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Abstract

Automaticity is a defining characteristic of synaesthesia. Here, we assess for automaticity in
stimulus-parity synaesthesia; a subtype that has been documented only 3 times in the literature.
Synaesthete R experiences many (nonnumerical) stimuli as being odd or even. She described a toy
shape-sorter, which paired odd shapes with even colour slots (and vice versa) and relayed
difficulties with the incongruency created by this simple toy. Inspired by this anecdote, we
devised a computerised task in which Synaesthete R (and 10 control participants) indicated the
location of a target shape, which was presented on a coloured bar. Synaesthete R (but not control
participants) was faster to report the location of target shapes presented on colours of congruent
synaesthetic parity, relative to target shapes presented on colours of incongruent synaesthetic
parity. These results constitute the first objective demonstration as to the automatic nature of
associations in stimulus-parity synaesthesia.
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Introduction

Individuals with synaesthesia experience atypical merging of sensory and cognitive constructs
(Simner, 2012). The stimulus that gives rise to the synaesthetic experience is referred to as the
inducer and the synaesthetic experience itself is referred to as the concurrent. Example
subtypes of synaesthesia include sound-colour synaesthesia, in which music and other
sounds elicit colour sensations (e.g., Ward, Huckstep, & Tsakanikos, 2006); lexical-
gustatory synaesthesia, in which words elicit flavour and food sensations (Ward & Simner,
2003); and grapheme-colour synaesthesia, in which graphemes elicit colour sensations.
Not surprisingly, synaesthetes are described as having an “enriched world of experiences”
(Meier & Rothen, 2013, p. 76).

Synaesthetic associations can be pleasant; for example, sound-colour synaesthetes report
that colours enhance their musical experience, allowing them ““to enjoy music even more”
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(Glasser, 2015, p. 5). And so too can synaesthetic associations be helpful. Synaesthetes make
use of their concurrents when learning about new stimuli (see Watson, Akins, Spiker,
Crawford, & Enns, 2014) and may report enhanced memory for stimuli which induce
synaesthetic experiences (Rothen, Meier, & Ward, 2012), perhaps because the concurrents
are used as mnemonic devices (Watson et al., 2014). Indeed, a synaesthetic advantage in
performance on various memory tasks has been demonstrated for colours (e.g., Yaro &
Ward, 2007), words (e.g., Radvansky, Gibson, & McNerney, 2011), abstract figures (e.g.,
Rothen & Meier, 2010) and events (e.g., Simner, Mayo, & Spiller, 2009).

Sometimes, however, synaesthetic associations can make daily activities unpleasant; for
example, while reading or engaging with conversations, lexical-gustatory synaesthetes may
experience strong, persistent and long-lasting tastes (Ward & Simner, 2003). And, so too can
synaesthetic associations make daily activities difficult. One synaesthete, who experienced
colours for multiple stimuli, was unable to play the piano because she experienced
incongruencies between three sets of synaesthetic colours — first, a set for her fingers;
second, a set for musical pitch; and third, a set for the letter name associated with each
note. She turned to learning an alternative instrument and used strategies to overcome the
interference caused by her synaesthesia (Pautzke, 2010, cited in Watson et al., 2014)

These latter examples highlight the automatic and involuntary nature of synaesthetic
associations. Indeed, this is one of the defining characteristics of synaesthesia. In the
laboratory, the automaticity of synaesthetic associations has been assessed using various
tasks. These include adaptations of the Stroop task (Stroop, 1935) as well as reaction time
priming tasks. In the Stroop task, an automatic and rapid process (i.e., reading) comes into
conflict with another more controlled and effortful process (i.e., naming ink colours). In the
original Stroop task, participants were presented with colour words, and the task was to
report the ink colour in which the colour words were printed. The colour word and ink colour
could be congruent (e.g., ‘green’ written in green ink) or incongruent (e.g., ‘green’ written in
yellow ink). When the colour word and the ink colour were congruent, participants were fast
to name the ink colour. In contrast, when the colour word and ink colour were incongruent,
participants were slower to name the ink colour. The interpretation of this robust finding is
that participants automatically read the colour word as it is presented and are slowed by the
conflict created by an incongruent ink colour.

