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A B S T R A C T   

Livestock facilities commonly generate NH3, a hazardous substance that may also harm livestock. 
Therefore, monitoring of NH3 concentrations in livestock facilities is necessary to ensure proper 
control. However, NH3 is alkaline and toxic, causing corrosion inside detection sensors and 
making monitoring difficult. This study proposes a virtual sensor concept to complement the 
durability of NH3 physical sensors. The study also conducts a long-term performance validation of 
a data-driven NH3 concentration prediction model. Results indicate that the model’s prediction 
performance declines sharply when the data generation pattern inside the livestock facility 
changes due to changes in outdoor conditions and facility operation. Furthermore, the prediction 
performance of the model differed depending on the training data period settings when updating 
the model. Hence, the model needs versioning and update management to respond to the data 
generation pattern in the livestock facility when operating the NH3 concentration virtual sensor. 
The virtual sensor is expected to enhance monitoring and reduce sensor management costs in 
livestock facilities.   

1. Introduction 

1.1. Background 

The global population is expected to reach 8 and 10 billion by 2023 and 2056, respectively, because of the high birth rates in 
developing countries and the extended average life span owing to medical advancements [1]. Given this expected population increase, 
it is expected that the food demand in 2050 is estimated to increase by approximately 59–98% compared with that in 2016 [2]. 
Consequently, the increasing demand for agricultural and livestock products has led to a rise in large-scale and intensive livestock 
farming practices as a means to address food security issues [3–5]. 

In livestock facilities, livestock manure produces harmful gases, raising the concentration of these gases inside livestock facilities 
with high stocking densities and thereby resulting in substantially low indoor air quality [6–8]. Poor indoor air quality can lead to 
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respiratory and skin diseases in livestock, leading to low growth performance [9], and even affecting the health of workers in livestock 
facilities and nearby residents [10,11]. NH3 is the most prevalent and harmful hazardous substance generated in livestock facilities 
[12]. Table 1 shows the symptoms of livestock by NH3 concentration levels investigated in previous studies [13]. High concentrations 
of ammonia can result in decreased disease immunity, loss of appetite, dizziness, and other adverse effects [14–16]. 

Therefore, NH3 concentrations need to be controlled according to the guidelines set [17]. However, because NH3 is alkaline and 
toxic, it can cause corrosion in detection sensors [18]. Fig. 1 shows the operational history of an NH3 sensor in a real livestock facility. 
During the 12-month period from September 2020 to August 2021, the livestock facility operation showed unstable ammonia mea
surement data, which resulted in sensor replacement five times. The considered livestock facility was a highly dense pig farm with 
around 900 piglets and had controlled ventilation to maintain indoor air temperature. Excluding the heating season, the ventilation fan 
operation schedule follows a time-series dynamics based on the outdoor condition, and accordingly, the indoor NH3 concentration also 
follows time-series dynamics. However, sensor A did not show the time-series dynamics of NH3 concentration corresponding to the 
ventilation fan schedule and showed a high frequency of 0 ppm or close to 0 ppm even during the period when pigs were being raised. 
This led to frequent sensor replacements, and even after replacing the sensor with a different company’s model, sensor B, the sensor 
failed shortly thereafter. Finally, in mid-June 2021, sensor C was adopted and has been utilized for measurements to date with stable 
measurement performance. The difference in durability between these sensor models was due to the internal filter structure. In the 
process of replacing sensors A and B, internal corrosion was found, which may be due to the entry of NH3, a corrosive and toxic 
substance. Compared to Sensor C, sensors A and B had relatively complex internal structures due to their panel mounting and were 
therefore vulnerable to corrosion due to insufficiently fitted filters. By contrast, Sensor C had no instrument panel and a relatively 
simpler internal structure with sufficient, easily replaceable filters. Certainly, Sensor C required periodic filter replacement to prevent 
sensor failure. 

