMA, CH OSD + DL 

Nakamura et al. [79] Pig CH, EMP OSD + DL 

Tziafas et al. [80] Dog BMA,HA, CH, Other OSD + DL 

Goldberg et al. [81] Rat BMA, CH OSD + DL 

Lovschall et al. [82] Rat BMA, CH DL 

Rutherford. [83] Rat BMA DL 

Blanko et al. [84] Human CH U 

Pereira et al. [85] Human CH, RS DL 

Decup et al. [86] Rat BMA, CH DL 
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Table 1. Cont. 

References Model Capping Material(s) 
Type of 

Matrix 

Waterhouse et al. [87] Human FC, CH DL 

Hayashi et al. [88] Rat  CP OSD + DL 

Kitasako et al. [89] Monkey RS U 

Hebling et al. [90] Human RS, CH U 

Tarim et al. [91] Monkey RS, ZOE, CH U 

Tziafas et al. [92] Dog BMA  OSD + DL 

Tziafas & Papadimitriou. [93] Dog BMA OSD + DL 

Jepsen et al. [94] Pig BMA, CH OSD + DL 

Ford et al. [95] Monkey MTA, CH U 

Tziafas et al. [96] Dog CH OSD + DL 

Yoshiba et al. [97] Human CH OSD + DL 

Tziafas et al. [98] Dog BMA OSD + DL 

Sasaki & Kawamata-Kido. [99] Rat HA, CH OSD + DL 

Oguntebi et al. [100] Pig BG,CH, BMA, Other U 

Yoshimine et al. [101] Rat CP, CH U 

Yoshiba et al. [102] Monkey CP, CH, Other U 

Tziafas et al. [103] Dog BMA, CH  OSD + DL 

Nakashima. [104] Dog BMA OSD + DL 

Tziafas et al. [105] Dog BMA OSD + DL 

Oguntebi et al. [106] Pig BG, BMA, CH DL 

Imai et al. [107] Rat CP, CH OSD + DL 

Lianjia et al. [108] Bovine BMA OSD + DL 

Rutherford et al. [109] Monkey BMA, CH OSD + DL 

Robson & Katz. [110] Rat BMA OSD + DL 

Inoue & Shimono. [111] Rat RS U 

Tziafas et al. [112] Dog BMA OSD + DL 

Tziafas et al. [113] Dog BMA OSD + DL 

Jaber et al. [114] Rat HA, CH DL 

Furusawa et al. [115] Human CP U 

Mjor et al. [116] Monkey CH DL 

Fitzgerald & Heys. [117] Human CH  U 

van Mullem. [118] Pig Untreated OSD + DL 

Nakashima. [119] Dog BMA OSD + DL 

Smith et al. [120] Ferret BMA OSD + DL 

Fitzgerald et al. [121] Monkey CH U 

Ikami et al. [122] Monkey CP U 

Tziafas & Kolokuris. [123] Dog BMA OSD + DL 

Heys et al. [124] Monkey CH, Other U 

Nakashima. [125] Dog BMA OSD + DL 

Tziafas. [126] Dog CH, other U 

Oguntebi et al. [127] Monkey BMA, ZOE U 

Tziafas & Molyvdas. [128] Dog CH OSD + DL 

Jean et al. [129] Pig CP, HA, CH OSD + DL 
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Table 1. Cont. 