More than 30 years have passed since Wollen and Ruggiero (1983) made the first strides in
adapting the Stroop task for testing the automaticity of grapheme-colour synaesthetic
associations. Letters were presented in an ink colour that was congruent or incongruent
with the synaesthetic colour, and the participant’s task was to report the ink colour.
Wollen and Ruggerio, as well as numerous researchers since (e.g., Lupianez & Callejas,
2006; Mattingley, Rich, Yelland, & Bradshaw, 2001), demonstrated a robust Stroop effect.
Synaesthetes were faster to name the ink colour when the synaesthetic letter colour and the
ink colour were congruent as compared with incongruent (for a review of grapheme-colour
synaesthesia, see Hubbard & Ramachandran, 2005). Variations on the Stroop task have been
used to investigate numerous subtypes of synaesthesia, and Stroop effects have been
demonstrated for digit-colour synaesthesia (Mills, 1999), sound-colour synaesthesia (Ward
et al., 2006), sound-taste synaesthesia (Beeli, Esslen, & Jincke, 2005), mirror-touch
synaesthesia (Banissy, Cohen Kadosh, Maus, Walsh, & Ward, 2009), ordinal linguistic
personification (Simner & Holenstein, 2007) and swimming-style colour synaesthesia
(Nikoli¢, Jiirgens, Rothen, Meier, & Mroczko, 2011).

Rothen, Nikoli¢, Jiirgens, Mroczko-Wasowicz, Cock, Meier (2013) have also used a
reaction time priming task to investigate automaticity effects in swimming-style colour
synaesthesia. In this subtype, swimming styles are associated with vivid colour sensations
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(Nikoli¢ et al., 2011). To assess for automaticity, a picture of a swimming style was presented
as a prime, then a colour patch was presented as the target, and the task was to indicate the
colour. The synaesthete was faster to indicate the target colour when the prime (i.e.,
swimming style) was congruent as compared with incongruent. This was also the case
when the colour was presented as the prime and the swimming style was presented as the
target, with the task of indicating the swimming style.

Here, we follow Rothen et al. (2013) in using a reaction time priming task to test for
automaticity effects in stimulus-parity synaesthesia, a subtype that has been documented
only 3 times in the literature (Flournoy, 1893; White, Dumbalska, Duta, & Nation, in
press; White & Plassart, 2015). The design of our paradigm is inspired by an anecdote
that a stimulus-parity synaesthete shared during a testing session. Synaesthete R reported
that her stimulus-parity associations can interfere with her day-to-day activities and she
provided the example of a difficulty created by a toy shape sorter belonging to her children.
The shape sorter was spherical, half blue and half red (see Figure 1(a)). For Synaesthete R,
blue is a strongly odd colour and red is a strongly even colour. Her difficulties emerged
because the parity of some shapes was incongruent with their colour slot; for example, the
star which is an odd shape had its slot on the red (even) side of the sphere. When putting
shapes in the toy, Synaesthete R reported being much slower finding the slots for the
incongruent shapes. Thus, we set out to test her subjective impression of inducing
stimuli eliciting automatic and involuntary parity associations by devising a computerised
colour-shape matching task. Automaticity is a defining characteristic of synaesthesia, and
given that research on stimulus-parity synaesthesia is in its infancy, the demonstration that
parity associations occur automatically is important to establishing the genuineness of this
subtype.

Methods
Participants

Synaesthete R is a 33-year-old right-handed woman whose native language is English. She is
highly educated, holding a PhD in Physics. She has various subtypes of synaesthesia
(a) sequence-space synaesthesia, with letters, numbers, time, weekdays and months
occupying three-dimensional shapes in the mind’s eye and around the body; (b) grapheme-
colour and lexical-colour synaesthesia, with a small selection of letters, numbers, weekdays
and months having colours and (c) stimulus-parity synaesthesia, with letters, numbers,
weekdays, months, colours, shapes and words eliciting feelings of oddness and evenness.
Consistent with the familial nature of the phenomenon, Synaesthete R’s father is also a
synaesthete. As part of a different investigation looking at whether parity is tied to
perceptual or conceptual features of a stimulus (White et al., in press), we assessed the
consistency of Synaesthete R’s parity associations over time. Most relevant to the current
study are her parity associations for shape outlines and colour stimuli. When given a surprise
retest at 6 months, Synaesthete R provided consistent parity associations for 8/8 shape
outlines (100%), and when given a surprise retest at 11 months, Synaesthete R provided
consistent parity associations for 95/100 colour stimuli (95%).