Virtual sensing technology can be an alternative to solving the practical problems of NH3 data monitoring. Virtual sensors are a type 
of mathematical model applied in real-time observation of variables that are difficult to be measured physically and can be utilized for 
the backup of physical sensors and the replacement of faulty sensors [19]. The virtual sensing technology can be utilized for the fault 
detection and diagnosis (FDD) of NH3 physical sensors as well as for deciding reasonable internal filter replacement intervals. As a 
result, livestock facility operators can reduce sensor installation and maintenance costs and avoid operational damage due to physical 
sensor malfunctions. 

1.2. Literature review 

Virtual sensors have been widely used in construction, transportation, healthcare, and industrial applications. In the buildings, 
virtual sensors are utilized to predict the indoor environment and control factors of heating, ventilation, and air conditioning (HVAC) 
systems, enabling optimal control and FDD of the systems [20]. This section analyzes previous studies on virtual sensor technology and 
NH3 concentration prediction models for indoor building observation, ultimately suggesting the need for research related to the 
development of NH3 concentration virtual sensors in livestock facilities. 

1.2.1. Indoor environment virtual sensor 
Virtual sensors in indoor spaces have been developed to focus on factors that are generally difficult to measure using a single sensor, 

such as energy consumption, thermal comfort, air infiltration, and local temperature [20]. Ploennigs et al. [21] developed a physical 
model-based virtual sensor that can predict room-level heat consumption by applying the concept of relative heating coefficients for 
room size, valve number, and heating system size factors using measured heat usage of the whole building. They believe that the newly 
developed virtual sensor can minimize building monitoring costs. Li et al. [22] developed an inverse model that can predict air 
infiltration and the number of occupants by utilizing environmental factors that are easily measurable, such as indoor temperature, 
humidity, and CO2 concentration. They argued that by predicting factors that are difficult to measure, the accuracy of physics-based 
building energy simulation models can be improved. Zhao et al. [23] developed a Bayesian belief network-based virtual occupancy 
sensor utilizing a chair sensor, keyboard and mouse, real-time GPS location, and Wi-Fi connection data. They claimed that the virtual 
occupancy sensor can contribute to optimal control of HVAC systems by providing reliable occupancy information and can also reduce 
monitoring costs by utilizing only common and cheap measurements. Woradechjumroen et al. [24] developed a virtual wall surface 

Table 1 
Symptoms of livestock based on NH3 concentration levels.  

NH3 concentration (ppm) Symptoms 

10 Some negative effects at long term exposure 
15 Smell threshold for human beings 
20 Eye irritation for broilers 
20–40 Increase of respiratory diseases 
25–35 Stockmen feel uncomfortable 
50 Disturbance of productive capacity; Water flows from the eyes 
50–150 Decrease of young pig growth by 12–29% 
70 Reduced daily gain and poor feed conversion 
100–200 Irritation and anorexia 
5000 Deadly within a few minutes  
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temperature sensor using a linear parametric model-based heat balance equation. They suggested that it can be used for heat transfer 
analysis between adjacent zones to support supervisory control of equipment in multi-zone buildings. Alhashme and Ashgriz [25] 
utilized computational fluid dynamics (CFD) to develop a virtual sensor that can predict the local temperature of unmeasured areas to 
evaluate the performance of a locally controlled temperature system. 

Virtual sensors are developed with the primary goal of eliminating measurement difficulties or minimizing monitoring costs. Since 
NH3 concentration sensors in livestock facilities are difficult to manage due to frequent failures caused by internal corrosion, it is 
difficult to properly control the indoor environment. In this situation, virtual sensing technology is expected to contribute to enhanced 
monitoring and cost reduction in livestock facilities by detecting NH3 concentration sensor malfunctions and providing information 
such as fault diagnosis and filter replacement needs. However, research related to the development of NH3 concentration virtual 
sensors is still limited because NH3 concentration in general buildings is not monitored in the same way as in livestock facilities. 

