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Abstract

In terrestrial ecosystems, plant roots are colonized by various clades of mycor-

rhizal and endophytic fungi. Focused on the root systems of an oak-dominated

temperate forest in Japan, we used 454 pyrosequencing to explore how phyloge-

netically diverse fungi constitute an ecological community of multiple ecotypes.

In total, 345 operational taxonomic units (OTUs) of fungi were found from

159 terminal-root samples from 12 plant species occurring in the forest. Due to

the dominance of an oak species (Quercus serrata), diverse ectomycorrhizal

clades such as Russula, Lactarius, Cortinarius, Tomentella, Amanita, Boletus, and

Cenococcum were observed. Unexpectedly, the root-associated fungal commu-

nity was dominated by root-endophytic ascomycetes in Helotiales, Chaetothyri-

ales, and Rhytismatales. Overall, 55.3% of root samples were colonized by both

the commonly observed ascomycetes and ectomycorrhizal fungi; 75.0% of the

root samples of the dominant Q. serrata were so cocolonized. Overall, this

study revealed that root-associated fungal communities of oak-dominated

temperate forests were dominated not only by ectomycorrhizal fungi but also

by diverse root endophytes and that potential ecological interactions between

the two ecotypes may be important to understand the complex assembly

processes of belowground fungal communities.

Introduction

In terrestrial ecosystems, diverse mycorrhizal fungi are

associated with plant roots, transporting soil nutrients to

their plant hosts (Allen 1991; Smith and Read 2008). In

general, mycorrhizal fungi enhance the growth and sur-

vival of their host plants which in return provide carbo-

hydrates to the fungi (H€ogberg et al. 2001; H€ogberg and

H€ogberg 2002). However, the performance benefits and

energetic costs of mycorrhizal symbiosis for a plant vary

among symbiotic fungal species or strains (Gao et al.

2001; Nara 2006; Hoeksema 2010; Johnson et al. 2012),

and both plants and fungi show strain- or species-specific

compatibility with their symbionts (Bruns et al. 2002;

Sato et al. 2007; Tedersoo et al. 2008; Davison et al.

2011). Such variation in specificity and impacts in plant–

fungal symbioses will affect how phylogenetically diverse

fungi can coexist in a community, and hence we need to

understand the community composition of fungi associ-

ated with roots as well as their preference for host plants

at a community-wide scale.

In the Northern Hemisphere, temperate forests are gen-

erally dominated by trees in the Fagaceae and Pinaceae.

Species in these plant families form mycorrhizae with

various phylogenetic clades of ectomycorrhizal fungi

(Jumpponen et al. 2010; Bahram et al. 2012; Sato et al.

2012a,b; Tedersoo et al. 2012). These ectomycorrhizal

fungi extend extraradical mycelia into soil and transport

soil nitrogen and phosphorus to their host plants (Finlay

and Read 1986; Cairney 2005; Wu et al. 2012). In addi-

tion, some ectomycorrhizal fungi protect host roots from

pathogenic fungi or nematodes (Azc�on-Aguilar and Barea
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1997; Borowicz 2001). Through such impacts, ectomycor-

rhizal fungi play essential roles in the growth and survival

of oaks and pines, presumably affecting the competitive

ability of their hosts in local communities.

Roots of oak and pine trees can be colonized by symbio-

nts in addition to ectomycorrhizal fungi, including

arbuscular mycorrhizal fungi (Dickie et al. 2001) and

various clades of root-endophytic fungi (Girlanda et al.

2002; Wagg et al. 2008; Kernaghan and Patriquin 2011;

Reininger and Sieber 2012). Recent focus on the “hidden

diversity” of root-endophytic fungi has uncovered their

prevalence in various types of terrestrial ecosystems and

their probable benefit to host plants (Jumpponen and

Trappe 1998; Jumpponen 2001; Newsham 2011; Porras-

Alfaro and Bayman 2011). For example, various clades of

“dark septate endophytes” can transform organic nitrogen

to inorganic forms in the rhizosphere, making the nutrient

available to their hosts (Upson et al. 2009; Newsham

2011). Importantly, while ectomycorrhizal fungi generally

associate with a narrow range of host taxa (Sato et al. 2007;

Tedersoo et al. 2008), many of root-endophytic fungi have

broad host ranges (Walker et al. 2011; Knapp et al. 2012;