Synaesthete R reports that her parity associations can assist her with remembering
information. For example, when attempting to recall a person’s name or a phone number,
she might remember there being an associated feeling of oddness, and this cue allows her to
narrow the possible options (for a discussion of the helpfulness of synaesthetic associations,
see Watson, Chromy, Crawford, Eagleman, Enns, & Akins, 2017). For Synaesthete R, odd
stimuli give a dark feeling, whereas even stimuli give a warm and light feeling. But, two odd
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Figure 1. (a) The shape sorter that provided the inspiration for this experimental investigation. (b) The
stimuli (shapes and colours) used for the computerised task. (c) An example target congruent-distractor
congruent trial, with the even (target) square on the even colour red and the odd (distractor) star on the odd
colour blue. (d) Each participant’s mean reaction times (ms) — Synaesthete R and the 10 control participants
(C1-CI10) — for each of the four trial types: TC-DC, TC-DI, TI-DC and TI-DI. Error bars represent | SEM.

stimuli will not necessarily elicit the same feeling and nor will two even stimuli. The term
oddness encapsulates a range of feelings, as does the term evenness.

In addition to Synaesthete R, we also tested 10 control participants (six women and four
men, 18-36 years) who did not have synaesthesia. Control participants were recruited
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from the University of Oxford community and received £7 compensation for their time. The
rationale behind testing control participants was to ensure that any automaticity effects
demonstrated by Synaesthete R were due to her synaesthesia, rather than lining up with
how most people might perform on this reaction time task.

Stimuli

The stimuli — inspired by the shape-sorting game — were odd and even coloured bars and odd
and even shapes (see Figure 1(b)). The shape images varied from 3.37° to 5.93° visual angle in
width and 5.58° to 5.79° visual angle in height. We used two colour pairs — blue-red (in block
1) and green—grey (in block 2) — to rule out the possibility of any effects being driven by direct
links between shape and colour, rather than by parity. Stimuli were presented on a 23-inch
monitor using custom MATLAB code with Psychophysics Toolbox (Brainard, 1997)
extensions, and responses were collected using a Cedrus RB 540 response box.

Procedure

An example experimental trial is presented in Figure 1(c). Trials began with a fixation point
(500 ms), then a target shape was presented (1000 ms) followed by two horizontally oriented
coloured bars (1000 ms). Subsequently, two shapes appeared — one on the top bar and one on
the bottom bar. These shapes remained on the screen until the participant made a response —
using the top and bottom buttons of the response box — to indicate which of the two shapes
(top or bottom) matched the target shape. Participants were asked to respond as quickly and
as accurately as possible.

There were 224 trials in each block. Half were target congruent (TC) trials, with the target
shape on a congruent colour and the other half were target incongruent (TI) trials, with the
target shape on an incongruent colour. Note that our task also involved a distractor shape —
the shape which also appeared on the second coloured bar. The distractor shape could itself
be on a congruent colour or on an incongruent colour. Thus, there were four trial types:
(a) target-congruent and distractor-congruent, (b) target-congruent and distractor-
incongruent, (¢) target-incongruent and distractor-congruent and (d) target-incongruent and
distractor-incongruent. The composition of experimental trials was fully counterbalanced. We
predicted that Synaesthete R would be faster to respond to TC than TI trials. We did not have
specific predictions for distractor congruency, but we were open to the possibility that an
incongruent distractor would make the display generally less pleasant, thereby slowing
reaction times. We predicted that control participants would not show any congruency
effects, as the notion of parity congruent shapes and colours should not apply to individuals
without stimulus-parity synaesthesia.