1.2.2. NH3 concentration prediction model 
No study has applied the virtual sensor concept to monitor indoor NH3 concentration, but the development of NH3 concentration 

prediction models in livestock facilities has been actively researched. Tong et al. [26] developed a 3D CFD model to predict indoor 
airflow, thermal environment, and NH3 concentration distribution in a poultry farm and proposed solutions for improving the indoor 
environment using the developed model. Peng et al. [27] conducted a prediction performance verification by input variable combi
nation and algorithm type when developing an data-driven NH3 concentration prediction model in a pig farm and demonstrated the 
superiority of the prediction performance of the novel models developed. Song et al. [28] developed a NH3 concentration prediction 
model for a cattle house using the QPSO-RBF algorithm based on data preprocessed through KPCA nuclear principal component 
analysis and evaluated the performance of the model in comparison with four other prediction models. Shen et al. [12] developed an 
NH3 concentration prediction model for a pig farm based on the Elman neural network algorithm using environmental parametric data 
preprocessed by the empirical mode decomposition technique. Xie et al. [29] conducted a performance evaluation of an adaptive neuro 
fuzzy inference system-based NH3 concentration prediction model for pig farms utilizing five different membership functions and 
derived the predicted values of NH3 emissions in summer and winter respectively. Zhu et al. [30] developed a back propagation neural 
network-based NH3 concentration prediction model for pig farms using genetic algorithm and leven berg-marquardt optimization 
algorithms and evaluated the prediction performance and training speed of the model. 

The NH3 concentration prediction models proposed in the previous studies can be useful for NH3 concentration sensor management 
in livestock facilities because they can predict NH3 concentrations based on the sensing values of other environmental factors. 
However, the previous studies are mainly aimed at improving the performance of CFD model in static situations and data-driven 

Fig. 1. Operation of NH3 concentration monitoring sensor in a real livestock facility.  
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prediction model which is demonstrated through short-term performance validation of less than one week. However, in the actual 
operation stage, the performance of the prediction model may be rapidly degraded due to changes in the data generation pattern 
because of changes in the outdoor environment and equipment system operation in the livestock facility. Therefore, for the NH3 
concentration prediction model to play a role as a virtual sensor that can supplement physical sensors, it is necessary to conduct 
research related to model updates, including long-term performance validation that can reflect seasonal changes. 

1.3. Research scope and goals 

The study aims to:1) suggest the need for model update through long-term performance validation of a NH 3 concentration pre
diction model in a measured data-based livestock facility.2) suggest an update method through a cause analysis of the performance 
degradation of the NH 3 concentration prediction model. 

This study recognizes the challenges of monitoring NH3 concentration in livestock facilities as a problem caused by the deterio
ration of NH3 physical sensors and suggests that long-term performance validation is required for NH3 concentration prediction models 
to supplement physical sensors as virtual sensors. The study’s view on the criteria for long-term performance validation is that the 
model should be able to reflect seasonal changes at a minimum. Unlike previous studies that had a validation period of less than one 
week, this study conducted a four-month validation of the developed model. This study is expected to strengthen monitoring in 
livestock facilities and reduce sensor management costs by providing necessary guidelines for the practical utilization of the NH3 
concentration prediction model as a virtual sensor. 

2. Material and method 

The flowchart of this study’s methodology is shown in Fig. 2. First, data related to indoor temperature, relative humidity, CO2 and 
NH3 concentrations, and ventilation fan operation were collected for the development of NH3 prediction model. Indoor NH3 con
centrations in livestock facility are primarily influenced by various factors, including the method of manure storage, type of feed, 
animal activity and weight, ventilation rate, indoor and outdoor environmental conditions [31]. In this study, NH3 concentration 
prediction model was developed using indoor environmental factors, which are relatively easy to collect monitoring data, and fan 
operation schedule data directly related to ventilation. The collected data were categorized into two parts, one for training and the 
other for validation. Based on the data used for training, K-fold cross-validation was performed to evaluate the performance of the 
learning algorithm. Afterward, based on the selected algorithm, long-term performance validation of the NH3 concentration prediction 
model was performed by comparing it with measured monitoring data. 

2.1. Target pigsty and data monitoring 

This study was conducted in a piglet house at a pig farm facility located in Suncheon, South Korea. The piglet house consisted of two 
piglet rooms and one diseased pig room, where approximately 900 piglets stayed for 7–10 weeks. The indoor environment of the piglet 
house was controlled by operating ventilation fans, cooling pads, and heating panels. The construction scale and system installations of 
the selected piglet house were described in detail in a previous study [32]. 