Mandyam et al. 2012). Therefore, ectomycorrhizal and

root-endophytic fungi may contribute differentially to the

dynamics of forest communities. A comparative assessment

of the community structures of ectomycorrhizal and root-

endophytic fungi in the same ecosystem is needed to help

understand how each contributes to shaping forest tree

communities through plant–fungal interactions.
In this study, we describe the community composition

of root-associated fungi in an oak-dominated temperate

forest in Japan based on 454 pyrosequencing of ribosomal

internal transcribed spacer (ITS) sequences. We describe

the community structure of root-associated fungi in terms

of (1) taxonomy, (2) habitat preference (plant root vs.

soil), and (3) host-plant preference. First, molecular identi-

fication from sequence matching and a supplemental phy-

logenetic analysis was used to determine whether each of

the commonly observed fungi were from clades of fungi

known to be mycorrhizal or known to include root endo-

phytes. Second, to infer the role of these root-associated

fungi in providing plants with access to soil nutrients, we

evaluated the prevalence of those fungi in rhizosphere soil.

We predicted that ectomycorrhizal fungi would be com-

mon in soil because they form extraradical mycelia that

extend away from the root (Finlay and Read 1986), whereas

endophytic fungi would be found almost exclusively in

root samples (Rodriguez et al. 2009). Third, we evaluated

preference of the dominant fungal taxa for host plant spe-

cies, expecting ectomycorrhizal fungi to show relatively

high host preference (Sato et al. 2007; Tedersoo et al.

2008) and root-endophytic fungi a broader host range

(Walker et al. 2011; Knapp et al. 2012; Mandyam et al.

2012). Finally, we examined the degree to which ectomy-

corrhizal and root-endophytic fungi co-occur within roots.

Materials and Methods

Sampling

Root samples were collected in a temperate secondary-

growth forest on Mt. Yoshida, Kyoto, Japan (35°02′N,
135°47′E; parent material = chert) on 17–18 August 2011.

In the study site, a deciduous oak tree, Quercus serrata, is

dominant, while broad-leaved evergreen trees such as Ilex

pedunculosa (Aquifoliaceae) and Q. glauca co-occur at the

canopy layer. In a 13 m-by-13 m plot, 196 sampling

positions were set at 1-meter intervals. At each sampling

position, two 2-cm segments of terminal root were

collected from the upper part of the A horizon (3 cm below

the soil surface). Terminal roots colonized by ectomycor-

rhizal associates of Quercus species have a characteristic

branching morphology, whereas unbranched root samples

are typical of roots colonized by other types of mycorrhizae

only by endophytes or pathogens. We collected terminal-

root samples indiscriminately in terms of root morphology

or apparent mycorrhizal type so that the samples as a whole

should represent the relative frequency of plant–fungal
associations in the horizon at the study plot (Nielsen and

Bascompte 2007; Montesinos-Navarro et al. 2012).

To examine how much the root-associated fungal

community extends away from roots into rhizosphere

soil, we sampled 1 cm3 soil surrounding root samples,

collected at 2-m intervals across the 169-m2 study site (49

samples; Fig. S1). Both root and soil samples were imme-

diately preserved in absolute ethanol upon collection and

stored at �20°C in the laboratory.

DNA extraction, PCR, and pyrosequencing

One terminal root was randomly chosen from each of 196

sampling positions and subjected to the DNA extraction,

PCR, and sequencing. All soil was carefully removed from

the root samples by placing the roots in 70% ethanol with

1-mm zirconium balls, and then shaking the sample tubes

15 times per second for 2 min using TissueLyser II (Qiagen,

Venlo, Netherlands) (Fig. S2). Samples were frozen at

�20°C and then pulverized by shaking on the TissueLyser

II with 4-mm zirconium balls 20 times per second for

3 min. We extracted plant and fungal DNA from each root

sample using a cetyl trimethyl ammonium bromide (CTAB)

method as detailed elsewhere (Sato and Murakami 2008).

To extract DNA from soil samples, we carefully removed

root and plant debris, and then extracted DNA from

150 mg dried soil per sample, using the CTAB method.

As the concentration of PCR products to be pooled for

massively parallel pyrosequencing must be equalized
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among tag-encoded samples, a two-step (nested) PCR

was used to saturate the concentration of the PCR ampli-

cons of each sample. For each root sample, plant chloro-

plast rbcL sequences were amplified using the primers

rbcL_rvF (5′-CCA MAA ACR GAR ACT AAA GC-3′) and
rbcL_R1 (5′-CGR TCY CTC CAR CGC AT-3′) with the