References Model Capping Material(s) 
Type of 

Matrix 

Cvek et al. [130] Monkey CH, other OSD + DL  

Cox et al. [131] Monkey RS, others  DL 

Heide & Kerekes. [132] Monkey CH U 

Heide & Kerekes. [133] Monkey CH U 

Cox & Bergenholtz. [134] Monkey CH OSD + DL 

Schroder U. [20] Human CH OSD + DL 

Cox et al. [135] Monkey CH U 

Fuks et al. [136] Monkey BMA OSD + DL 

Goldberg et al. [137] Human CH, CP U 

Heide & Mjor. [138] Human Others U 

Garcia-Godoy et al. [139] Dog FC U 

Cox et al. [140] Monkey CH U 

Heys et al. [141] Monkey CH,ZOE,CP, Others DL 

Inoue et al. [142] Rat BMA U 

Horsted et al. [143] Monkey CH, Other  U 

Dick & Carmichael. [144] Dog BMA U 

Fitzgerald. [145] Monkey CH OSD + DL 

McWalter et al. [146] Monkey CH, Others U 

Heller et al. [147] Monkey CP, CH U 

Cotton. [148] Rat CH, ZnOE U 

Cotton. [149] Rat CH U 

Tronstad. [150] Monkey CH  U 

Schroder & Sundstrom. [151] Human CH OSD + DL 

Schroder. [152] Human CH OSD + DL 

Sella et al. [153] Rat CH U 

Mc Walter et al. [154] Monkey CH, Other U 

Stanley & Lundy. [155] Human CH  U 

Anneroth & Bang. [156] Monkey BMA U 

Tronstad & Mjor. [157] Monkey CH, ZOE U 

Ulmansky et al. [158] Human CH U 

Schroder & Granath. [159] Human CH OSD + DL 

Berkman et al. [160] Human Others U 

Schroder & Granath. [161] Human CH OSD + DL 

Ulmansky et al. [162] Human CH, other DL 

Langer et al. [163] Human CH, ZOE U 

Bhaskar et al. [164] Rat CH, other U 

Kakehashi et al. [165] Rat Other DL 

Kakehashi et al. [18] Rats Untreated U 

Pisanti & Sciaky. [166] Dog CH U 

Sciaky & Pisanti. [167] Dog CH U 

Kalnins & Frisbie. [168] Human Untreated U 

Berman & Massler. [169] Rat CH, ZOE U 

Nyborg. [170] Human, Dog CH U 

Glass & Zander. [18] Human CH, ZOE, other U 
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3. Data Analysis 

Experimental model: Sixty studies (39.2%) were performed on human teeth, while the following 
species were also used for the animal experimentation: non-human primates in 31 studies (20.2%), 
non-primates in 39 studies (25.4%), including dogs, pigs, felines, and bovine species, and rodents in 
25 studies (16.3%), including rats, mice and ferrets. 

Capping material: Ninety-three studies (60.7%) used calcium-hydroxide-based materials as testing 
or control material. After introduction of MTA as a capping material in 1996, 35 studies (22.8%) used 
tricalcium-silicate-based materials. It is noteworthy that of the 54 studies published after 2003, MTA 
was used in 31 studies (57.4%). In 82 studies, other dental materials have been used: in 20 resin-based 
materials (13%), in 18 calcium phosphate-based materials (11.7%), in 8 zinc oxide eugenol-based 
materials (5.2%) and in 39 studies (25.5%) other materials (ferric, sulfate, formaldeyde, amalgam, etc.) 
were applied. In thirty-seven studies (24.2%), bioactive-molecule-based applications including growth 
factors, bone morphogenetic proteins, enamel proteins, etc., were used. 

Regarding the form and structure of the mineralized bridge, the type of hard tissue bridge was 
characterized as follows:  

• In 74 (48.3%) studies, only the presence of a mineralized bridge was reported. The type of 
mineralized matrix was not adequately described and characterized as hard, mineralized or 
calcified tissue or dentin bridge. 

• In 33 (21.6%) studies, the form of the mineralized bridge was evaluated according to 
morphological or molecular characterization of the newly formed matrix. The type of mineralized 
matrix was categorized as a dentin-like matrix, but without any information on whether this type 
of mineralized matrix characterized the whole structure of the mineralized bridge. 

• In 46 (30.1%) studies, the form of the mineralized bridge was evaluated according to 
morphological or molecular characterization of the newly formed matrix, and two types of 
mineralized matrix have been reported. A firm zone of a mineralized matrix, which was 
categorized as an osteotypic mineralized matrix, was always followed by the mineralized 
matrix categorized as dentin-like matrix. 