The experimental period was from July 2021 to December 2021. Indoor environment and part-load-ratio (PLR) of the fan were 
measured at 3-min intervals, as shown in Table 2. PLR represents the current rotational speed of the fan relative to its nominal rotation 
speed. The indoor environmental factors include air temperature, relative humidity, and CO2 and NH3 concentrations. The number and 
location of sensors installed are shown in Fig. 3. The air temperature and humidity sensors were installed at a height of 1 m from the 
floor. The CO2 and NH3 concentration sensors were installed at a height of 20 cm from the middle ceiling. An additional CO2 con
centration sensor was installed in the corridor to compare the air quality inside the pig house. The specifications of each sensor are 
summarized in Table 3 based on the manufacturer’s catalogs. 

2.2. Development of NH3 concentration prediction model 

In this study, a data-driven model was developed to predict NH3 concentration using four parameters: indoor temperature, relative 
humidity, CO2 concentration, and PLR. The measurement points of each parameter were separated and utilized as individual input 
parameters without any preprocessing (8 indoor temperature data points, 3 relative humidity data points, and 2 CO2 concentration 

Fig. 2. Study flowchart.  
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data points). The model was developed using the SPSS27 statistical analysis software program. 

2.2.1. Data preparation 
The data configuration used to train and validate the prediction model is shown in Table 4. The data collected at 9-min intervals 

were utilized, making a total of 7995 data points (July to August) for model development and 16,037 data points (September to 
December) for validating the model’s performance. This data represents the entire population. Missing values and outliers were 
excluded without interpolation, and data collected during non-breeding periods were also excluded. 

2.2.2. Data-driven model algorithm 
When developing the prediction model, the performance of each algorithm was analyzed using K-fold cross-validation. K-fold cross- 

validation is a method that divides the dataset into K datasets, with one dataset utilized for training and (K-1) datasets for validation. 
Thus, a total of K dataset combinations were formed, and the model was evaluated based on the average value of K performance 
indicators. In this study, 5-fold cross-validation was performed for each training algorithm, as shown in Fig. 4. Long-term performance 
validation was performed based on the model that showed the best performance. 

In this study, the performance of the NH3 concentration prediction model was evaluated for four algorithms widely used in the field 
of data-driven model development: multiple linear regression (MLR), multi-layer perceptron (MLP), support vector machine (SVM), 
and random forest (RF). The long-term performance of the NH3 concentration prediction model developed based on the selected 

Table 2 
Measured data.  

Term July to December 2021 
Data Indoor  

environment  
• Air temperature  
• Relative humidity  
• CO2 concentration  
• NH3 concentration 

Operation  • Part-load ratio (Fan)  

Fig. 3. Installation of sensors. (a) First-floor plan; (b) longitudinal section.  

Table 3 
Sensor specifications.   

Model Manufacturer Scope Accuracy 

Air temperature PR-20 OMEGA − 73–260 ◦C Class A per IEC60751 
Relative humidity HTX75C–W-HT DOTECH 0-100%RH ±2.0%RH (25 ◦C, 20–80%RH) 
CO2 concentration SH-VT260 SOHATECH 0–10000 ppm ±2% 
NH3 concentration DOL53 DOL 0–100 ppm 1.5 ppm or ±10%  

Table 4 
Data division for training and Validation.  

Division Month Number of data 

Training July 3963 
August 4032 

Validation September 3157 
October 4552 
November 4332 
December 3996  
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algorithms was evaluated. 
MLR is a technique that utilizes multiple independent parameters to predict a single dependent parameter. The linear regression 

technique has been widely used as a prediction model in traditional statistical approaches due to the ease of model development and 
interpretation, and the output parameter can be derived as follows: 

Y =α0 + α1X1 + α2X2 + ⋯ + αnXn (1)  

where Y is a dependent parameter corresponding to the predicted value; X1, X2, X3, … Xn are n independent parameters; and α0, α1, α2, 
α3,… αn are the regression coefficients. This equation can explain the fluctuation in Y value according to the change in values of the 
independent parameters and coefficients. 