Results
Data Screening

Incorrect responses — 2 trials for Synaesthete R and 86 trials for control participants — were
excluded from the data set. Subsequently, the data were screened for outliers, defined as data
points lying 3 SDs below or above the given participant’s mean reaction time. This approach
resulted in additional trials — 3 trials for Synaesthete R and 60 trials for control participants —
being excluded from the data set. As reaction times were not normally distributed, we carried
out logarithmic transformations of the data prior to analysis.
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We observed that, on average, Synaesthete R’s reaction times (M =741.6ms,
SD=396.2ms) were appreciably slower than the mean reaction times of control
participants (M =440.7ms, SD =135.7ms); although note that her mean reaction times
were nonetheless within the range (min M =312.9ms, SD=43.5ms; max M =840.8 ms,
SD=257.2ms) of control participants." This general pattern — slower overall reaction
times for the synaesthete compared to control participants — has been observed in previous
studies using Stroop-like tasks to assess the automaticity of synaesthestic associations (e.g.,
grapheme-colour synaesthesia: Lupianez & Callejas, 2006, see their Figure 1; mirror-touch
synaesthesia: Banissy et al., 2009, see their Figure 2). In the case of the current investigation,
Synaesthete R’s slower reaction times may be partly explained by her age. Reaction times are
known to slow with age (e.g., Langan, Peltier, Bo, Fling, Welsh, & Seidler, 2010; Woods,
Wyma, Yund, Herron, & Reed, 2015), and Synaesthete R was older than 9 of 10 control
participants. In addition, Synaesthete R was cautious in her responses at the outset of the
experiment, and became faster as she progressed through the trials; that is, she demonstrated
a strong negative correlation between trial number and response time, r = —.646, p < .01.

Data Analysis

We conducted separate 2 x 2 analysis of variances on each participant’s reaction times with
target (congruent and incongruent) as the first factor and distractor (congruent and
incongruent) as the second factor. We did not group control participants, as we wanted to
be sensitive to detecting any single participant demonstrating effects for target congruency.
We followed Rothen et al. (2013) and treated different trials of one condition as different
subjects. Rothen et al. acknowledge that this design violates the assumption of independence
of data points; however, it is more conservative than a repeated-measures approach. Results
were analysed against a conservative o level of .0045 (.05/11) to adjust for our use of multiple
comparisons. Note that for the analyses reported here, we combined the data from the two
experimental blocks (blue—red and grey—green). However, the pattern of results was the same
when we analysed each block separately, and indeed, when we analysed each colour
separately.

Synaesthete R. In line with our main prediction, there was a significant main effect for target,
F(1, 439) = 68.304, p < .001, partial n° =14, which is explained by Synaesthete R being faster
on congruent (M =623ms, SE=15.6ms) compared with incongruent (M =823.8ms,
SE=21.4ms) target trials (Figure 1(d)). There was no main effect for distractor,
F(1,439)=.549, p=.459, partial n2= .001, and nor was there an interaction between
target and distractor, F(1, 439)=.280, p =.597, partial n°=.001.

Control participants. The comparison between Synaesthete R and control participants is
important in demonstrating that Synaesthete R’s pattern of responding is due to her
synaesthesia and does not line up with how individuals without synaesthesia respond.
Using Synaesthete R’s system for coding congruency, we found that no single control
participant demonstrated a main effect for target (all p values >.102) or distractor (all p
values > .047), nor an interaction between target and distractor (all p values>.037).
Response profiles for Synaesthete R and each of the 10 control participants are depicted in
Figure 1(d); the reader will appreciate that, whereas Synaesthete R’s mean reaction times
across the four trial types varied considerably (218 ms), control participants showed very little
variation (range 2ms [C3] to 28 ms [C1]).
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Discussion

Synaesthete R’s impression of slower processing of parity-incongruent stimuli in her day-to-
day activities is beautifully complemented by the data from our reaction time task. She is
affected by the parity of colours and shapes, even when this dichotomisation is irrelevant to
the spatial shape-matching task. The results of the present experiment showed that
Synaesthete R was slower to indicate the location of the target shape (top or bottom)
when the target shape’s synaesthetic parity (odd or even) was incongruent with
synaesthetic parity of its background colour. It is important to note that this was a
straightforward and objective task (“is the target shape at the top or the bottom?”),
calling for speeded response times. The findings suggest that the parity of the target shape
and the parity of the background colour are automatically and involuntarily generated, even
when this makes the task more difficult. One might question whether our effects for target
congruency are the result of a task-induced strategy, or involuntary shape-parity and colour-
parity associations? We think a strategic explanation is unlikely. When presented with a
shape followed by two coloured bars, there was no benefit to be gained by placing
attention on the parity-congruent colour. Indeed, doing so would be to Synaesthete R’s
detriment, due to the equally frequent presentation of congruent and incongruent trials.
That Synaesthete R was unable to ignore the irrelevant colour information sits more
squarely with an explanation based on automatic associations.