buffer system of Ampdirect Plus (Shimadzu, Kyoto,

Japan) and BIOTAQ HS DNA Polymerase (Bioline, London,

U.K.). PCR was conducted under a temperature profile of

95°C for 10 min, followed by 30 cycles of 94°C for

20 sec, 50°C for 30 sec, and 72°C for 40 sec, and final

extension at 72°C for 7 min. The PCR product of each

root sample was subjected to the second PCR amplifica-

tion of 0.5-kb rbcL gene fragment using the rbcL_rvF

primer fused with the 454 pyrosequencing Adaptor A (5′-
CCA TCT CAT CCC TGC GTG TCT CCG ACT CAG-3′)
and the 8-mer molecular ID (Hamady et al. 2008) of each

sample, and the reverse primer rbcL_R2 (5′-CCY AAT

TTT GGT TTR ATR GTA C-3′) fused with the 454 Adap-

tor B (5′-CCT ATC CCC TGT GTG CCT TGG CAG

TCT CAG-3′). The second PCR was conducted with the

buffer system of Taq DNA Polymerase with Standard Taq

Buffer (New England BioLabs, Ipswich, MA) under a

temperature profile of 95°C for 1 min, followed by 40

cycles of 94°C for 20 sec, 50°C for 30 sec, and 72°C for

40 sec, and final extension at 72°C for 7 min.

For each root and soil sample, the entire range of fun-

gal ITS sequences were amplified using the fungus-specific

high-coverage primer ITS1F_KYO2 (Toju et al. 2012) and

the universal primer ITS4 (White et al. 1990). The PCR

product of each root or soil sample was subjected to the

second PCR step targeting ITS2 region using the universal

primer ITS3_KYO2 (Toju et al. 2012) fused with the 454

adaptor A and each sample-specific molecular ID, and the

reverse universal primer ITS4 fused with the 454 adaptor

B. The first and second PCR steps of ITS region were

conducted under the same buffer systems and tempera-

ture profiles as those of rbcL. All the rbcL and ITS ampli-

cons of the second PCR steps were pooled and subjected

to a purification process by ExoSAP-IT (GE Healthcare,

Little Chalfont, U.K.) and QIAquick PCR Purification Kit

(Qiagen). As instructed by the manufacturer, 454 pyrose-

quencing was performed on a GS Junior sequencer

(Roche, Basel, Switzerland).

Assembly of sequencing reads

Hereafter, we describe the pyrosequencing procedure as

suggested by Nilsson et al. (2011). For the pyrosequenc-

ing reads output by GS Junior (DDBJ DRA:

DRA000728), trimming of low-quality 3′ tails was con-

ducted with a minimum quality value of 20. Of the

99,101 output reads, 76,818 reads (5112 rbcL and 71,706

ITS reads) passed the filtering process in which rbcL

reads shorter than 400 bp and ITS reads with fewer than

150 bp excluding forward primer and molecular ID posi-

tions were discarded. RbcL and ITS reads were recog-

nized by the primer position sequences and analyzed

separately. For each gene, pyrosequencing reads were

sorted by samples using the sample-specific molecular

IDs. Molecular ID and forward primer sequences were

removed before assembly. Denoising of the pyrosequenc-

ing data was performed based on the assembling of reads

(see below; cf. Li et al. 2012), which did not depend on

computationally intensive methods using flowgram data.

We assembled the sequence data using Assams

v0.1.2012.03.14 (Tanabe 2012a), which is a highly par-

allelized extension of Minimus assembly pipeline (Som-

mer et al. 2007). For host plant rbcL gene, reads in

each sample were assembled with a minimum cutoff

similarity of 97% to remove pyrosequencing errors and

then obtain the consensus rbcL gene sequence of each

root sample. After the elimination of possible chimeras

using the program UCHIME v4.2.40 (Edgar et al.

2011), the consensus sequences for root samples

(within-sample consensus sequences) were further

assembled across samples with a minimum similarity

setting of 99.8%. These consensus sequences (among-

sample consensus sequences) were compared to the ref-

erence rbcL sequences of the plants occurring at the

study sites (AB729077–AB729106) to identify the host

plant species of each root sample.

To process sequence data from the fungal ITS2 region

of root and soil samples, reads were subjected to in silico

detection and removal of chimeras (Edgar et al. 2011). In

each sample, reads were assembled by Assams with a

minimum similarity setting of 97% and then chimera

reads were eliminated using the program UCHIME

v4.2.40 (Edgar et al. 2011) with a minimum score to

report chimera of 0.1. Of the 71,706 ITS reads, 1211 reads

were discarded as chimeras, leaving 70,495 reads.

The within-sample consensus sequences represented by

the 70,495 ITS reads were assembled at a cutoff similarity

of 97%, and the resulting among-sample consensus

sequences assigned as fungal operational taxonomic units

(OTUs; Data S1). Of the 70,495 reads, 556 reads were sin-

gletons and were excluded from further analysis. Since

OTU sequences reconstructed from a small number of

sequencing reads could be susceptible to sequencing

errors, only OTUs representing at least five reads in at

least one sample were included in analyses (Data S1).