MLP is a type of artificial neural network (ANN) with a feed-forward approach and consists of an input layer, an output layer, and 
one or more hidden layers. MLPs show high performance in analyzing complex nonlinear data [33]. In general, an MLP can be rep
resented by the following equation: 

Hl = σ(wlX + bl) (2)  

where w is the weight; b is bias; H is the activation or output of the neurons; and σ is the activation function. This study used a sigmoid 
function as the activation function. 

SVM creates a non-probabilistic, binary, linear classification model that determines the category of new data by utilizing a specific 
set of data. SVM is highly predictive even with small amounts of data [34]. SVM is an algorithm that can be used when the dependent 
parameter is categorical. For continuous dependent parameter prediction, Support Vector Regression (SVR) with a least-squares error 
function and kernel technique can be utilized [35]. SVR performs analysis with the following equation: 

f (x)=WT̂ φ(x) + b (3)  

where f(x) denotes the prediction outputs; W is the weight factor; b is the adjustable factor; and φ(x) is the map function of mapping 
the input space into a high-dimensional feature space. In this study, the SVR algorithm with a radial basis function (RBF) kernel 
technique was used. 

RF is an algorithm that applies the classification and regression tree (CART) algorithm to decision tree analysis and the bagging 
algorithm in the ensemble model. RF solves the over-fitting problem, which is a weakness of decision tree analysis, and improves the 
prediction accuracy by applying ensemble models. Due to these features, RF has been utilized in studies related to the development of 
predictive models [36,37]. 

2.3. Performance evaluation 

To evaluate the predictive performance of the developed model, the mean absolute error (MAE) and coefficient of variance of the 
root mean square error (CVRMSE) metrics were used, which are often used in model validation [38]. MAE is a metric that evaluates the 
root mean square of the error between the observed and predicted values, as shown in Equation (4). CVRMSE is a metric that evaluates 
the distributional agreement by summing the squares of the errors and taking the square root again, as shown in the following 
equations: 

Fig. 4. Schematic diagram of 5-fold cross validation.  
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MAE=

∑n

i=1
|Mi − Pi|

∑n

i=1
Mi

× 100 (4)  

Fig. 5. Results of k-fold cross validation (Scatterplot of measured and predicted values).  
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CVRMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(Mi − Pi)

2

n

√

M
× 100 (5)  

where M is the measured value; P is the predicted value; and M is the mean measured value. 

3. Results and discussion 

3.1. Prediction model validation and selection 

In this study, the NH3 prediction performance of each algorithm was evaluated based on July and August data from the livestock 
facility. Fig. 5 shows the scatterplot of predicted and measured values along with the R2 resulting from K-fold cross-validation for each 
algorithm. The distribution of data near the trend line in the graph indicates the correlation between predicted and observed values. 
Among the four algorithms, MLP achieved the highest average R2 value of 0.8055, while SVR had the lowest average R-squared value 
of 0.6321. This indicates that MLP algorithm overall predicts the observed data with the closest resemblance. The algorithm with the 
least variance in R-squared values across folds was MLP, with an R2 range of 0.6682–0.8662. In contrast, SVR exhibited the largest 
variation in R2 values across folds, with an R2 range of 0.2144–0.9124. This suggests that MLP, among the four algorithms, best 
captures the overall characteristics of the data without overfitting to the training data. Table 5 shows the error rates for each algorithm. 
As a result of comparing the average values across all 5-folds, MLP had MAE = 15.67% and CVRMSE = 22.31%, among the four 
algorithms, with both metrics being the lowest. Based on these results, this study conducted a long-term performance validation of the 
NH3 concentration prediction model developed using the MLP algorithm. 