In addition to testing Synaesthete R, we also assessed 10 control participants without
synaesthesia. As predicted, none of the control participants showed an effect for target
congruency. Thus, Synaesthete R’s data do not line up with how individuals without
synaesthesia respond. Orne (1962) introduced the term demand characteristics to refer to
cues that a participant uses to deduce the objectives of an experiment. Orne observed that
participants who were able to verbalise the hypothesis of one of his experiments produced the
expected experimental effect, whereas participants who were unable to verbalise the hypothesis
did not produce the expected experimental effect (Orne, 1959). He surmised that, as far as
participants are able, they will behave as “good subject[s]” ... “to validate the experimental
hypothesis” (Orne, 1962, p. 778). Bearing this in mind, we acknowledge that our task was
inspired by Synaesthete R’s self-reported difficulty with a shape-sorter toy, and she knew that
she was recruited to our experiment due to her synaesthesia. It is, therefore, possible that she
had insight as to our hypotheses (and certainly more insight than control participants) and was
motivated to produce a particular distribution of reaction times. However, we also note that
the experiment was conducted more than an year after she mentioned her difficulty with the
shape-sorter toy, and we did not refer to the shape-sorter toy in our invitation to participate,
nor our task instructions. Moreover, the experiment mapped onto the shape-sorter toy in a
fairly abstract way: it involved two additional colours (green and grey) and a different
assortment of shapes. At the end of the experimental session, Synaesthete R confessed that
she was not sure what we assessing, and that although some trials were more jarring than
others, she did not believe that this had affected her speeded responses. Synaesthete R’s
reaction time difference for TC versus TI trials (M =218 ms) sits comfortably with those
from studies investigating automaticity effects in other subtypes of synaesthesia (e.g.,
Banissy et al., 2009; Lupianez & Callejas, 2006; Rothen et al., 2013), leading us to favour an
interpretation based on interference caused by the involuntary elicitation of synaesthetic
concurrents, rather than a more voluntary process.

In previous studies, we have shown that Synaesthete R is highly consistent in her stimulus-
parity associations over time (White & Plassart, 2015; White et al., in press). Here, we add
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another important piece of evidence as to the genuineness of the subtype, by demonstrating
the automaticity of Synaesthete R’s stimulus-parity associations. The implications of our
work extend beyond this demonstration. Our work contributes an experimental method to
assess congruency effects for concurrents that are conceptual in nature. Instead of presenting
an inducer in a format that is congruent or incongruent with its synaesthetic concurrent, we
paired two inducers (i.c., shape and colour) which had either the same concurrent (e.g.,
oddness) or two different concurrents (i.e., one was odd and one was even). This approach
could be extended to the assessment of other subtypes of synaesthesia. For example, some
synaesthetes personify inanimate objects, such as letters, numbers, simple shapes and
furniture (see Carriere, Malcolmson, Eller, Kwan, Reynolds, & Smilek, 2007; Smilek,
Malcolmson, Carriere, Eller, Kwan, & Reynolds, 2007). Inducing stimuli may be
attributed with gender as well as personality types. Simner and Holenstein (2007) used a
variation on the Stroop task to assess whether letters are automatically attributed with
gender, by presenting names that were either congruent or incongruent with the
synaesthetic gender of the first letter (e.g., Brian would be a congruent stimulus for a
Synaesthete who reports that B is male). But, assessing whether stimuli are automatically
attributed with personality types is less straightforward, as personality is conceptual and does
not always have an obvious physical representation. We suggest that an adaptation of our
spatial paradigm may overcome this difficulty and that researchers may test for automaticity
effects using a spatial decision-making task in which the synaesthetic personality of paired
stimuli at the target location is either congruent or incongruent.
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Notes

1. Note that there was a speed-accuracy trade-off: The control participant with the fastest reaction
times made the most errors and the control participant with the slowest reaction times made the
fewest errors.