The data per decade concerning the experimental model, capping materials used and type of hard 
tissue bridge are shown in Figures 1, 2 and 3, respectively. 
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Figure 1. Number of experimental pulp capping histological studies (y-axis) performed in 
different experimental models per decade. 

 

Figure 2. Number of experimental pulp capping histological studies (y-axis) performed by 
using different capping materials per decade. CH calcium hydroxide-based materials, CS 
calcium silicate-based materials, CP calcium phosphate-based materials, BMA bioactive 
molecule-based applications, RS resin-based materials. 
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Figure 3. Number of experimental pulp capping histological studies (y-axis) with different 
types of post-operatively formed hard tissue, as has been previously described, per decade. 

4. Conclusions 

It is well-accepted that both the presence and (especially) the quality of hard tissue barrier are 
important prognostic factors for the success of a pulp capping treatment [8]. Thus, the ultimate goal of 
the direct pulp capping procedure and the optimal end result of an ideal PCM in the exposed pulp might 
be the complete reconstitution of the anatomy of pulp periphery. Since primary dentin cannot be formed 
post-developmentally, the differentiation of odontoblast-like cells forming reparative dentin in a 
predentin-like pattern is an essential biological pre-requirement for the complete restoration of dentin-
pulp complex integrity, the only predictable way to achieve the successful outcome of vital pulp therapy. 
Differentiation of odontoblast-like cells takes place as a part of the wound healing mechanism, or as an 
effect of specific signaling molecules on pulp cells. Traditional pulp capping materials stimulate or 
enhance the wound healing mechanism, forming a heterogeneous hard tissue bridge composed of 
osteodentin-fibrodentin and reparative dentin. Several experimental attempts showed that the application 
of exogenous signaling molecules offers opportunities for the development of new therapies. 
Furthermore, the presence of a cocktail of growth factors in the dentin extracellular matrix provides a 
tool for an endogenous signaling mechanism to modulate cellular events taking place during tertiary 
dentinogenesis. The ability of biomaterials to release bioactive molecules from the dentin has been 
documented by robust studies, providing a basis for new significant tasks in developing novel therapeutic 
approaches in the near future. 

Addressing delivery matters need to be considered before their introduction in clinical practice. In the 
shorter term, the group of traditional PCMs remains as the only therapeutic possibility for effective hard 
tissue bridge formation at the exposure site. The ability of traditionally used PCMs to stimulate the hard 
tissue bridge has been documented in experimental histological pulp capping studies by using different 
assessment criteria. It must be assumed that the absence of uniform criteria is the reason for the fact that 
our knowledge on the specificity of PCMs to induce dentinogenic events is still very limited. Thus, 
further data are required to fully understand how the wound healing mechanism after application of a 
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PCM could be designed as a time- and space-limited process to provide the optimal end result, avoiding 
incomplete restoration of pulp periphery or uncontrolled pulp obliteration. 

Data from the present systematic review have shown that only 30.2% of the 152 experimental 
histological pulp capping studies described the heterogenic nature of the hard tissue bridge formation, 
while the 48.2% and 21.6% of the studies reported an homogenous hard tissue bridge characterized as 
hard, mineralized or calcified tissue and dentin bridge or dentin-like matrix, but without any additional 
information on its structural characteristics, respectively. It seems to be quite disappointing that there is a 
declining percentage of studies using specific criteria to characterize the hard tissue bridge over the last 
30 years. As can be seen in Figure 3, 52.6%, 32.4% and 10.2% of the studies used specific 
characterization of the type of post-operatively formed hard tissue in the periods 1986–1995,  
1996–2005 and 2006–2015, respectively. In the present study, our knowledge about the nature of pulp 
wound healing mechanisms is highlighted as a critical requirement in the selection of the appropriate 
vital pulp therapy procedure and capping materials in various clinical conditions. Additionally, it is 
suggested that an international consensus must be reached on selected mandatory criteria to optimally 
characterize the reparative events in vital pulp therapy.  
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