3.2. Long-term performance validation 

3.2.1. Performance validation 
Fig. 6 shows the measured NH3 values and model predictions for the months of September through December. The measured NH3 

concentration in the pigsty during September–October exhibited a range of 6–55 ppm, with an average of 28.29 ppm. Similarly, the 
model predicted NH3 concentration for the same period ranged from 7.02 to 54.57 ppm, with an average of 27.03 ppm. The error rates 
for September and October were MAE = 16.86% and CVRMSE = 21.81%. These values are similar to the results of the 5-fold validation 
on the July–August data that was used to develop the model. Furthermore, R2 = 0.7137 indicates that the time series nature of the NH3 
data is well represented. However, the performance of these models began to decline sharply in November. The measured NH3 
concentration during November–December exhibited a range of 49–98 ppm, with an average of 78.17 ppm. In contrast, the model 
predicted NH3 concentration for the same period ranged from 21.39 to 42.80 ppm, with an average of 33.35 ppm. The error rates for 
November and December were MAE = 57.33% and CVRMSE = 58.30%, indicating that the model did not perform well as a virtual 
sensor. The model’s predictions during this period were 44.81 ppm lower than the measured average value. 

This substantial degradation in the model may be attributed to changes in the pattern of data occurrence within the livestock 
facility. Fig. 7 shows the Pearson correlation coefficient values of NH3 data and each input parameter by time period. The July–August 
data utilized for model development and the September–October data pattern where model performance remained adequate were 
found to be similar. Therefore, a comparison was made between the data for the four months of July–October and the Novem
ber–December data. The CO2 data was found to be positively correlated in both cases. The indoor CO2 concentration data (CO2_1) 
showed a higher correlation coefficient value in November and December compared to July and August, while the corridor CO2 
concentration data (CO2_2) showed a lower correlation coefficient value in November and December compared to July and August. For 
indoor relative humidity data, the correlation coefficient was negative in July and August, while it was positive in November and 
December. For indoor temperature data, the sign of the correlation coefficient changed at two locations (Ta_3 and Ta_7). Overall, the 
absolute value of the correlation coefficient was higher in November and December compared to July and August. The PLR data 

Table 5 
Results of k-fold cross validation (Error rates by algorithm).  

Split Performance Index MLR MLP SVR RF 

Fold 1 MAE 17.29 16.59 17.55 17.86 
CVRMSE 22.55 21.04 24.24 24.29 

Fold 2 MAE 11.91 15.27 14.14 14.84 
CVRMSE 15.09 18.91 17.28 18.19 

Fold 3 MAE 11.94 10.56 8.33 0.59 
CVRMSE 22.55 21.04 24.24 0.87 

Fold 4 MAE 19.22 18.65 31.74 32.80 
CVRMSE 27.81 23.52 43.09 43.96 

Fold 5 MAE 30.28 17.31 37.64 30.68 
CVRMSE 36.99 27.04 46.51 36.96 

Average MAE 18.13 15.67 21.88 19.36  
CVRMSE 24.99 22.31 31.07 24.86  
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showed negative correlations in both periods, with a lower correlation coefficient in November–December compared to July–August. 
These changes in data generation patterns were found to be attributed to seasonal variations in outdoor conditions and facility 

system operating conditions. Fig. 8 shows the average daily outside temperature values for July through December around the live
stock facility, as published by the Korea Meteorological Administration. The graph shows an average level of 23.51 ◦C with no sig
nificant fluctuations until mid-October. In contrast, the temperature declined sharply thereafter, reaching freezing levels in December. 
In conjunction with this change in outdoor conditions, heating panels were turned on in November, which led to a steep decline in 
ventilation, as shown in Fig. 9. These factors resulted in different data generation patterns inside the livestock facility, which could be 
directly related to the degradation of the model. The observed rapid performance degradation resulting from changes in data gen
eration patterns represents a novel finding that was not captured by short-term performance validation conducted in previous studies. 

These results of the long-term performance validation suggest that updating the model periodically in response to changes in data 
generation patterns is crucial for a prediction model to function as a virtual sensor in a real livestock facility. 

Fig. 6. Long-term performance validation of NH3 concentration prediction model.  

Fig. 7. Pearson correlation coefficient of each input variables for NH3 concentration.  
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3.2.2. Model update 
The results in Section 3.2.1 suggest that the operation of virtual sensors in livestock facilities requires a response to changes in data 

generation patterns due to seasonal characteristics. Therefore, in this study, besides July and August data, November data was 
additionally used to train the model for analyzing the change in model performance due to model replacement. To analyze whether the 
performance degradation of the model was caused by the insufficient amount of training data, the training data period was divided into 
two cases: July–November (20,036 data points) and the entire month of November (4332 data points). The two cases were then 
evaluated by comparing them with the measured data in December. 