Samples with fewer than 100 high-quality reads were

eliminated, leaving 159 root and 38 soil samples. On aver-

age, 357.1 (SD = 80.3; N = 159) or 307.9 (SD = 123.6;

N = 38) reads were obtained for each root or soil sample

(Data S2).
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Molecular identification of fungi

As our samples potentially included not only ectomycor-

rhizal fungi but also diverse and poorly known root-

endophytic and soil fungi, BLAST top-hit sequences in

the NCBI database did not provide enough taxonomically

informative matches, even when we eliminated NCBI-

database sequences registered as “uncultured” fungi (Data

S3). Similarly, comparison of our sequences to the

UNITE database (Abarenkov et al. 2010; http://unite.ut.

ee/), which includes high-quality ITS sequences of fruiting

body specimens identified by experts and deposited in

public herbaria, allowed identification of ectomycorrhizal

OTUs to genus or species (Data S3). Unfortunately, many

other OTUs did not match any UNITE database

sequences (see low query coverage of the UNITE search

in Data S3), making it difficult to identify fungi that were

not ectomycorrhizal.

Therefore, to systematically infer the taxonomy of the

OTUs, we used Claident v0.1.2012.03.14 (Tanabe 2012b),

which integrates BLAST+ (Camacho et al. 2009) and

NCBI taxonomy-based sequence identification engines as

well as utilities to create BLAST databases of sequences

with sufficient taxonomic information. Two BLAST data-

bases were created using Claident and BLAST+, subsets

of the “nt” database downloaded from NCBI ftp server

(http://www.ncbi.nlm.nih.gov/Ftp/) on 8 February 2012.

The first subset database (“genus” database) consisted of

sequences identified at genus or species level (i.e.,

sequences not identifiable to the genus level were elimi-

nated). The “class” database, then, contained sequences

identified at class or lower taxonomic level (i.e.,

sequences unable to be identified to at least the class

level were removed). Because only a small proportion of

fungal sequences in public databases have been deposited

with genus names (Abarenkov et al. 2010; Hibbett et al.

2011), the “genus” database is insufficient for the identi-

fication of many of fungal OTUs in root or soil samples.

Thus, the “class” database was used as well to comple-

ment the identification based on the “genus” database

(see below).

In each “genus” or “class” database, sequences homolo-

gous to each query (OTU) sequence were searched with

the aid of the “clidentseq” command of Claident. Identifi-

cation of OTUs was subsequently performed by the “clas-

signtax” command of Claident based on the lowest

common ancestor (LCA) algorithm (Huson et al. 2007).

The algorithm assigns each query to the lowest taxonomic

level common to the homologous sequences (Huson et al.

2007). However, this algorithm is sometimes too conser-

vative and a high proportion of fungal OTUs remain

unidentified, because even rare sequences with erroneous

taxonomic information in the NCBI database can interrupt

identification. Therefore, each OTU was also identified

using a “relaxed LCA algorithm”. In the relaxed LCA

algorithm, inclusion of 10% of homologous sequences

whose taxonomic information was inconsistent with that

of the remaining 90% homologous sequences was toler-

ated. Thus, each sequence was given a taxonomic identifi-

cation in three ways: the default LCA algorithm with the

“genus” database (LCA/genus), the relaxed LCA algorithm

with the “genus” database (relaxed-LCA/genus), and the

default LCA algorithm with the “class” database (LCA/

class). The final identification results (Data S4) were

obtained by merging LCA/genus, LCA/class, and relaxed-

LCA/genus results with priorities in this order, using the

“clmergeassign” command in Claident.

Molecular phylogeny of commonly observed
fungi

For the 10 most common OTUs observed from roots but

whose taxonomy was unidentified at genus level (Data

S3), we conducted a molecular phylogenetic analysis to

further infer the taxonomic identity of the OTUs. Multi-

ple alignments of ITS sequences were performed using

the program MAFFT v6.813b (Katoh et al. 2005), fol-

lowed by elimination of ambiguously aligned nucleotide

sites using GBlocks Server v0.91b (Castresana 2000). Best-

fit substitution models for the aligned sequences were

selected using the program Kakusan v4 (Tanabe 2011).

Maximum likelihood phylogenies were inferred using the

software Treefinder (Jobb et al. 2004) with the tool pack-

age Phylogears v1.5 (Tanabe 2008), whereby parallelized

tree search bootstrapping was conducted.