2. Note that even with a less-conservative o level of .05, there were only two values that reached
significance. One participant (C1) showed a main effect for distractor, F(1, 438)=3.952, p=.047,
partial 1°=.009, with a trend toward faster responses when the distractor was on an incongruent
colour compared with a congruent colour. One participant (C10) showed an interaction between
target and distractor, F(1, 434) =4.575, p=.033, partial n°=.01). For this participant, the trend was
as follows: with a congruent target, reaction times were faster with an incongruent (than congruent)
distractor, whereas with an incongruent target, reaction times were faster with a congruent (than
incongruent) distractor. For both of these participants, the effect size was small.



Dumbalska et al. 9

References

Banissy, M. J., Cohen Kadosh, R. C., Maus, G. W., Walsh, V., & Ward, J. (2009). Prevalence,
characteristics and a neurocognitive model of mirror-touch synaesthesia. Experimental Brain
Research, 198, 261-272.

Beeli, G., Esslen, M., & Jincke, L. (2005). Synaesthesia: When coloured sounds taste sweet. Nature,
434, 38-38.

Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10, 433-436.

Carriere, J., Malcolmson, K., Eller, M., Kwan, D., Reynolds, M., & Smilek, D. (2007). Personifying
inanimate objects in Synaesthesia. Journal of Vision, 7, 532.

Flournoy, T. (1893). Des phénomenes de synopsie [Of Synoptic Phenomena]. Felix Alcan: Paris.

Glasser, S. (2015). The impact of idiopathic synaesthesia on musical abilities. In R. Timmers, N.
Dibben, Z. Eitan, R. Granot, T. Metcalfe, A. Schiavio, & V. Williamson (Eds.), Proceedings of
ICMEM 2015: International conference on the multimodal experience of music. Sheffield, England:
HRI Online Publications, 2015. Retrieved from https://www.hrionline.ac.uk/openbook/chapter/
ICMEM2015-Glasser

Hubbard, E. M., & Ramachandran, V. S. (2005). Neurocognitive mechanisms of synesthesia. Neuron,
48, 509-520.

Langan, J., Peltier, S. J., Bo, J., Fling, B. W., Welsh, R. C., & Seidler, R. D. (2010). Functional
implications of age differences in motor system connectivity. Frontiers in Systems Neuroscience,
4, 17.

Lupianez, J., & Callejas, A. (2006). Automatic perception and synaesthesia: Evidence from colour and
photism naming in a Stroop-negative priming task. Cortex, 42, 204-212.

Mattingley, J. B., Rich, A. N., Yelland, G., & Bradshaw, J. L. (2001). Unconscious priming
eliminates automatic binding of colour and alphanumeric form in synaesthesia. Nature, 410,
580-582.

Meier, B., & Rothen, N. (2013). Grapheme-colour synaesthesia is associated with a distinct cognitive
style. Frontiers in Psychology, 4, 76-82.

Mills, C. B. (1999). Digit synaesthesia: A case study using a Stroop-type test. Cognitive
Neuropsychology, 16, 181-191.

Nikoli¢, D., Jiirgens, U. M., Rothen, N., Meier, B., & Mroczko, A. (2011). Swimming-style synesthesia.
Cortex, 47, 874-879.

Orne, M. T. (1959). The nature of hypnosis: Artefact and essence. Journal of Abnormal Social
Psychology, 58, 277-299.

Orne, M. T. (1962). On the social psychology of the psychological experiment: With particular reference
to demand characteristics and their implications. American Psychologist, 17, 776-783.

Pautzke, R. (2010). ‘Making sense’” messing around with black boxes: synaesthesia and learning: how to
master the Theremin without notes. Paper presented at the 2010 Meeting of the UK Synaesthesia
Association, Brighton, UK.

Radvansky, G. A., Gibson, B. S., & McNerney, M. (2011). Synesthesia and memory: Color
congruency, von Restorff, and false memory effects. Journal of Experimental Psychology:
Learning, Memory, and Cognition, 37, 219.

Rothen, N., Nikoli¢, D., Jiirgens, U. M., Mroczko-Wasowicz, A., Cock, J., & Meier, B. (2013).
Psychophysiological evidence for the genuineness of swimming-style colour synaesthesia.
Consciousness and Cognition, 22, 35-46.

Rothen, N., Meier, B., & Ward, J. (2012). Enhanced memory ability: Insights from synaesthesia.
Neuroscience & Biobehavioral Reviews, 36, 1952—1963.