Fig. 10 shows the model prediction performance for the two cases mentioned above. In the case where the July–November data was 
used for training, the prediction performance remained at MAE = 5.07% and CVRMSE = 6.27% until the 1,108th data. However, after 
that, the performance declined substantially to MAE = 20.55% and CVRMSE = 21.64%. In contrast, the case utilizing data from only 
the month of November maintained a performance of MAE = 2.38% and CVRMSE = 3.06% for the entire month of December. This 
suggests that the performance degradation of the initial model in November and December was not due to the amount of training data 
in the model, but to the timing of the training data collection, which did not fully reflect the specific data occurrence patterns. 

The changes in the performance of model, depending on the duration of the training data, suggest the need for closely analyzing the 
changes in data patterns, particularly those influenced by seasonal characteristics, when operating virtual sensors in livestock facil
ities. Moreover, it highlights the need to periodically manage the model version to keep pace with such changes. 

4. Future works 

4.1. Data pattern analysis 

This study utilized data from July to December in a livestock facility to demonstrate the need for updating prediction model that 
can respond to real-time data generation patterns. Seasonal changes in the outdoor environment and facility system operations were 
analyzed as the cause of these data pattern changes. Therefore, it is necessary to develop a seasonal prediction model based on annual 
data pattern analysis. Eventually, the applicability of NH3 virtual sensors in livestock facilities should be evaluated by verifying the 
predictive performance of the model through model version control. 

4.2. Advancement of prediction performance 

This study did not focus on improving performance of the NH3 concentration prediction model but rather on the performance 
changes that may occur in real applications as a virtual sensor and conducted long-term validation. Therefore, we did not conduct a 

Fig. 8. Daily mean outdoor air temperature.  

Fig. 9. Daily mean outdoor air temperature.  
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detailed study on building a development environment such as input parameter correlation analysis, data preprocessing, data interval 
setting, and algorithm upgrade, all of which can affect the model prediction performance. It is necessary to conduct research on the 
model development environment to improve the performance of the NH3 virtual sensor in the future. Furthermore, no discussion on 
NH3 concentration prediction model performance standards still exists. To actively develop and apply NH3 concentration virtual 
sensors in livestock facilities, appropriate performance evaluation criteria should be prepared to reflect the physiological response of 
livestock and data characteristics of each concentration band. 

5. Conclusions 

This study conducted a long-term performance validation of a NH3 concentration prediction model for a livestock facility. A 
machine learning-based NH3 concentration prediction model was developed using measured data. Long-term performance validation 
was conducted for four months through comparison with measured data. The results of the study can be summarized as follows:  

1) Performance analysis by algorithm through K-fold cross-validation in the model training stage showed that the MLP algorithm had 
the highest prediction performance with MAE = 15.67% and CVRMSE = 22.31%.  

2) Long-term performance validation of the MLP-based prediction model showed that the error rates during September and October 
were MAE = 16.86% and CVRMSE = 21.81%. In November and December, the error rates were MAE = 57.33% and CVRMSE =
58.30%, indicating a sharp decline in performance.  

3) When evaluating the prediction performance by setting the training data period at the model update stage, MAE = 20.55% and 
CVRMSE = 21.64% were obtained when the July–November data was used for training. In contrast, MAE = 2.38% and CVRMSE =
3.06% were obtained when data from the month of November was used for training. 

Through the above research results, the necessity and method of updating the NH3 prediction model, which is the main purpose of 
this study, was presented. Also, these results suggest that the practical utilization of a NH3 concentration prediction model as a virtual 
sensor requires an update so as to respond to the seasonally changed data generation patterns in livestock facilities. The findings of this 
study, obtained by analyzing the causes of the model’s prediction performance degradation by the training data period, are expected to 
contribute to strengthening the monitoring of livestock facilities and reducing sensor management costs. 
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