Data matrix for the analyses of habitat/host
preference

We created a presence/absence community matrix of fungal

OTUs for all 159 root and 38 soil samples. The number of

sequencing reads varied among samples (106–635 reads),

which could artificially generate variance in estimates of

a-diversity among samples. To reduce this variance in the

following habitat/host preference analyses, we excluded rare

OTUs represented by less than 5% of the sample total

reads. This resulting matrix (Data S5) then was based on 79

to 592 reads per sample after removing any OTUs identi-

fied as representing host plants or Metazoa (Data S4).

Habitat preference

We evaluated whether each fungal OTU occurred prefer-

entially in roots or soil. Habitat preference was evaluated

using the multinomial species classification method

(CLAM; Chazdon et al. 2011) implemented in the “clamtest”
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command of the “vegan” v2.0-2 package (Oksanen et al.

2012) of R (http://cran.r-project.org/). Each OTU was

classified as showing statistically significant habitat prefer-

ence to root samples, to soil samples, or as being

commonly observed in both habitats, based on the

“supermajority” rule (Chazdon et al. 2011).

Host preference

To evaluate the host preference of fungal OTUs, we com-

piled a plant 9 fungal OTU matrix (Data S6) that shows

the number of root samples in which each plant–fungal
association was observed. Root species presence was based

on the rbcL sequences and fungal OTU presence from the

fungal presence/absence matrix (Data S5). Since the root

samples were washed prior to the PCR and pyrosequenc-

ing, fungi detected from each root sample were consid-

ered physically connected to the plant tissue (“symbiosis”

in the broad sense).

We tested host preference of respective OTUs by calcu-

lating the d’ index of specialization of interspecific inter-

actions (Bl€uthgen et al. 2007) using the “dfun” command

of the “bipartite” v1.17 package (Dormann et al. 2009) of

R. The d’ index measures how strongly a plant species (a

fungus) deviates from a random choice of interacting fun-

gal partners (host plant partners) available. It ranges from

0 (extreme generalization) to 1 (extreme specialization)

(Bl€uthgen et al. 2007). The observed d’ measures were

compared with those of randomized plant 9 fungus

matrices, in which combinations of plants and fungal

OTUs were randomized under “vaznull” model (V�azquez

et al. 2007) using the bipartite package (10,000 permuta-

tions). For simplicity, we show the results of the 10 most

common OTUs.

To visualize the overall architecture of the plant–fun-
gal associations represented by the plant 9 fungus

matrix (Data S6), the “gplot” command of the “sna”

v2.2-0 package (Butts 2010) of R was used. The graph of

plant–fungal associations illustrated how host-specific

fungal OTUs and OTUs with broad host range were

distributed within a web of symbiosis. Note that this

does not represent the structure of “common mycelial

network” (Nara 2006; Beiler et al. 2009), which should

be analyzed based on plant–fungal interactions at

individual level.

Co-occurrence of fungal OTUs within roots

Patterns of the co-occurrence of multiple fungal OTUs

within terminal roots were investigated. We calculated the

proportion of root samples that were infected by multiple

ecotypes of fungi (i.e., ectomycorrhizal, arbuscular mycor-

rhizal, or root-endophytic fungi; Data S4).

Results

Molecular identification and fungal
diversity within each sample

In total, we found 392 fungal OTUs from the root and soil

samples (Data S2). Among those, 163 and 47 OTUs were

found exclusively from root or soil samples, respectively,

and 182 were common to both sample types. Among the

392 OTUs, 181 were ascomycetes, 108 basidiomycetes, two

chytridiomycetes, and five glomeromycetes, while 96 fungal

OTUs could not be identified to the phylum level. The

mean number of OTUs observed in each sample did not

significantly differ between root samples (12.9 OTUs [SD =
4.7]) and soil samples (14.5 OTUs [SD = 5.4]; Fig. 1A and

B) after controlling for the number of sequencing reads per

sample (generalized-linear model with quasi-Poisson error;

t1, 194 = 1.9, P = 0.057). The mean number of arbuscular

and ectomycorrhizal fungal OTUs in a sample was 1.9

(SD = 1.3, N = 159) for roots and 2.7 (SD = 1.8, N = 38)

for soil. For both sample types, the total number of observed

OTUs increased continuously with increasing sample size

(Fig. 1C), reflecting the high diversity of belowground fungi.

Community composition of root-associated
fungi

The analysis of chloroplast rbcL gene sequences revealed

that the 159 terminal-root samples represented 12 plant

species (Fig. 1D). Among the plant species, Q. serrata was

the most dominant, as expected by the dominance of the

plant aboveground in the study site.