Rothen, N., & Meier, B. (2010). Grapheme—colour synaesthesia yields an ordinary rather than
extraordinary memory advantage: Evidence from a group study. Memory, 18, 258-264.

Simner, J. (2012). Defining synaesthesia. British Journal of Psychology, 103, 1-15.

Simner, J., & Holenstein, E. (2007). Ordinal linguistic personification as a variant of synaesthesia.
Journal of Cognitive Neuroscience, 19, 694-703.


https://www.hrionline.ac.uk/openbook/chapter/ICMEM2015-Glasser
https://www.hrionline.ac.uk/openbook/chapter/ICMEM2015-Glasser

10 i-Perception

Simner, J., Mayo, N., & Spiller, M. J. (2009). A foundation for savantism? Visuo-spatial synaesthetes
present with cognitive benefits. Cortex, 45, 1246-1260.

Smilek, D., Malcolmson, K. A., Carriere, J. S., Eller, M., Kwan, D., & Reynolds, M. (2007). When 3"
is a jerk and “E” is a king: Personifying inanimate objects in synesthesia. Journal of Cognitive
Neuroscience, 19, 981-992.

Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental
Psychology, 18, 643—662.

Ward, J., Huckstep, B., & Tsakanikos, E. (2006). Sound-colour synaesthesia: To what extent does it use
cross-modal mechanisms common to us all? Cortex, 42, 264-280.

Ward, J., & Simner, J. (2003). Lexical-gustatory synaesthesia: Linguistic and conceptual factors.
Cognition, 89, 237-261.

Watson, M. R., Akins, K. A., Spiker, C., Crawford, L., & Enns, J. T. (2014). Synesthesia and learning:
A critical review and novel theory. Frontiers in Human Neuroscience, 8, 98.

Watson, M. R., Chromy, J., Crawford, L., Eagleman, D. M., Enns, J. T., & Akins, K. A. (2017). The
prevalence of synaesthesia depends on early language learning. Consciousness and Cognition, 48,
212-231.

White, R. C., & Plassart, A. (2015). Stimulus-parity synaesthesia (1893/2014): Introducing a ‘forgotten’
subtype. Cortex, 66, 146—148.

White, R. C., Dumbalska, M., Duta, M. M., & Nation, K. (in press). ‘17’ is odd and ‘seventeen’ is even:
Meaning and physical form in stimulus-parity synaesthesia. Quarterly Journal of Experimental
Psychology.

Wollen, K. A., & Ruggiero, F. T. (1983). Colored letter synesthesia. Journal of Mental Imagery, 7,
83-86.

Woods, D. L., Wyma, J. M., Yund, E. W., Herron, T. J., & Reed, B. (2015). Factors influencing the
latency of simple reaction time. Frontiers in Human Neuroscience, 9, 131.

Yaro, C., & Ward, J. (2007). Searching for Shereshevskii: What is superior about the memory of
synaesthetes? The Quarterly Journal of Experimental Psychology, 60, 681-695.

Author Biographies

Tsvetomira Dumbalska graduated with a BA in economics from
Brown University and is currently pursuing a DPhil in
experimental psychology at the University of Oxford.
Tsvetomira’s research focuses on human biases in decision
making and the effect of irrelevant information on choice.

Rebekah C. White graduated with a BA/BSc and an MPhil
(psychology) from the Australian National University, and a
DPhil in experimental psychology from the University of
Oxford. At present, Rebekah is a postdoctoral fellow working
as part of the Ordered Universe Team, and she also provides
academic mentoring to undergraduate and postgraduate
psychology students at Pembroke College (University of
Oxford). Her research interests include: synaesthesia,
inattentional blindness and body representation.




Dumbalska et al.

Mihaela D. Duta graduated with a MSc from University
Politehnica Bucharest (computer science and automation) and
DPhil from University of Oxford (engineering science). At
present, Mihaela is a research software officer in the
Department of Experimental Psychology, University of Oxford,
where she provides custom software solutions for experimental
psychology studies and instruments for cognitive screening and
assessment.

Kate Nation is professor of experimental psychology at the
University of Oxford and a fellow of St John’s College, Oxford.
Her research is concerned with language processing, especially
reading. Her work addresses how children learn to read words
and comprehend text, and more generally, how skilled behaviour
emerges via language learning experience. For more details log on
to: www.readoxford.org; (@ReadOxford