Among the 345 fungal OTUs found from the 159 termi-

nal-root samples, 270 (78.3%) were identified to phylum,

185 (53.6%) were identified to order and 112 (32.5%) were

identified to genus (Fig. 2). At phylum level, 168 fungal

OTUs (62.2%) were ascomycetes, 93 (34.4%) were basidio-

mycetes, five were glomeromycetes (1.9%), and two were

chytridiomycetes (0.7%) (Fig. 2A). At order level,

Helotiales, Russulales, and Agaricales dominated the root-

associated fungal community, while diverse clades such as

Chaetothyriales and Eurotiales were found as well

(Fig. 2B). At the genus level, the ectomycorrhizal taxon

Russula was the most common in the root samples

(Fig. 2C). Besides Russula, fungi in diverse ectomycorrhizal

genera such as Lactarius, Cortinarius, Lactarius, Tomentella,

Amanita, Boletus, and Cenococcum were observed (Fig. 2C).

Meanwhile, we found diverse nonectomycorrhizal fungi

such as Capronia (= Cladophialophola [anamorph]),

Cryptosporiopsis, Oidiodendron, and Hypocrea, genera

known to include root endophytes and plant pathogens.

Of the 345 OTUs found from roots, 56 were putatively

ectomycorrhizal, five were putatively arbuscular mycorrhizal
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and five were putatively parasitic, while the ecotype of

remaining 279 OTUs could not be inferred solely based

on their taxonomy (Data S4).

Properties of dominant root-associated
fungi

The root-associated fungal community was dominated by

fungi in the basidiomycete ectomycorrhizal family Russul-

aceae and by fungi from diverse ascomycete clades

(Table 1; Fig. 3). Phylogenetic analysis indicated that the

common ascomycetes belonged to three orders that

include diverse root-endophytic fungi (Helotiales, Chae-

tothyriales, and Rhytismatales; Fig. S3; Table 1).

The ectomycorrhizal basidiomycete fungus Lactarius

quietus (OTU 289) was exclusively associated with the

dominant plant Q. serrata; in contrast, the other com-

mon ectomycorrhizal basidiomycete Russula sp. (OTU

263) was associated with seven host genera (Figs. 1D

and 4; Table 1). All eight common ascomycetes were

found in samples from diverse plant species (Fig. 3).

Notably, the most common OTU in Helotiales (OTU

483) was detected from 10 of the 12 sampled plant spe-

cies (Fig. 3). Both common ectomycorrhizal basidiomy-

cetes were found in both root and soil samples at

relatively high frequency, and were thus characterized as

habitat generalists (Fig. 4; Table 1). In contrast, the eight

common ascomycetes were only found in root samples,

and four showed statistically significant habitat prefer-

ence for root over soil (Fig. 4; Table 1; see also Fig. S4

for difference in overall community structure between

roots and soil).

Quercus
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[Fagaceae] (76)

Ilex pedunculosa  [Aquifoliaceae] (21)

Prunus jamasakura
[Rosaceae] (14)
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[Ericaceae] (8)
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Figure 1. Diversity of fungi and host plants in the samples. (A) Rarefaction curve of OTUs in each root sample against the number of

pyrosequencing reads excluding singletons. The numbers in boxes represents sample ID (Data S2). (B) Rarefaction curve of OTUs in each soil
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Composition of host plant species identified by chloroplast rbcL sequences. The number of root samples was indicated in parentheses.
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Co-occurrence of fungal OTUs within roots

Of the 159 root samples examined, 84.9% (135/159) were

colonized by at least one of the eight common ascomyce-

tes (Fig. 5). Importantly, most of those roots also colo-

nized by an arbuscular or an ectomycorrhizal fungus. Of

the 159 root samples, 55.3% (88/159) were colonized by

both common ascomycete and ectomycorrhizal fungi,

1.9% (3/159) were colonized by both common ascomy-

cete and arbuscular mycorrhizal fungi, and 0.6% (1/159)

were colonized by all the three ecotypes (Fig. 5). More-

over, of the 76 root samples of the dominant plant Q. ser-

rata, 75.0% (57/76) were colonized by both the common

ascomycetes and ectomycorrhizal fungi; only 7.9% (6/76)

were colonized by ectomycorrhizal fungi but none of the

eight common ascomycetes.

Discussion

We found broad patterns of co-occurrence between

root-endophytic fungi and mycorrhizal fungi in an

oak-dominated temperate forest. Ectomycorrhizal fungi

were found both in root samples and in the soil

surrounding the roots, reflecting the expected nutrient

foraging strategy. In contrast, endophytic ascomycetes

were primarily restricted to root samples. The host ranges

of endophytic ascomycetes were generally broader than

those of ectomycorrhizal basidiomycetes. The structure of

the root fungal communities points to the importance of

studies to understand how co-occurrence of terminal

roots by endophytic and mycorrhizal fungi could

influence host plant performance.

The second-growth forest included many fungal clades

expected in Quercus-dominated North-temperate forests

(Jumpponen et al. 2010; Sato et al. 2012a,b; Tedersoo

et al. 2012). Basidiomycete fungi in Russulaceae were the

most common, while Cortinarius, Tomentella, Amanita,

Boletus, and the ascomycete Cenococcum were also found

in root samples (Fig. 2; Table 1). These fungi were found

in roots as well as in the surrounding soil, as would be

expected from ectomycorrhizal fungi that produce extra-

radical mycelia to forage for nutrients (Finlay and Read

1986).

Somewhat surprisingly, root-endophytic ascomycetes

were more common than ectomycorrhizal basidiomycetes

(Fig. 3; Table 1). The fungal community of roots was

dominated by ascomycetes in diverse taxonomic clades

such as Helotiales, Chaetothyriales, and Rhytismatales (Figs. 3
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Glomeromycota 
Chytridiomycota 
Not defined 

Helotiales 
Russulales 
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Figure 2. Community composition of root-associated fungi. (A) Phylum level composition of OTUs observed in root samples (270 of 345 OTUs

were identified). (B) Order-level composition of OTUs observed in root samples (185 of 345 OTUs were identified). (C) Genus level composition of

OTUs observed in root samples (112 of 345 OTUs were identified).
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and S3; Table 1). These common ascomycetes had broad

host ranges, as reported in previous studies of root endo-

phytes (Newsham 2011; Knapp et al. 2012; Mandyam

et al. 2012). They were also largely restricted to plant tissue,

as are many foliar endophytes (Rodriguez et al. 2009).

These common ascomycetes constitute a major ecotype that

codominates the root-associated fungal community

together with ectomycorrhizal basidiomycetes (Fig. 5).

Although the ecological functions of ascomycete root

endophytes remain poorly known, experimental inocula-

tions suggested that some could help plant hosts to

acquire inorganic form of nitrogen (Upson et al. 2009;

Newsham 2011). However, because they rarely appear to

produce extraradical mycelia, their roles in nutrient

uptake might be different from those of ectomycorrhizal

fungi (Read and Perez-Moreno 2003; Smith and Read

2008). They may contribute to the nutrient acquisition of

plant hosts by secreting enzymes that degrade organic

nitrogen and/or phosphorus to inorganic ones in rhizo-

sphere (Upson et al. 2009; Newsham 2011), but are unli-

kely to transport nutrients from distant places that are

inaccessible by the plant roots (cf. Finlay and Read 1986).

The common pattern of co-occurrence of ectomycorrhi-

zal fungi and ascomycete root endophytes within terminal
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roots (Fig. 5) suggests that these two ecotypes of fungi are

likely to be involved in some kinds of ecological interac-

tions within roots (Wagg et al. 2008). Although functions

of root endophytes deserve further ecological and physio-

logical investigations (Newsham 2011; Porras-Alfaro and

Bayman 2011), the common pattern of co-occurrence

suggests the possibility that interactions between the two

ecotypes could be mutualistic or commensal rather than com-

pletely neutral. For example, an experimental study showed

that the exudates of a dark septate endophyte stimulated

the hyphal length and hyphal branching of a mycorrhizal

fungus, suggesting that root endophytes could promote the

symbiosis between their host plants and mycorrhizal fungi

(Scervino et al. 2009). Alternatively, root endophytes them-

selves can be commensal secondary colonizers of roots

(Tedersoo et al. 2009) and they may be attracted by

exudates of primary mycorrhizal symbionts. However,

similarity in ecological niches (e.g., chemical properties of

terminal roots) can also generate a pattern of co-occurrence

without any particular interaction between the fungi.

Hence, carefully designed experimental studies are needed

to further understand the reasons behind the co-occurrence

and potential ecological interactions between mycorrhizal

and root-endophytic fungi.

In this study, we quantitatively evaluated the community

structure of root-associated fungi by sampling plant termi-

nal roots indiscriminately in terms of their morphology

and mycorrhizal type. Based on the sampling strategy, the

target of this study was not confined to specific ecotypes of

root-associated fungi (e.g., ectomycorrhizal fungi) and

should roughly represent the belowground community

structure of plants occurring in the study site (sensu Hiie-

salu et al. 2012). Thus, this sampling method enables the

simultaneous investigation of belowground fungal and

plant communities, further giving chance to examine the

relative frequency of plant–fungal associations in local

forests (Fig. 3; Nielsen and Bascompte 2007; Montesinos-

Navarro et al. 2012). Consequently, the “community-wide”

sampling method would be suited for ecological studies to

quantitatively investigate the entire community structure of

root-associated fungi in a study site. In contrast, the

standard mycological method that targets specific host

plant taxa would be more efficient when intensively

examining fungal species associated with the focal plants.

On the basis of the massively parallel pyrosequencing,

we found that ectomycorrhizal and root-endophytic fungi
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is plotted along the axes indicating the time of appearance in 38 soil
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(Chazdon et al. 2011), each OTU was classified as showing

statistically significant habitat preference to root samples, to soil

samples, or as being commonly observed in both habitats. The 10
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Figure 5. Co-occurrence of mycorrhizal fungi and putatively endophytic ascomycetes within roots. (A) Proportion of root samples within which

co-occurrence of different ecotypes of fungi were observed. All the 159 root samples of 12 plant species were examined. (B) Proportion of

Quercus serrata root samples within which co-occurrence of different types of fungi were observed. All the 76 root samples of Q. serrata were

examined. Common ASC, the eight most common ascomycetes (putative root endophytes; see text); EcM, ectomytorrhizal fungi; AM, arbuscular

mycorrhizal fungi; Others, roots without the common ascomycetes, ectomycorrhizal fungi and arbuscular mycorrhizal fungi.
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constituted a complex community in an oak-dominated

temperate forest. Although the “codominance” of the two

ecotypes was of particular ecological interest, our study

reported data from just one location and one point in

time. Therefore, to examine whether the codominance of

mycorrhizal and root-endophytic fungi is prevalent in

nature, we need to conduct community-wide analyses of

root-associated fungi in various forests differing in cli-

mate and/or vegetation. Furthermore, ecological and phys-

iological functions of root endophytes, and particularly

how they interact with co-occurring mycorrhizal fungi,

remain to be intensively investigated in experimental

studies.
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Supporting Information

Additional Supporting Information may be found in the

online version of this article:

Data S1. OTU sequences in FASTA format.

Data S2. Summary of reads that passed quality filtering.

Data S3. Comparison of molecular identification results

for the 10 most common OTUs.

Data S4. OTUs observed in root and soil samples (all

OTUs).

Data S5. Matrix representing the presence/absence of each

fungal OTU in each root or soil sample.

Data S6. Matrix representing the symbiosis of plant spe-

cies and fungal OTUs.

Figure S1. Map of the study plot. Schematic illustration

of the sampling design in the study site. Root samples

were collected on crossover points of the 1-m-mesh plot.

Soil samples were collected on crossover points of the

2-m-mesh plot as indicated by the brown circles.

Numbers indicate sample IDs in Data S2.

Figure S2. Example photographs of washed terminal

roots. Example photographs of washed terminal roots.

Each terminal root was washed in 70% ethanol by shak-

ing it with 1-mm zirconium balls 15 times per second for

2 min using TissueLyser II (Qiagen).

Figure S3. Example photographs of washed terminal roots.

Molecular phylogeny of most commonly observed ascomy-

cete OTUs. Maximum-likelihood topology based on ITS

sequences is shown with bootstrap probabilities above the

branches (>50%; 100 replicates). Fungal sequences of “dark

septate endophytes” (Gr€unig et al. 2011; Newsham 2011)

are indicated by asterisks. (A) OTUs in the order Helotiales

(254 bp; J2ef + G model). (B) OTUs in the order Chae-

tothyriales (239 bp; TN93ef + G). (C) OTUs in the order

Rhytismatales (258 bp; TN93ef + G).

Figure S4. Molecular phylogeny of most commonly

observed ascomycetes OTUs. Comparison of fungal

community composition between root and soil samples.

(A) Taxonomic composition of OTUs observed in root

samples (98 of 172 OTUs identified at the order level).

The analysis was conducted after converting the pyrose-

quencing data to the presence/absence matrix (see Materials

and Methods; Data S5). Asterisks indicate OTUs whose

order-level taxonomy is yet to be settled, but genus- or

family-level taxonomic information is available. (B) Taxo-

nomic information of OTUs observed in soil samples (41 of

90 OTUs identified at the order level). (C) Taxonomic

information of OTUs observed in root samples (66 of 172

OTUs identified at the genus level). (D) Taxonomic infor-

mation of OTUs observed in soil samples (30 of 90 OTUs

identified at the genus level).
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